
STRONG EMBEDDINGS INTO CATEGORIES OF ALGEBRAS

BY
A. PULTR AND V. TRNKOV/

A strong embedding of a concrete category (, U) into a concrete category
(P, U) is a full embedding $ : --* ’ such that there is a functor F with
U o (I) F o U. Thus, the underlying sets (mappings) of images of objects
(morphisms) with equal underlying sets (mappings) coincide, the underlying
mapping of an image of a morphism carried by an identity mapping is an
identity mapping etc.
We see easily that if (, U) can be strongly embedded into a category of

algebras (taken with the natural forgetful functor) and if, for a morphism
e, U is one-to-one onto, then is an isomorphism. Consequently,

categories like the category of graphs and graph homomorphisms, category
of topological spaces and continuous mappings etc. are not strongly embedda-
ble into a category of algebras. We shall say that a concrete category is
strongly algebraic if it is strongly embeddable into a category of algebras.
The present paper was stimulated by the questions whether some familiar

categories which are not rejected by the simple criterion above (we shall give
a finer one in 3.14), e.g. the category of compact Hausdorff spaces and con-
tinuous mappings, the category of topological spaces with open mappings,
or, with quotient mappings, the category of complete lattices and complete
homomorphisms etc. are strongly algebraic. We obtained a relatively general
theorem (2.7, 2.9) from which the positive answer for the mentioned cate-
gories, and for other ones, easily follows. Another corollary of the main theorem
is that one of the choices of morphisms described by Wyler in [8] (see 3.9 and
3.11 yields for certain wide family of functors strongly algebraic categories.
We work in the GSdel-Bernays set theory with one additional assumption:

(M) There exists a cardinal a such that every a-additive two-valued
measure is trivial.

(Thus, (M) is a bit weaker then the assumption of non-existence of measur-
able cardinalswhich is (M) with a 00). The statements in 2 in the
proof of which (M) is used are indicated by superscript m after their numbers
e.g. 2.7.
The notation used and some results from elsewhere are summarized in

Received June 29, 1969.
A concrete category is, as usual, a category together with a fixed faithful funetor

from into the category of sets (the forgetful functor). If x ( resp.) is an object
(morphism resp.) in , U (U resp.) is called the underlying set (mapping resp.) of
( resp.); we also say that x, are carried by Ux, U.
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a section named simply "Notation", placed after the last, third, paragraph-
It is divided into seven parts (N1-N7). Whenever a symbol or a notion un.
explained before, or some of its less obvious properties, appears in the text,
the corresponding Ni is quoted.

1. Categories A(F)
1.1 DEFINITION. Let J be a set. Let for every i e J a set functor F

(see N3) and a type (see N2) be given. The category A ((F, A),j) is
defined as follows" The objects are systems (X, (o)j) where X is a set and
every o is an algebraic structure of the type A on F(X). The morphisms
from (X, (co))into (X, (o)j)are triples ((X, (co)j),f, (X’, ())) where
f" X --+ X’ is a mapping such that everyF (f) is a o-homomorphlsm. The
category A ((F, A)a) will be, throughout this paper, taken always for a
concrete category endowed with the forgetful functor U defined by

u(x, x, u((x, (x’, f.
Conventions. We shall often write simply f instead of

((X, (),),f, (X’, (’),)).
If J n, we write A (Fo, Zo), (F,, z), ..., (F,_, ,%_) instead of
A ((F, a,)). If a (1) for every i, we write A ((F)) for A ((F,/)).
In particular, A (F) is the category A (F, (1)).

1.2 LEMM2k (For notation see N3). Let M, N be sets. For a mapping

co (N, M) "-> M define (N, M) -- (N, M) by ( (q) const().

If o M[ M (i 1, 2) and g M1 -- M, then

go oQNg iff QNgo &oQg

For a mapping o M --> M define P-(M) --. P-(M) by P-(o). If
M --, M (i 1, 2) and g M -+ M., then

g o . o. o g iff P- (g o w o p- (g

Proof is trivial.

1.3 PaoPOSrTm. Let J be a set, F, (i e J) set functors and A (i e J) types.
Then there is a set K and covariant setfunctors G, (k e K) such that A (F D
can be realized in A ((G):). If every F is a TB-functor (see N6), the functors
G, may be chosen to be TB-functors too.

Proof. Let a (a)<. First, we see easily that A ((F, a,),a) is
realizable (see N7) in A((F,, (,))), where K
.) a and F(.,) F. Now, define H, Q, o F for
for , 0. By the first part of Lemma 1.2 we see easily that

A (F, () x) --+ A ((H))
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defined by (X, ()) (X, ()), where, for 0, const , is a
realization. Finally, by the second part of Lemma 1.2 we obtain a realization
of A ((H)) in A ((G)), where G H if H is covariant, G P-.H
otherwise.

1.4 LEMMA. Let F be covariant for every i J. Then A ((F),) is realiz-
able in A (/, E). (For the symbol , see N4.)

Proof. It suffices to define )" A ((F),) - A (/F) by

(x, (,)) (x, ),
where o (x, i) ( (x), i).

1.5 LEMMA. Let F be covariant. Then A (F) is realizable in A (F k C1).
(See N3, N4.

Proof. It suffices to replace the operations o by o /11.

1.6 DEFINITION. A set functor F is said to be pointed if there exists a
transformation r C1 - F.

As a simple corollary of 1.3-1.6 we obtain

1.7 THEOREM. Let J be a set, (i e J) types, F (i e J) set functors (TB-
functors resp.). Then there exists a covariant point set functor (TB-functor
resp. F such that A (F, h)) is realizable in A (F).

1.8 PROPOSITION. Let F be a retract (see N3) of G. Then A (F) is realiz-
able in A (G).

Proof. Take transformations F - G and e G --. F such that et 1.
Define ’A (F) -- A (G) by (X, ) (X, to o e). It is easy to see
that ) is a realization.

1.9 DEFINITION. A faithful set functor F (covariant or contravariant), is
said to be algebraically selective if there exists a set M and a one-to-one full
functor Set -- M?I (see N2, N3) such that F U o .

1.10 PROPOSITION.
:Y,/ >_ 2 (see N2).
(see N2).

Let F be covariant algebraically selective, h a type,
Then there exists a strong embedding of A (F) into (/

Proof. Let ’Set -+ M be a full embedding such that F U o .
Put eb (X) (F (x), (qm)M). Thus, the following two statements are equiva-
lent"

(1)
(2)

There is an f" X -- Y with F (f) g.
x x

g o m g for every m e M.

Choose an element a e M and put N M u {al. Define ’A (F)
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as follows"
x

(X,a) (F(X), (a,)) where a ,, for mM and aa a,

U o,I((X, a),f, (Y, )) F(f).

By the equivalence of (1) and (2) above we check easily that is a strong
embedding. By [2], N?I is strongly embeddable into [ (/).

2. Majorization by algebraically selective and main theorem
2.1 LEMMA. Let F, G be algebraically selective functors. Then F o G is

algebraically selective.

Proof. Let Set --,M [ (i 1, 2) be full one-to-one functors such that
Uo= F, Uo= G. We may assume thatMnM 0. Let(X)
(F (X), ()M), (X) (G (X), (b,)M ). Put M i u i, x F (b2)
for m e M, x q() for m e M and define Set -- M[ by )(X)
(EG(X), (X,)M), U(f) FG(f). It is easy to see that is full and one-
to-one.

2.2 LEMMA. There exists an algebraically selective functor F with P- F
(see N5).

Prooj’. Take a set M such that card M /t, where/t is the cardinal from
the condition (M). Define F by F (X) (X X M, 2), F (f) () q o f.
By [4], (see N5), P- < F. Define unary operations r (m e M), a, p, c
on F (X) as follows:

()(x, n) (, ), (o)(, b) 0,

(p)(x,n) inf{(x,m) [meMI, (c)(x,m) 1 q(xm).

Define, for ’X --* 2, b’X X M --, 2 by b(x, m) (x); for
q X X M --, 2 and m e M, defineq" X -- 2 by (x) q (x, m). We have

() .
Further, put z const0, e consh.

If f" X - Y is a mapping, we see easily that F (f) is a homomorphism with
respect to ra, a, p, c. On the other hand, let g F (Y) --, F (X) be a homo-
morphism. We obtain immediately g (z) g (aq) g (q) z, g (e)
g (cz) cz e.

Choose an m0 e M and define

(2) J(R) {q" Y-- 2]g()(z, m0) 1}.

We have obviously e e J, z J.
Choose m, heM, m n and define, for ," Y 2 a mapping

The proof is, in fact, only a modification of the proof of selectivity of P- from [1].
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X" Y X M - 2 by x(x, m) 1 (x), x(x, n) 1 ---b(x), x(x, k) e

otherwise. We have sup (,k) cpx, rmx c, ’,x cb and rk x e for
k m, n. Thus,

g (su’""(b))(x, too) 1 pg (x)(x, too).
Since

(x) (, ) (x) (x, m0) g( x) (x, n0)

we see that sup (q,) e J, i.e., pg (x) (x, too) 0, iff either e J or e J.
Let m’Y -- 2 (m e M) be mappings. Define " Y X M 2

by q(x, m) q(x). We obtain , inf I’lmeM} p, so that

g (inf q’) (x, mo) g (p) (x, mo) pgq (x, mo) inf {g () (x, m) m e M}

inf Ir,g(q)(x, mo)[meM} inf {(x, mo)]mM}
where the lust equation is obtained by (1). Thus, if e J for every m e M,
then inf eJ

Thus, J is an ultrafilter closed with respect to the infima of systems of
curdinulity i. Consequently, it is principal (by (M)), so that there is ex-
actly one y e Y such that

(3) J {qlq(y)= 1}

Let us denote this y by f(x). We obtained a mapping f" X -- Y. By (2)
and (3), g () (x, m0) f(x) for every q" Y -- 2. Letb Y X M -- 2 be a
mpping. We have

()(x, n) ()(x, m0) g()(x, 0) ()(x, ,0) =ff(x))

=(f(), ,) (f if) ()) (, ,).

2.3 LEMMA. Let F (i J) be covariant algebraically selective functors. Then
there is an algebraically selective functor G such that / Fi < G.

Proof. Let " Set --. M .I be full embeddings such that U o F.
We may assume M disjoint, J (JM and 0, leJ t [JM. Put
(X) (F(X), (q),,M), M 2 t J t [J M.
By [5, Lemma 1], (F is there assumed one-to-one; it suffices however to

assume F to be faithful) there exist monotransformations I -- F. Define
a functor G by

G(X) /F(X)u X X {0} u 2 X {1},

G(f)(x, i) (F,(f)(x), i), G(f)(x, O) if(x), 0), G(f)(j, 1) (j, 1).

Define unary operations k
x
(m e M) on G (X) as follows:

ko(x, 0) (x, 0), ko(X,k) (0, 1) fork 0, 1, ko(j, 1) (1 -j, 1),

b const (0.1),
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for x 0, 1, b,(x, 0) ((x), i), (x, i) (x, i),

,(x,k) (0,1)fork i, 0,1, h(j, 1) (l-j, 1),

(x, i) (q (x), i) for m e M, b(x, k) (0, 1) otherwise.

If f" X --, Y is a mapping, G (f) is obviously a homomorphism with respect
to the operations described above. On the other hand, let g G (X) -- G (Y)
be a homomorphism. Considering bl we see that g (0, 1) (0, 1). Thus,
using b0, we obtain g(1, 1) (1, 1). Now, considering the fixed points of
o andb (i J) we obtain

g(XX {0})c YX {0}, g(F(X) X {i})CF,(Y) X {i}

Thus, we may definer" X--, Yby g(x, O) (f(x), O) andg F(X) --,F(Y)
by g(x, i) (g(x), i). We have, for any m M,

(,,..(), i) (, i) =g(x, i) (,(x), i)

and hence g F (f) for some f" X -. Y. Finally, for i e J,

((), i) =ff(), 0) ,g(, o) e,(x, o) ((), i)

(F(:,)?(), i) (f,(), i).

Thus, f f and hence g G (f).
2.4 LEMMA. If card M >_ 2, then VM (see N3) is algebraically selective.

Proof. Choose m, n e M, m n, and define unary operations (m e M)
onX X {0} uM X {1} by(x, 0) (x, 0),(m, 1) (n, 1),2(k, 1)
(m, 1);otherwise, for k m put const(.l). If f" X --, Y, g V(f)
is obviously a homomorphism. On the other hand, let g V(X) -- VM(Y)
be a homomorphism. We have

(, o) g((, o)) (g(x, o)),

so thatg(X X {0}) Y X {0},g(/, 1) gk() qkg() (k, 1)for
k m, and finally

g(m, 1) gq(n, 1) (n, 1) (m, 1).

2.5 PROPOSITION. For every covariant TB-functor F there is an algebraically
selective G with F < G.

Proof. By [3, Theorem 3.12] and N3 there is an ordinal a and a set M (we
may assume card M >_ 2) with F < P" o VM. According to 2.1 and 2.4 (see
also N5) it suffices to prove that for every a there is an algebraically selective
G with P" < G. For a 1, this follows by 2.1 and 2.2 (since P P- o P-).
If the statement is true for a, it is true for a -t- 1 by 2.1 and 2.2. Now, let a
be a limit ordinal and let there be, for every < a, an algebraically selective
GwithP < G. Then, by [3] (seeN6)and 2.3 we haveP < k/Pa <
/G < G for some algebraically selective G.
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2.6. LEMMA. Let F be covariant pointed, let G be algebraically selective and
et F G. Then there exists an algebraically selective H such that F is a retract
fH.

G’Proof. Since F G, we have a monotransformation F -* and an
Gepitransformation e G-- (see N5). Let Set -.NI be a full embedding

such that Uob G, let (X) (G(X), ().,). We may assume
Na2 . Put

H FG’GC (seeNd)

and define unary operations b (m e M B t 2) on

H(X) F(X) X {0} u G’(X) X {1} u G(X) X {2} u 2 X {3}

as follows :0 (x, 0 (g* (x), 1 ), b0 (x, 1 (0, 3 ), b0 (x, 2) (1, 3 ), bo (i, a
(0, a), bl (x, o) (0, a), bl (x, 1 (1, 3 ), b (x, 2) (e (x), 1 ), (i, 3)
(1,3);forn,N,,(x,O)=,(x, 1)=,(i, 3) (0,3),(x,2)= ((x),2).
It is easy to see that for everyf" X Y, H (f) is a homomorphism with respect
to the operations described. Now, let g H (X) H (Y) be a homomorphism.
Since (0, 3) is the oy fixed point of 0, we have g (0, 3) (0, 3), silarly,
using , we obtain g (1, 3) (1, 3). If x, G (X), we have 0 g (x, 2)
0(x, 2) (1, 3), so that g(x, 2) G(Y) X {2} and we can define
h" G (X) G (Y) by g (x, 2) (h (x), 2). For n, N we have ((x), 2), (x, 2) $. g (x, 2) ( h (x), 2), so that, by definition of (.)n, h G)

G efor some f X Y. Let x e (X) Since is onto, we have

g (x, 1) g (e" (y ), 1) g (y, 2) (G(f) (x ), 2) (erG (f) (x ), 1)

Let x e F (X). We have

og(x, O) g(u" (x), 1) (G’ ff) (x), 1 (’F if) (x), 1 o(F if) (x), 0).

Thus, since bog(x, O) (y, 1),g(x,O)isinF(Y) X {0}. Since b is one-to-
one on F (Y) X {0}, we have g (x, 0) (F (f) (x), 0).
Let r" C -- F be a transformation. Define transformations a’F H

andt’HFbya(x) (x, 0),(x, 0) x,(x,i) r(0) fori0.
Obviously fla 1.

2.7 THEOREM. Let J be a set, (i J) types, F (i J) TB-functors,
h a type with /t > 2. Let (, U) be a concrete subcategory (see N1) of
A (Fi, 5i)j). Then there exists a strong embedding of (, U) into I ().

Proof. By 1.7, (, U) is realizable in an A (F) with a covariant pointed
TB-functor F. By 2.5 and 2.6, F is a retract of an algebraically selective G,
so that, by 1.8, (, U) is realizable in A (G) and, by 1.10, there is a strong
embedding of (, U) into t (A).

2.8 DEFINITION. A concrete category (, U) is said to be strongly
algebraic if there is a strong embedding of (, U) into some I (4).
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Remark. A strongly algebraic category can be strongly embedded into any
[ (4) with 2A >_ 0. By [6], [7], it can be strongly embedded into the category
of semigroups.

In view of the previous definition, we may reformulate 2.7 as follows"

2.9 TEOIEM. Every concrete subcategory of A ((F, h)j) with TB-
functors F is strongly algebraic.

3. Consequences and remarks

3.1 PROPOSITION. The category of complete lattices and all their complete
homomorphisms and the category of complete Boolean algebras and all their
complete homomorphisms are strongly algebraic.

Proof. The first category is obviously a concrete subcategory of

A((I, (2, 2)), (P+, (1, 1))),
the second one of

A ((I, (0, 0, 1, 2)), (P+, (1, 1))).

3.2 PROPOSITION. The category of all topological spaces and their continuous
closed mappings, the category of compact Hausdorff spaces and their continuous
mappings and the category of all topological spaces and their continuous open
mappings are strongly algebraic.

Proof. The first one is realizable in A (P+), since f is continuous closed
iff P+ (f) o C1 C1 o P+ (f) (where C1 is the closure operator). The second
one is a concrete subcategory of the first one. The third one is realizable in
A (P-), since f is continuous open iff P- (f) o Int Into P- (f) (where Int is
the interior operator).

3.3 POPOSITION. The category of pointed compact Hausdorff spaces is
strongly algebraic.

Proof. It is obviously realizable in A (P+, 1), (I, 0) ).
3.4 PROPOSITION. The category of all sets and all one-to-one mappings

and the category of all sets and all mappings onto are strongly algebraic.

Proof. Define a unary operation x on VQ(X) X X X X 0} u 2 X 1
byi(x,x, 0) (0,1),(x,y, 0) (1,1)forx y,(i, 1) (i, 1). Ob-
viously f is one-to-one iff V. Q (f) VQ (f). Thus, the first category
is realizable inA (V Q). The second one is evidently realizable inA ( (P+, 0) ).
X being the nullary operation on P+ (X).

3.5 Remark. Combining the previous considerations we see easily that the
category of all topological spaces and their closed (open) homeomorphisms
into is strongly algebraic etc.

3.6 PnOPOSITON. The category of topological spaces and their quotient
mappings onto is strongly algebraic.
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Proof. If (X, r) is a space, define a unary operation (X, r) on V P-(X)
by (M, 0) (0, 1 if M is open, (M, 0) (1, 1 other-wise, (i, 1 (i, 1 ).
We see easily that a mapping onto is a quotient mapping iff V P-(f) a

a o V P- (f). Thus, the category is realizable in A (P+, 0), (V P-, 1 ).

3.7 DEFINITION. Let F be a set functor. Define a concrete category
(F) ( (F) respectively) as follows: The objects are couples (X, r) where
X is a set and r F (X), the morphisms from (X, r) into (Y, s) are triples
(X, r), f, (Y, s)) where f X -- Y is a mapping such that

F(f)(r) s and F(f)(F(X) r) F(Y) s(F(r)(r) s resp.;

in the case of contravariant F interchange r and s, X and Y). The forgetful
functors in (F) and (F) are defined by

U(X, r) X, U((X, r),f, (Y, s)) f.
Remark. Compare the definition with the definitions of S (F), S (F, h))

in [1], [4]. In a way analogous to the one above we can, of course, define more
generally concrete categories ((F, X)), ((F, h)).

3.8 PROPOSITION. If F is a TB-functor, (F) and (F) are strongly al-
gebraic.

Proof. If (X, r) is an object of (F), define a unary operation a(’) on
VF(x) by(r(x,O) (0, 1)ifxer, a(x, 0)= (1,1)ifxr,a(i, 1) (i, 1).
We see easily that E (f) (r) s and F (f) (F (X) r) F (Y) s iff
VF (f) o a o V F (f). Thus, (F) is realizable in A (V F). $ (F) is
obviously realizable in A ((P+F, 0)).

Remark. Analogous statements about ((F, A)) and ((Fi, A))
are valid.

The choices of morphisms used in the following definition are particular
cases of the choices introduced by Wyler in [8].

3.9 DEFINITION. Let F, G be covariant set functors. Define concrete
category W (F, G) (W* (F, G) resp.) as follows. The objects are couples
(X, r) where X is a set and r F (X) --. G (X) a mapping (r G (X) X F (X)
a subset, respectively). The morphisms from (X, r) into (Y, s) are triples
(X, r), f, (Y, s) where f X -- Y is a mapping such that G (f) o r s o F (f)

(in the case of W* (F, G), o is the usual composition of relations). The for-
getful functors are defined by U (X, r) X, U ((X, r), f, (Y, s)) f.
W(F, G) and W* (F, G) for contravariant F, G are defined quite analogously.

Remark. Of course, we can define W((F, Gi)), W* ((F, G)) is an
obvious way.

3.10 LEMMA. W* (F, G) is realizable in W, (F, G).
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Proof. For r c G (X) F (X) define " F (X) P+G (X) by

r}.

It suffices to prove that, for f" X --. Y and s c G (Y) X F (Y), the following
two statements are equivalent"

(I) G(f) or soF(f);
(II) P+G (f) o o F ().

Let (I) hold and let x e F (X). If y P+G (f) ( (x)), there is a z with
y G(f)(z) and (z, x) er. Thus, (y, x) eG(f)or seE(f) and hence
(y, F (f) (x))e s, i.e. y e (F (f) (x)). If y e (F (f) (x)), we have (y, F (f) (x)) e s,
hence (y, x) e s o F (f) G (f) o r so that there is a z such that y G (f) (z)
and (z, x) e r. Thus, y e P+G (f) ( (x)). Let (II) hold. If (y, x) e G (f) o r,
we have y G(f)(z) and (z, x)e r for some z. Thus,

z e (x) and y e P+G (f) ( (x)) (F (f) (x))

and hence (y, x) e s o F (f). If (y, x) e s o F (f), we have y e (F (f) (x))
P+G (f) ( (x)). Thus, there is a z e (x) with y G (f) (z) and we have
(y, x) G() r.

3.11 PROPOSITION. If F, G are TB-functors, Wa (F, G) is strongly algebraic.
It is easy to see that Wa(F, G) is realizable in A (F X G)--define, for
9 F (X ) ---. G (X ) a unary operation on F (X X G(X by (x, y)

).
3.12 PROPOSITION. The category * of graphs and their strong homomor-

phisms (if R, S are binary relations on X, Y respectively, we say that a mapping
f X ---. Y is a strong homomorphism from (X, R into (Y, S) iff o R S f)
is strongly algebraic.

Proof. In fact, * W* (I, I).
3.13 Remark. By [6], [7], the categories mentioned in 3.1-3.12 are strongly

embeddable into the category of semigroups.

3.14 ]PROPOSITION. Let (, U)be strongly algebraic.

(1) If a a ----> c and b c are morphisms in , U one-to-one and
Ua U o f, there is a . a ---. b in such that U’ f

(2) Ifa c ---. a and c b are morphisms in, Ufl onto and Ua f o US,
there is a " b ---. a in such that U’ f.

Proof. I (2) has obviously the properties (1) and (2). Now, let (, U)
be strongly algebraic, let : -- t (2) be a strong embedding of (, U)
into I(2), let U o F o U. We see easily that F is faithful. We shall
prove statement (1); the proof of (2) is analogous. We have FU (a)
FU() o F (f) and hence U (Ca) U() o F (f). Thus, there is a homo-

This proof is a modification of a proof proposed by Hedrlin.
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morphism h (a) -* (b) with F (f) U (h). Since is full, h (,)
for some "v h -- b. We have F (f) U)() F (U,) and hence f U,.

3.15 PROPOSITION. The category of compact spaces and their open mappings
is not strongly algebraic.

Proof. Let C be the subspace of the real line consisting of 0 and the
numbers of the form 1In where n is a natural number. Let A, B be two non-
homeomorphic countable compact spaces, let a ( resp.) be a one-to-one
mapping of A (B resp.) onto C {0}. Obviously, a and are open and
determine a unique f: A --+ B such that f o f a. Thus f is a one-to-one
mapping of A onto B. Thus, if it were open, it would be a homeomorphism.

3.16 Problem. Is the category of Banach spaces and their linear (con-
tinuous) mappings strongly algebraic?

Notation

N1. (, U) is said to be a concrete subcategory of a concrete category
(, U’) if is a subcategory of ’ and U U’[. Two concrete categories
(, U) and (’, U) are said to be concretely isomorphic if there is an iso-
functor " --+ with U o U.
N2. An ordinal a is taken, as usual, as the set of all ordinals less than a.

A type h (aa)< is a sequence of ordinals indexed by ordinals. The sum
of a type A, written 2h, is the usual ordinal sum of the sequence. The notions
of an algebra of the type h and of a homomorphism is used in the standard way.
We denote by I (4) the concrete category of all algebras of the type A and their
homomorphisms, endowed with the natural forgetful functor.

If M is a set, MI is the category whose objects are systems (X, (q),)
whereX is aset and" X-+X mappings, the morphisms fromA (X, ()M)
into A’ (X, ()) are triples (A, f, At) where f X --+ is a mapping
such thatf o q o f for every m e M. MI is taken as a concrete category
endowed by the obvious forgetful functor. Of course, M[ is a concretely
isomorphic with some i (1, 1, 1, ).
N3. The category of sets is denoted by Set, the functors F’Set --+ Set

are called set functors. We use the following notation for some particular set
functors (M is a set, (X, Y) is the set of all mappings from X into Y). I is
the identity functor,

P+ (X) P- (X) Y Y X} P+ (f) (Y) f(Y), P- (f) (Y) f- (Y),
p p-op-,

q(x) (M, X), Q(/) () f o ,
P(X) (X, M), PM(f) (q) qf,

V(X) X X /0} ui X [1}, V(f)(x,O) if(x),O),

VM(f)(m, 1) (m, 1),
C is the constant functor, C(f) 1.
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A functor F is said to be a retract of G if there are transformations a F --. G
and " G -- F with a 1.

N4. For the product (coproduct) of functors Fm (m e M) the symbol
F(/F) is used. Thus, (X Fro) (X) X F(X) (where X on

the right hand side designates the cartesian product), (/F,,,)(X)
(JF(X) X {m}. The product (coproduct) of two functors is denoted by
F X G(F / G). Similarly, we use the symbolF k/ G /Hetc. IfFis
covariant and G contravariant, (F, G) is the contravariant functor defined by

(F, G)(X) (F(X), G(X)), (F, G)(f)(q) G(f)o,o F(f).

Similarly, the covariant (F, G) for contravariant F and covariant G is defined.

N5. A monotransformation (epitransformation) r F --. G is a transforma-
tion such that every r is one-to-one (onto). We write F G if there is
a functor H, a monotransformation :F -- H and an epitransformation
e G -- H (thus, F < G means that F is a subfunctor of a factorfunctor of G).

is transitive (see [3, 3.2]. In the text, we use the following properties of <"

F < F’,G < G’:::aFoG < F’oG’ (see [4, 3.7], [3, 2.7] ),

F < G (mM)=:, /F < /Gm

p+ <p-op-=p
P-<F

where F is defined by

(see [3, 3.5]),

(see [4, 4.5]),

F(X) (X X M, 2),F(f)() qo (fX 1) for cardM_> 1

(see [4, 4.7, 4.4]).

N6. Constructive functors are defined recursively as follows.

(1) I, P, Q, C are constructive.
(2) If F, G are constructive then F o G is constructive.
(3) If M is a set, F (m e M) constructive, all F covariant or all F

contravariant, then /MF and XMF are constructive.

F is said to be a TB-functor if there is a constructive G with F < G. The
definition of constructive functors differs from that given in [3]. By the
theorems from [3], however, the resulting TB-functors coincide.
The family of TB-functors is closed with respect to composition, the opera-

tion (F, G) (see N4) and all limits and colimits over small diagrams. P+ is a
TB-functor (see NS). In text, we use the following theorem from [3]:
For every covariant TB-functor F there is an ordinal a and a set M such that
F <. P"o VM (for P, VM see N3). The powers P" are defined by induction,
p+l p o p, p, for a limit ordinal is a colimit of Pa with < a. (The
precise description is given in [3]; here we need only the fact that P" < /< Pa
for a limit ordinal a.
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N7. If (, U), (’, U’) are concrete categories, a full embedding
--*’ is called a realization of (, U) in (’, U’) if U’ o U. If there

is a realization of (, U)in (’, U’)we say that (, U)is realizable in (’, U’).
Thus (1) a realization is a particular case of a strong embedding (F I);
(2) (, U) is realizable in (’, U) iff it is concretely isomorphic with some
full concrete subcategory of (’, U’).
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