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In [9], Moore outlined a method of factorizing a fibration into a sequence of
fibrations whose fibres are Eilenberg-MacLane spaces. Several accounts of
this theory have since appeared [e.g. 4, 6], but these treat only the case when
the fibration is simple in that the fundamental group of the base acts trivially
on the homotopy groups of the fibre. This is untrue for certain interesting
fibrations, such as non-orientable sphere-bundles. This paper develops the
theory without the hypothesis of simplicity.
Our main theorem (3.4) states that a fibration with fibre K (r, n 1) is

completely determined (up to fibre homotopy equivalence) by a ’charac-
teristic class’ in the nth cohomology group of the base with suitably twisted
coefficients r. We prove this by constructing a classifying space/ (, n)
for fibrations whose fibres have the homotopy type of K (, n 1) [cf. 10].
We define "representable" cohomology with twisted coefficients in terms of
the space/ (r, n), and reconcile our definition with a classical one. The
spaces/ (r, n) seem to be useful objects in non-simple obstruction theory.
The corresponding semi-simplicial complexes have been considered by Gitler
[3].
The author is indebted to Professor D. B. A. Epstein, at whose suggestion

this work was begun.

1. The complex/(., n)

All our spaces will have compactly-generated Hausdorff topologies, in
accordance with the system described by Steenrod [11]. In a topological
group G, the multiplication map G G -- G is required to be continuous only
when G G has the compactly-generated topology. Except where the re-
verse is stated, all spaces have basepoints (denoted by o) and all maps and
homotopies are based. We abbreviate "(X, A) has the homotopy type of a
CW pair" to "(X, A ) is of CW type", etc.

1.1. Let r be an abelian group, and nut r its group of (left) automorphisms.
Take an Eilenberg-MacLane CW-complex K (, n) which is a topological
abelian group on which nut acts by cellular automorphisms. For instance,
the Milnor realization of the standard semi-simplicial complex K(, n)
[2, 7] will do. Let Q be a CW-complex of type K (nut , 1). Then the uni-
versal cover is a contractible complex on which nut r acts freely and cellu-
larly on the left. The diagonal action of nut on K (, n) X (given by
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g. (x, y) (gx, gy) for g e aut ) is cellular and free, so the quotient

[K(r, n) X ]/aut r

is a CW-complex which we call/ (, n). The projection K (, n) X --*
induces a map q"/i (r, n) -- Q which is a fibre bundle with group aut . Each
fibre is a topological abelian group isomorphic to K (v, n). The inclusion- K(, n) X given by x - (0, x) induces a standard section s of the
bundle q. We have a diagram

q
K(, n) )/(, n) Q where qs 1.

8

We identify Q with the image of s in/ (r, n). We have canonical iso-
morphisms rn (/, Q) rn (g (r, n) X 0, ) r, since g (, n) X 0 is a
covering of (, n) (the universal cover if n > 1 ). This covering also shows
that the action of Q on . (/, Q) is the usual action of aut
/ (r, n) has the following universal property for n

_
2.

1.2 PROPOSITION. Let (X, A) be a pair of CW-type where X is connected
and (X, A is (n 1 )-connected with n

_
2 (and r,, (X, A ) abelian if n 2).

Given a homomorphism ’1X aut r and an e-equivariant homomorphism
K r (X, A ) --* , there exists a unique homotopy class (X, A ) -- (1 (., n), Q )
such that

(i) q X -- Q induces X -- Q
(ii) induces r,, (X, A -- r,, (i, Q ).

(The statement " is e-equivariant" makes sense for X does act on r,, (X, A
under the conditions stated).

Proof. We may assume (X, A is a CW-pair where X A has no ceils in
dimensions less than n. Let be the universal cover of X, and the sub-
complex coveting A. The homotopy classes (X, A) -- (/, Q) which induce

e IX - 1/ aut

correspond exactly to the (based) equivariant homotopy classes of e-equi-
variant maps

-.

There is a unique e-equivariant homotopy class . -- , because there is a
unique homotopy class X -- Q inducing e: X - Q. It only remains
to show there is a unique e-equivariant homotopy class (, ) --+ (K (, n), o)
inducing ’v(X, A -- K (, n).

is connected, and . acts trivially on n (., ) (indeed 0
unless n 2). By the relative Hurewicz and universal coefficient theorems,

H" Hom



236 c.A. ROBINSON

Let/0: (-, -) -- (K (r, n), o) represent the cohomology class correspond-
ing to K e Horn ((, ), r). Then/c0 is homotopic to an equivariant map.
For the fact that rlX acts freely on the set of cells of makes it possible
to construct, skeleton by skeleton, a homotopy from/c0 to an equivariant map
/; and the fact that K is equivariant ensures that the only obstruction to this
procedure is zero. If/’ is any other equivariant map inducing , then/c’ ---/
since they represent the same cohomology class; and there is no obstruction to
deforming a homotopy k’ --- /c into an equivariant homotopy. Thus
k (., . -- (K 0r, n), o) is unique up to equivariant homotopy.

1.3 Modification to 1.2 for small n. If n 2 and r (X, A is non-abelian,
replace :(X, A) in the statement of 1.2 by the abelianiation #.(X, A).
Then

H (X, .; r) Hom (#3 (X, A ), r)

and the argument goes through.
If n 1, then/ (r, 1 is a space of type K( X- nut , 1 where X- nut r

is the semi-direct product. If X and A are connected, then the homotopy
classes

(X, A) -- (/(, 1), Q)

for which q induces :1X nut r correspond to functions (’crossed
homomorphisms’) :rlX -- r satisfying

(ab) ka + (a).b and k (im 7tl A 0.

1.4.
classes.

We shall need a reformulation of 1.2 in terms of fibrewise homotopy
For any pair (X, A and any map e X -- Q, we consider the maps

f (X, A -. (/ (, n), Q)

which make the diagram

(X, A) (/(r, n), Q)

commute. We call such maps fibrewise over e, and we denote by

[(X, A), (, Q)]

the set of fibrewise homotopy classes of such maps.

1.5 LEMM/. Let (X, A be a pair of CW-type with the homotopy extension
property, where X is connected. Choose one map e X ---> Q in each homotopy
class. Then the set [(X, A), (/, Q)] of ordinary (based) homotopy classes is
isomorphic to (J (X, A ), (t, Q )],,

Proof. Every map (X, A ) -- (, Q) is homotopic to a fibrewise map over
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some e, by the relative homotopy lifting lemma of [12, Theorem 4] applied
to the fibration q. If H is a homotopy from f to f’" (X, A) --. (, Q),
where f, f’ are fibrewise over e, ej respectively, then qH’e ej. Hence
i j and qH is a (based) homotopy from e to itself. Since X is connected
and Q has no homotopy groups above 1, qH can be deformed rel X X OI
to the constant homotopy at e. Application of [12, Theorem 4] to this
deformation turns H into a fibrewise homotopy f ---2. The universal fibration

Suppose n >= 1. Let P P (r, n) be the space of unbased paths in/ 0r, n)
which have initial point in Q and which lie entirely in some fibre of
q / (r, n) -- Q. That is,

P w (R, Q)(’) qw (I) is a point}.

The map p" P --/ (r, n) defined by p (w) w(1) is a fibration with fibre
fiK (, n) -- K (v, n 1 ). There is a canonical section a over Q c/ (r, n)
given by a (x) (constant path at x).

Let f" E -- B be a fibration with fibre F f-lo. Let (, b) f -+ p be a
map of fibrations, i.e. there is a commutative diagram

E_ b>p

B ;/(,n).
Let M/be the reduced mapping cylinder of f. Define

x" (M+, E) --. (/, Q) (the adjoint of (b, b))

byxb (b eB),x(e,t) (be)(t) for (e,t) eE X I. xiscontinuoussinceE
is compactly generated. The homotopy sequence of (M], E) is identified
with that of the fibration f, and the following diagram commutes"

(2.1)

v,_, (ilK (r, n))

r.(M], E) x r,(R, Q).

2.2 THEOREM. Let n >-_ 2. Let F E- f B be a fibration with F and B
of CW-type, B connected, F (n 2)-connected.

Then for any isomorphism " r,,_ F -+ r there is a map (, b) f -+ p of
fibrations, unique up to homotopy, such that b F induces .

Iff admits a section, then can be deformed into Q i (r, n ).
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Proof. Since F and B are of CW-type, so is E[10]; hence the pair (M], E)
is of CW-type. 1M] acts on n (Mr, E) n-1F and hence on (via the
isomorphism K). Therefore there is a unique homomorphism 1Mf -- aut
such that K is e-equivariant. By 1.2, there is a map

k: (M, E) (/(r, n), Q),

unique up to homotopy, which induces : r. (M, E) --* . (/, Q). Using
the homotopy lifting property of q, deform ]c to a map/c’ which takes each
line e X I in M (e e E) into a fibre of q. Define B --/ to be k’ B and

E --* P to be the adjoint of

E I M ;/ (, n).

Then pb f and by diagram 2.1, blF induces
If (’, /) :f -- p also induces , its adjoint

k" (M],E)-- (t, Q
is homotopic to k’ by 1.2. Take a homotopy k’ --- /’P and deform it
(rel M] OI) until each line e I X c M X I lies in a fibre of q. The
adjoint of the new homotopy is a homotopy (, ) (7, b’).
Suppose now that f has a section r B --* E. Then a deformation of into

Q is given by (b, t) /c’ (rb, 1 t) for (b, t) e B X I.
By a K (r, n 1 )-fibration we shall mean a fibration over a CW-type base

in which each fibre has the homotopy type of K (, n 1). Theorem 2.2
enables us to classify these up to fibre homotopy equivalence (c.f. Stasheff
[0]).

2.3 COROLLARY. (i) t (, n) is a classifying space for K(, n 1)-
frations (in the sense of Stasheff and p P -- t Or, n) is a universal fibration.

(ii) A K (v, n 1 )-fibration has a section if and only if its classifying map
can be deformed into Q (r, n ).

Proof. For (i), we remark that the fibre of p is tK 0r, n), which has the
homotopy type of K 0r, n 1) by a result of Milnor [8, Theorem 3]. To
prove (ii), recall that p has a standard section over Q. The rest follows
easily from 2.2.

2.4. We note that 2.3 (i) can be interpreted in two ways. Let us define a
K (r, n 1 )-fibration with fixed fibre to be a K 0r, n 1 )-fibration together
with a specific homotopy equivalence between the fibre over the basepoint
and the space K (r, n 1). There is an evident notion of fibre homotopy
equivalence (preserving the extra structure) between such entities. Then

(a) the based homotopy classes X --,/ 0r, n) correspond to equivalence
classes of K (r, n 1 )-fibrations (with fixed fibre) over X and

(b) the unbased homotopy classes X --* (r, n) correspond to ordinary
fibre homotopy equivalence classes of fibrations (cf. [1, 16.7]).



MOORE-POSTNIKO SYSTEMS 239

We show next that the inclusion Q c/ (r, n) is a classifying map for the
K (, n 1)-fibration qn-l"/ (, n 1) --* Q of 1. For let PK (r, n)
be the usual path-space (K (, n), o) (’). Then P is homeomorphic to
(PK)(, n) O)/aut . Choose a homotopy equivalence

g K(, n 1) K(, n).
Then

(, n 1) g(, n 1) X 0 g X 1 Pg(, n) X
aut aut

gives a fibration-map q._ p over the inclusion Q (, n) which carries
the standard section of q._ to the standard section a of p over Q.
The inverse image of Q (, n) by the fibration p is the space of ’fibre-

wise loops’ on (, n). Denote this by . We have shown the following.

2.5. The restriction p Q of the universal fibration is fibre homotopy
equivalent to q" (, n 1 ) Q in a standard, section-preserving way.

As before, we denote K (aut , 1) by Q and the projection (, n) Q
by q.

3.1 DEFINITION. Let (X, A) be an unbased pair of CW-type with the
homotopy extension property, and e’X Q an unbased map. We call e
a coecient map for (X, A ), and we define the cohomology group H (X, A; e)
to be the set of fibrewise homotopy classes of maps

" (X,A) ((,n),Q) satisfying q e’XQ.

Since q" (, n) Q is a bundle of topological abelian groups, H" (X, A; e)
has the structure of an abean group.
H’( ) is edently a functor of pairs of spaces over Q. We define

a coboundary
A) A; e)

as follows. Let
f" (A, ) (/(, n 1), Q)

represent a class a e (A, ; e A ). Compose f with the standard equiva-
lence (2.5)/ (r, n 1) -- t, where 1 is the space of ’fibrewise loops’ on
/ (r, n). The adjoint of the composition is a self-homotopy of

el A A .-.Q t (r, n),
fibrewise over e’A ---> Q. Extend this homotopy to Ft" X ---. (r, n),
fibrewise over e, starting at

X e Q t (r, n)
(this requires Theorem 4 of StrOm [12]) and define a to be the class
of FI" (X, A) -- (/, Q).
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3.2. One easily proves"

(i) the resulting cohomology sequence

---> H"-1 (X, A;e) H’*-1 (X, ;e)

"--> H’-I(A, 4,; e[ A)
is exact;

(X,A;e)

(ii)
(iii)

if (X, A is a CW pair with dim (X A) < n, then H(X, A e) 0;
connectivity (X, A

_
n implies H (X, A; e) 0.

A homotopy e e X --, Q yields an isomorphism

H’*(X, A; e) H’(X, A; e’)

but the isomorphism depends, in general, on the particular homotopy chosen.
If e is the trivial map to the basepoint of Q, then

H’(X, A; e) [(X, A), (K(r, n), o)]

which is the usual eohomology group H’ (X, A; r).
3.3. Consider the special case where X and A are connected and non-

empty. Fix a base-point o e A. Since Q is connected, it suffices to consider
based coefficient maps. If e, er:X -- Q are based-homotopic, there is a
unique homotopy class of based homotopies e --- d (since X is connected)
and hence a canonical isomorphism H" (X, A; e) H" (X, A; d). Thus we
can speak of cohomology with coefficients in a homotopy class X --. Q. Such
homotopy classes correspond to rl X-module structures on r. From this,
2.4 and 1.5 we have:

3.4 THEOREM. The fibre-homotopy classes of K (r, n 1)-fibrations (with
fixed fibre) over X are in one-one correspondence with the set [ix H’* (X, o; )
where runs over rx X-module structures on r. The cohomology element ("char-
acteristic class") corresponding to a fibration is the cohomology class represented
by the classifying map X -- 1 (r, n).
A K (r, n 1 )-fibration has a section if and only if its characteristic class is

the zero of some H (X, o; )).
We now relate our definition of cohomology to the classical idea of cohomol-

ogy with twisted coefficients. Assume (X, A) is a based CW pair with X
and A connected, and X c A. Write X] for X u A. From 3.2 (i), (ii),
(iii), and easy manipulation with exact sequences, one deduces that
H* (X, A; e) is the eohomology of the cochain complex

6 H" (X], i H_ _1 _..., X]-; e)< (X Xa ;e)
(3.5)

it _Ho(Xo A;e)--0
For n 3, 1.2 and 1.3 imply

H" (X], Z-; e) Hom ( (Z], Z]-), )
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where r has the rl X-module structure determined by e and Hom denotes
homomorphisms of n X-modules; and one knows that r, (X], X]-1) is a
free n X-module on the oriented n-cells of X A. H (Xa, Xa; e) and
H (X, X; e) have similar interpretations. H (X, A; e) 0 since
Xa A. The coboundary

:H (X, X]-I; e) -- Hn+ (X]+1, X] ;e)

is, up to sign at least, equal to

Hom (0, 1) :Hom 0r,(X], x]-i), y) -- Horn (r,,+l(X]+, X]), r)

where 0 is the homotopy boundary. Hence, using (3.5)"

3.6 POOSITION. H* (X, A; e) is the cohomology of the complex of n X-
modules

On+l F, 0,, 01F,-1 -’ F1 0

with coecients in the n X-module r, where F, is a free ,rl X-module on the set of
oriented n-cells of X A and 0,, is the homomorphism induced by the attaching
maps of the n-cells.

4. Moore-Postnikov systems

Using the foregoing theory, we perform a construction which generalises
that of [4] to the non-simple case.

Let

FeE f ,B

be a fibration, where F, E, B are connected spaces of CW-type and nF is
abelian. We apply Theorem 2.2 with ,r n F and K the identity homomor-
phism. There results a map of fibrations

E P(nF, 2)

B R(nF, 2).

Let E2 -- B be the fibration induced from p by " this has fibre K (,n F, 1 ),
and f" E -- B factorises into E - E --. B. $ represents the characteristic
class of E -- B, which we denote by k He (B, o; el F)" here eF is the group
n F with the n B-module structure determined by the action in the fibra-
tion f.
We makeE -- E2 into a fibration: its fibre F is 1-connected, and ,r F m ,r F

for i >_ 2. We apply 2.2 to E --. E with ,r r. F. This yields as above a
factorisation E - E8 --+ E where E8 -- E has fibre K (,r. F, 2). Let k be
the characteristic class of Ea --. E..
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Proceeding inductively, we obtain a factorisation

(4.1) E ---- ---- E,, ----> E ---- ...--->E2---.B

of f where E+I --. E has fibre K (v F, i) and characteristic class

k+ H+1 (E o; F);

here F is rF with the E-module structure determined by the action of
E( 1E) on F in the fibration f.
We call (4.1) a Moore-Postnikov system for f, and the/c+ the k-invariants

of f. The uniqueness part of 2.2 implies that the spaces and maps in (4.1),
and the classes/, are essentially unique.
By elaborating the constructions along the lines of those in [5], one can

construct modified Postnikov towers (in the sense of [5]) for non-simple
fibrations. These are not constructed by a canonical process, but are useful
in computations.
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