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1. Introduction

Let 11 mnifolds considered be n-dimensional, closed, compact, connected
C mnifolds. Letr M ---> BO be the classifying mp for the stable tngent
bundle of M. Recall that H* (BO) is polynomial lgebr on the universal
Stiefel-Whitney classes, w,, ws, ..., where 11 coefficients re Zs. Let
S H* (BO), then define I (S, geom) H* (BO) to be the ideal ker rM
where the intersection is tken over ll n-dimensional mnifolds with
S ker *r. Let H be n n-dimensional Poincr lgebr. There is
unique right-left A-homomorphism r" H* (BO) ----> H, A the Steenrod l-
gebr (see Brown-Peterson [5, Lemm 5.1, p. 44]). Define I (S, lg)
H* (BO) to be the ideal given by [’1 ker r where H runs over ll n-dimensional
Poincr. lgebrs such that r(S) O.

For the cses S 0, {w}, I (S, geom) corresponds to the intersection of.
ker T tken over ll mnifolds, nd respectively, ll oriented manifolds. For
these two cses, Brown nd Peterson show that I (S, geom) I (S, lg)
[5, Theorems 5.2 nd 5.4, p. 45]. Clearly, one hs I (S, lg) I, (S, geom)
for ll S. [5, p. 45] gives n example to show that equality does not lwys
hold.

In this pper, the case where S w, w.} will be considered. I ({ w, ws},,
geom) corresponds to the intersection of ker rM where M runs over ll n-dimen-
sional Spin mnifolds.

Let BO(k,} be the 1 1 connective covering over BO nd BO(]} the con-
nected 2-spectrum with 0th term BO(k,}. For ] 0 nd 2, the bottom
cohomology classes of BO(0} nd BO(2} induce mps

v" H. (X, BO(0}) -- H. (Z) nd " H. (X, BO{2}) -- H._ (X)

on the generalized homology [12]. In Section 2, the computation of
I ({w, w}, geom)a is reduced to problem bout the image of the maps
nd for the spce X K(Z, n q). This reduction is generalization

to Spin of Brown-Peterson results for SO [5]. The mjor prt of this pper is
devoted to obtaining certain information bout the image of ] for
X K (Zs, 2). These results re stated in Section 2 nd used there to prove
that I (/w, w}, geom) is not equal to I (/w, ws}, lg) in general. In pr-
ticulr, it will be shown that

w I. ({w, w}, geom) but w Ig ({ w, w.}, lg).
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These results on the image of give a partial computation of

I. ({w, w}, geom)’-.
The proof of the main results will be deferred until Section 5. In Section 3.
generalities about v and , are proven. These are used in Section 4 to determine
I (/w, w}, geom)q for q n, n 1, and q

_
n/2 where it is shown to be

equal to I (lw, w:}, alg)q. Methods for obtaining more information about
higher codimensions re given in Section 6.

This paper is essentially the author’s masters thesis at M.I.T. written under
the guidance of Professor F. P. Peterson. Thanks are also due to Professors
Don Anderson, John Harper, and Dr. Steve Williams for many useful con-
versations, and Prof. Kan for his continual encouragement.

2. I, (Spin)
Brown-Peterson [5] is the reference for all of Section 2.
Define I, (Spin) c H* (BSpin) to be l ker r* where the intersection is

taken over all n-dimensional Spin manifolds and r M ----> BSpin is the classi-
fying map for the stable tangent bundle.

Let (M, f) represent an element in the Spin bordism group, . (X, Spin).
M is a Spin manifold and f" M --* X. Define

q" H* (BSpin) --. . (g (Z., q), Spin) *

by q(u)(M,f) (r(u).f*(cq))(M) eZ., where cq Hq(K(Z, q)) is the
generator. I,q is well defined. H* (BSpin) is a right A-module where the
action is given by

u. a - (x (a) (u)),

H* (BSpin) ---) H* (MSpin) is the Thorn isomorphism and x is the canonical
anti-automorphism. Define

H* (X) ---> . (X, Spin)*0 (X) H* (BSpin) (R).

by 0 (X) (u (R) v) (M, f) (* (u).f* (v)) (M) e Z.,.. We have then

q 0(K(Z, q)).q

where H* (BSpin ----> H* (BSpin) (R). H* (K (Z2 q is defined by

(u) =u(R)c.
THEOREM 2.1 (Brown-Peterson, Lemma 2.2).

I, (Spin )q ker (,_q H (BSpin ).

Before going further we need to recall some results on MSpin from Anderson-
Brown-Peterson [3, p. 272]. Let J (jl, jk) be a sequence of integers
such thatk >_ 0andj > 1. Letn(J) j. Let MSpin be the Thom
spectrum associated to the Spin groups. Let J be such that n (J) is even,
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and J’ for n (J’) odd. Then there are maps

f MSpin - BO(dn(J)) and f, MSpin - BO(4n(J’) 2)
defined in [3]. If z e H (MSpin), let f MSpin --* K (Z, n) denote the
corresponding spectrum map. The main result we need is"

THEOREM 2.2 (Anderson-Brown-Peterson). There is a collection of ele-
ments z e H* (MSpin) such that the map

F:MSpin---*IBO(4n(J)} X II, BO(4n(g’) 2} X IIK(Z, dimz,) L,

given by F IIf x If, x IIfz,, induces an isomorphism on Z. co-
homology.

Thus, there is a C isomorphism

F(X) H,(X, MSpin) --, H,(X, L)

where C is the class of groups of odd order. There is also an equivalence

a(X) 2,(X, Spin) ---, H,(X, MSpin)

similar to the one for SO in Conner and Floyd [6].

LEMMA 2.3. There are elements

P Han(J) (BSpin ), Q, H’(’)- (BSpin) and N -(z

such that H* (BSpin), as a right A-module, is generated by {P, Q, N} with

P, SqA PSqA Q, SqSqA 0

as the only relations. Also, P -(f* a) and Q, -(f*, a) where a is
the bottom cohomology class of BO(n} for n 0 or 2 rood 8.

Proof. This follows from 2.2 and the fact that

H* (BO(8k}) A/A (Sq, Sq) and H* (BO(Sk - 2}) A/A (Sq) [,9].

DefineR(X) H*(X) H.(X)*byR(X) kerr*, andS(X) H*(X)
by S (X) ker ,*.
LEMM 2.4. IfX is a CW-complex with afinite number of cells in each dimen-

sion, then the kernel of 0 (X is given by

{P (R) R(X), Q, (R) S(X)}.

Proof. With minor modifications, the proof is the same as for Lemma 4.2
of [5, p. 47].

Let c be the fundamental class of K (Z, s). Define

T laeA lac" 0}, R, laA [ac’R(K(Z, s))},
and

S laeA lac’eS(g(z., s))}.
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Let P c H* (BSpin) be the vector space with basis Pj, and Q the vector space
with basis Qj,. Define

F 2>-H (BSpin)Sqj.
We have"

THEOIE 2.5. I, (Spin )q (F, )q d- .-q + ’-n--q
Proof. Similar to 4.3 of [5, p. 43].

We can now state our main result and give its application. In Section 5 we
prove the following:

TUEOaE 2.6. For I admissible, I (i, ..., i), if e(I) 2, then all
SqeR except those with i 2. If e(I) 1, and k 5, then Sq Rz;
if 3, then Sq e R ;for k 4, not known.

COaOZLAaY 2.7.

w e I ({ w, w}, geom)7 but I9 ({ Wl, W2}, alg)7.

Proof. For J , P 1 e H* (BSpin), so by Theorem 2.5,

(1)SqSq:Sq w e I (Spin) w e i ({w w}, geom).

Now we will construct a 9-dimensional Poincar algebra with w w 0
and w 0. Then, by definition,

W7 I9({Wl, W}, alg)

and this will conclude the proof. Let x be a 2-dim class, and let
4 2 and w7Sq x Sq Sq x qqqx, wa, wa,

be non-zero classes with w, w, and w the Stiefel-Whitney classes. Then the
action of A and the cup products are given by the following equalities"

1 SqSqSqx (1)Sq S.SqSqx w.SqSqx w4Sq qx

w.Sq x w Sq.x w.x O.

This gives the desired Poincar6 algebra.

3. R. and S.
To study R, we will consider the map

v’H.(K(Z, s), BO(0}) H.(K(Z, s)), R(K(Z, s)) ker v

H*, (K (Z, s H, (K (Z, s ), BO(0} *

So for a e A, ac (imuge v) 0 iff a e R,. H.(K(Z, s), BO(0)) is just the
stable homotopy group of K (Z, s) BO(0). We will study the Adams
spectral sequence for this [1]. The E term is

Ext (g* (g (Z, s) @ H* (BO(0)), Z).



Now H* (BO(0)) is A/A (Sq1, Sq2) A (R) 1 Z2 where A1 is the sub-Hopf
algebra generated by Sq and Sq. So

E Ext (H* (K (Z, s) (R) (A (R) , Z), Z)

and by Anderson-Brown-Peterson [2, p. 464] or Peterson [8], we have this is
isomorphic to

Ext (A (R) 1 H* (g (Z., 2) ), Z2).

By a change of rings theorem, this is EXtl (H*(K(Z2, s)), Za), from [7].
Now, in the Adams spectral sequence for H. (K (Z, s)), E E is

Homz (H*(K(Z2 s) ), Z
and is in E*’. So, since we are only interested in the image of 7, we need only
look at the E*’ part of

Ext (H* (g (Z., s) ), Z)

which is just HOml (H*(K(Z2, s)), Z). It induces a map

7" Hom (H* (K (Z2, s) ), Z.) --+ Homz (H* (K (Z, s) ), Z);

thus, we have"

PROPOSITION 3.1. a e A is in R iff there is nof Hom (H* (K (Z, s) ), Z.)
such that

7’ (f (ac 0 and df 0 for all r.

PROPOSITION 3.2. If 7’ (f) (Sqc) 0 f ( Sq e R,), then

P Sq e I, ({ w, w}, alg)-
where s + n (I -4- 4n (J n.

Proof.
7’ (f (SqZc 0 W :* Sq’c" SqO (c 4- Sq20

where 0 and 0’ are possibly unstable operations. Then for any n-dimensional
Poincart algebra H, with

o,
r(P, Sq’).z r,(P,).Sq’z r (P, Sq ).O(z) + r (P, Sq").(z) 0

for ny z of dim s. Therefore, r,(P Sq) O.

Conjecture. If for Sq c, I admissible, there is an

f e Hom (H* (g (Z, s) ), Z.)

such that f (SqZc) rs O, that is, Sqc is not in the image of Sq + Sq, then

P Sq I ({w, w2} alg -2 n n(I) -4-4n(J) + s.

For &, the same type of analysis can be made. E is

Extl (H* (K (Z_, s)) (R) A/A (Sqa), Z2).
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The corresponding propositions are"

PROPOSITION 3.3. a A is in S iff there is no f E’ such that

"r’(f)(Sqc) 0 and d,f-- 0 for allr.

PROPOSITION 3.4. If "’ (f (Sqrc) 0 f, ( Sq S) then

Q,SqI(lw, w}, alg)-, n s + n(I) + 4n(J’) 2.

(Note" "’ (f) (Sqc) 0 Wf = Sq’c SqSqOc.)
Conjecture. If for Sq c, I admissible, there is an f e E*’ such that

f(SqZc" O, that is, Sqc is not in the image of SqSq, then

Q,SqzI,({w, w}, alg)-’, n s -4- n(I) + n(J’) 2.. I(Spin)q, q u, n 1, and q <_ n/2.
PROrOSTON 4.1.

I, (Spin)" (F,) ’>0H’- (BSpin)Sq.
Proof. This follows from 2.5.

I ({w, w2}, geom)

where ({ wl, wz} denotes the ideal over A generated by {w, w}. So we have
the following well-known result [3, p. 273]"

PROPOSiTiON 4.2.

I ({ W, W2}, geom)

Proof. F, I, ({ w, w,.}, alg) [5, p. 42].

THEORE 4.3. I,(Spin)q 0 for q <_ n/2.

Proof. For dimensions _<2s, /* (K (Z, s)) is isomorphic to A where 1
goes to c’. A is a free A-module, so/* (K (Zz, s)) is free up to dim 2s.
Therefore, E. is in E2*’ for dim < 2s and all differentials are zero. For
n(I) <_ s, by 3.3 and 3.1, Sq Sqa -4- Sqa for Sq R and Sq SqSqb
for Sqz S a, a, and b e A, since n (I) g s. Therefore, P Sq or Q, Sq O.
In particular, if dimension {P or Q,} -t- n(I) < s, this is always true.
So if n q s > n/2, the n (I) <_ n/2 <_ s and all terms of this type are zero.
Now for i -4-j q <_ hi2,

(F,)q .+q>H (BSpin )Sq >,/>_q>_H (BSpin )Sq O.

For s 1, the only Sq not in T are those with e (I) 1. So for Sq Sq
(Sq is handled by 4.3),

SqZc (c )2 Sq2Sq (c )-,



THE STIEFEL-WHITNE CLSE OF SPIN MANIFOLD ]

so by 3.2 and 3.4 we have"

THEOREM 4.4.

I ({W, W}, geom)’- I. ({w, w}, alg)’-.

5. R
The proof of Theorem 2.6 is divided up into the three lemmas of this section.

H*All Sq with e (I) > 2 are in R., but since Sqc 0 e (K (Z.,., 2) ), all
relations given by these Sq are in I (/w, w}, alg)- by 3.2. This leaves
Sq with e (1) 1 or 2. For I (i, i, i+, i) with i admissible,
i 1, i 2i+ + 1, e(I) 2, then

Sqc= (SqSq+ Sqc)-Sq{ (Sq".... Sqc)-- (Sq’-Sq’+’ Sqc) }.

So such an I is contained in R but gives rise to relations in I, ({ w, w}, alg)’-
by Theorem 3.2. The only other I with e (I) 2 are those with i 2.
In this case Sq (c2), excluding k 1 which is taken care of by 4.3.
It is easily seen that tHs is not in the image of Sq + Sq, likewise, in H* (BSO),
w s not in the image of Sq + Sq. Consider the map w BSO K(Z 2)
reaSzing w. It induces a map w on the E term of the Adams spectral se-
quences for

H. (BSO, BO(0} H. (g (Z, 2), BO<0}).

Now since (w)2 is not in the image of Sq + Sq there is a map

f e Hom (g* (BSO), Z) E’
with f((w)2) 0. From Anderson-Brown-Peterson [2, p. 468] or Peterson
[8], we ow that d,f 0 Wr. Therefore

(wf) (c2)2 0 and d (w
Thus Sq R by 3.1.
The only I left are those with e (I) 1. Summarizing, thus far we have:

LEMMA 5.1. For I admissible I (i, i2, ..., i), e(I) 2, all Sqe R2
except those with e (I 2 and i 2.

The main results of this section will depend on an explicit calculation of
part of Extl (H* (K (Z, 2) ), Z). The major part of this task is to calculate
the A1 structure of H* (K (Z, 2)) as far as we need it, which is up to about
dim 40. Below dim 40, H* (K (Z, 2)), denoted by M, is a polynomial al-
gebra with generators in dimensions 2, 3, 5, 9, 17, and 33 which are

Ic Sq Sqc SqSqSqcSq u5U3

etc. respectively (Serre [9]). Our approach to the problem of finding the A



structure of M will be to break it up as an A1 module into the tensor product
of two A1 modules B and C.
B is defined as P (us, us, us) (R) E (ug) where E denotes the exterior algebra

and P the polynomial algebra. As a Z module,

M B (R) P (ug) u7 u33).

We wish to replace (u)3, u7, u33 with equivalent polynomial generators
uv, u such that

C P(u8,u,u3) and M B(R)C

as A modules. To do this, let

u u + u{ (u) + (u) (u) + (u)u. + uu(u)} u + x,
UlS (U +

u’ u + u (u) (u. ) + u (u) (u ) + u (u) (u)u. + uu (u ) (u

+ U9 (Us)6 (U2)8 + U9 (Us)4 (U2)6 .. U9 (U2)12 + (U5)5 (U3)2U2 + (U5)5 (U2)4

+ (u)(u)(u)+ (u)(u)+ (u)(u)(u)+ (u)(u)u

+ (u) (u) (u) + u (u) (u) + (u) (u.).
These are obviously polynomial generators, so all that needs to be shown is

that B and C are closed under A1 action. The A action on M is described by
the Caftan formula and the following relations"

S ),Sq u us, q u (us Squ3 O,

Squ3 Us, Squ5 (us)3,
Sqm Squ Squ Squ33 O,

Sq u (m )3, Squ (ug ), Squ3a (uv ).
Thus, it is merely a calculation to show

)2Sq u7 u8 Sq u8 O, Sq u3 (u

and that Sq is ero on ulv, u8, and u33, giving us that C is closed under Ax
action; thus, M B (R) C as an A module.
We now turn our attention to B. It is easily verified that an element of

the form us is not in the image of Sq -[-. Sq and can therefore be used as an

A generator which is trivial. This fact implies that B is isomorphic as an

A module to D (R) T where

T P(u) and D P(us,m)(R)E(u,u,ug)

where when u occurs in D from the A action it can be set 0.
To summarize the progress thus far, we have broken M up into

M D (R) T (R) C as an A1 module where T is a trivial module. The only
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nice property C has is that it contains very few elements below dimension
forty. D has the property that all but a finite part of it is free. We will
now show this and give the A1 structure of the non-free part.
To do this, calculate the Q0 and Q1 homology of D. The Q0 homology is

E (u, u5 --k uu.). The Q homology is E (u, u9 - u3). Now, by a calcu-
lation, the low dimensional A1 structure of D can be determined. A part
that contains these elements splits off as a direct sum from the rest of D and
therefore by a theorem of Wall the rest is free [11, p. 253]. We give a tabu-
lation of the low dimensional part of D. D is A/A (Sq) with generator u..
D2 is A1/AI (Sq with generator u5 q-- uu v of dim 5 and Z2 with generator
u9 + u3 q-- usu2 of dim 9 with the non-trivial extension Sqv2 Sq’SqSqv
D is AI/A (Sq with generator uu. + mu --k us of dim 9 and A/A (Sq
with generator ugu2 -k mu -k mu. v4 of dim 11 with non-trivial extension
t. 2c lcq q ,q v Sqv4. Also we have free generators

it2 U5U3U2 U37A2 U9U3U2 and 573U2

We now have an explicit calculation of the non-flee A structure of D and
T. We need the same for C. By construction this is easy. In dim 17 with
generator u, we have an A#A (Sq, Sq:Sq1) module C1. In dim 33 with
generator u, we have an A#A (Sq) and in dim 35 with generator

2c
a Z with non-trivial extension q ulsu qq u. Call this C.
Now to get the A structure as far as we need it we must determine the

non-free parts of the following modules" C1 (R) D for i 1, 2, 3. These are
straightforward calculations. C (R) D is A#A (Sq) in dimensions 19 and

Sq Sqvo C (R) D is the same but with20, generators v and v0 with
generators in dimensions 28 and 29. CI (R) D. A#A(Sq, SqSq) in
dim 26.
We can now write down the entire A structure of M as far as we need it.

All we need now is Ext of this. We need Ext (., Z) of the following
modules"

Z., A/A(Sq), A#A(Sq, Sq2Sql), D2, D, C (R) D, and C.
For Z and A/AI (Sq), Ext is of period 8 and is as in Figures 1 and 2 where
arrows denote towers. (See Anderson-Brown-Peterson [2].) Ext of
A/A (Sq) is just a tower, so Ext for D. is the sum for A/A (Sq) and Z..
For D, again Ext is the sum for AI/A (Sq and A/A (Sq).
For the last three cases, since the Q0 homology of each is zero, we can apply

a theorem of Adams that says there are no towers in Ext. We can find E,
without considering the extensions and then kill off the towers. For example
consider A/A (Sq, SqSq) as Z q- Z with non-trivial Sq. Then E1 is
given in Figure 3 and Ext in Figure 4, both of period 8. (See Peterson [8].)
Similarly for E and Ext for C (R) D, see Figures 5 and 6, for C, 7 and 8.

Ext (M, Z) can now be written out as far as we need it. To calculate
the tower killing differentials, map the entire spectral sequence into the



124 w. STEPHEN WILSON

1

ExtS, b

1

ExtS,

FIGURE 1 FIGURE

0 1 7

t-s

E

2

0

1 3 7 8

FIGURE 3 FIGURE 4

Adams spectral sequence for the integer homology of K(Z, 2) by mapping
the bottom class of BO(0} to K (Z, 0). Here we can observe which elements
in E correspond. The differentials in the K (Z, 0) spectral sequence are
known (Browder [4]) and they are just the higher order Bocksteins. These
impose the same tower killing differentials in our spectral sequence.
The actual calculation gives" Towers formed by D kill off those of D1 by

a d. Likewise for towers formed by D (R) u and D1 (R) u. Towers from
12D kill off those from u by a d. D (R) u kill u by a d4. D (R) u kill u.

by d and D (R) u kill u by ds.
Now one can write doen the entire spectral sequence after the tower killing

differentials and then stare, very hard. The main lemma follows"

LEMMA 5.2.
Sq4SqSq R2 SqSSq4Sq’Sq ? R

and
Zq6ZqSZqZq2Sq R.

Proof. The first is easy because E9’ in the final version of our spectral
sequence is zero and so it follows from 3.1. For the second, we look at the
corresponding element in E7’ and we see that there may be a non-trivial d
on it. If d 0 then it is not in R, if d4 0, then it is in R.. Let c e ES’

coming from Ext of C correspond to the final case. The only elements in
ES’* which could possibly be hit by a non-trivial differential from c are
truncated towers, all of which have a non-trivial product with r from
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1

E

7

t-s

FIGURE 5

3

s 2

I

0

ExtS,t

FIGURE

5 6 "[ 8

0 x

0 l 2 3 5 6 ? 8

FIGURE ? FIGURE 8

Extal (Z., Z.). (See [2].) We can exclude the truncated tower based in
E’ because it is created by a d5 and would have to be hit by a d4, which is
impossible. But note, rc (r is of degree (4, 3)) must be zero because there
is no element in the Ext of C2 corresponding to that dimension. So if dc # 0
then d (rc) r (dc) # 0, but since rc 0, dc must be zero. Thus by 3.1,
we have the lemma.

HIf J 0, then Pj 1 e (BSpin). By 2.5 and the above lemma, we
know there is a 33-dimensional Spin manifold, M, with

(1) Sq16SqSSq4SqSq O.

Denote the 2tdimensional manifold, quaternionic projective 2- space by
QP. Using formula 8.1 and Lemma 2.3 of Brown-Peterson [5], which de-
scribe the right action, it is easily verified that

has
Ma X QP5 X QP6 X X QP, i >_ 5,

(1) Sq2Sq- SqSSq4Sq2Sq O.

So from Theorem 2.5 we have"

LEMMA 5.3 SqSq- SqSSqSqSq c R for i

_
4.

This concludes the proof of Theorem 2.6.
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6. Products

There is mp K(Z i)/kK (Z, j) ----> K (Z,_ i q- j) representing the
bottom cohomology class, which gives piring on the Adams spectral se-
quence (see Adams [1]) which corresponds to

xI,. H. (K (Z., i), BO(0} (R) H. (K (Z, j), BO(0})- H. (K (Z, i -k j), BO(O)).

On the E2 terms, it is a pairing

(b" Extl (H* (g (Z, i) ), Z) (R) Extl (H* (g (Z., j) ), Z.)

--* Ext,, (H* (K (Z., i q- j) ), Z)

and dr acts as a differential on products. In particular, on E*’, this pairing
is just the map

Hom (H* (g (Z, ,i) ), Z) (R) Hom (H* (g (Z, j) ), Z)-- Hom (H* (K (Z2, i -k j) ), Z)

(x"given by (f (R) g) (x) f(x’) (R) g where

’* (x) x’ (R) x

I,*" H* (g (Z, i q- j) -- H* (g (Z2, i) (R) H* (g (Z., j) ).

The use of products can give considerable information, for example" if
e(I) < n- 1, then for

q K (Z. n 1)/kK(Z2, 1) --. K (Z n)
we have

* (q’c) q" (c- (R) c) q’c- (R) c + ,>0 (...) (R) (c)’.
As shown earlier, g (c)’) 0 Yg e Homl (H* (K (Z, 1 ), Z.). Now there
is a map g such that g (c) 0 and drg 0 fr. So in this case dr (f (R) g), (dJ) (R) g ). By understanding and dJ we can decide whether Sq R,
or not. For example, using the above method, we have:

PaOPOSTON 6.1. If e (I)

_
n 1 and Sq R,__ then Sq R,,

For the cases e (I) n 1 and n, one cannot always determine if Sq e R,
from lower dimensional information and products.
By studying products, one can verify the following using 5.4, 2.5, 6.1, and

constructing simple Poincart! algebras"

PROPOSITION 6.2.

W e I,({W, W.}, geom) and w I,,(Iw w}, alg)

for n 10, 11, and 12, but not for 13, where

w I (/w, w}, geom)7.
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For R, the first two cases which cannot be decided by products are
I (12, 6, 3, 1) and (20, 10, 4, 2, 1).
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