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Let X, X2, be independent identicMly distributed rndom variables
with mean 0, S X + . + X. If f[X ] < for some q >_ 2 the
symptotic behavior of the distributions of S is own to be very regular.
One crude dicnt of this is the fct that sup . Ilq/ll . ] < . This is
proved in [1]. If f lZ < for some q between 1 nd 2 but f IX
the situation considered here, the behavior in this norm sense of the stribu-
tions of S cn be much worse. An example will be given to show that, for ny
q between 1 nd 2, JIX cn be finite but lim S J]/] S ] . However,
for ny such example it is proved that IX +* , e > 0. That is, if
1 < a < < 2 nd f Z a < then liminf S ll/ll j < The
lim sup need not be finite nd n example is given to show ts.

Using this smM1 mount of regularity which does exist it is then proved that
if some bsolute moment of X higher thn the first is ite then n optimM
stopping rule exists for S/n, verifying conjecture mde by Dvoretzky in
[4]. The existence of such rule when VrX < has been shown by
Dvoretzky in [4] nd by Teicher nd Wolfowitz in [9]. Some results if
Vr Xx pper in [11]. It ws very helpful to see copy of Mry
Thompson’s thesis, [10], before its publication.

1. Moments of S
In wht follows p < q will be numbers between 1 nd 2, X will be rndom

vrible stisfying EJ X J < , EX 0, VrX , nd X, X, will
be independent rndom vribles ech hving the distribution of X.
C, C, will be positive constants depending only on p nd q.
The ide of the following lemm is well kno.

LEMMA 1. Letf be a nonnegative random variable and 1 a < b < . Then

P (f > f i]/2) 2<a-) (11 f lib/i] f $1

P (f > f 1],/2) >- f [[aa/2l] f lifo.
Let E {f > llfl]a/2}. Using Holder’s inequality,

II$tIP(E)-o>’,
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proving the first inequality, while

proving the second.
For s > 0 define

LEMMA 2.

(2.1)

U(s) U (s) EXI(I X
_

s) and

v. (s) v (s) E (I X I"t (I X > s).

There are arbitrarily large numbers such that

t-vVv(t) < CU(t).

Proof. Assume without loss of generality that V (0) 1. First suppose
that the distribution function F of XI is continuous. Let a0, ax, be a
sequence of numbers satisfying V(a_) V(a.) 2-. Then for infinitely
many n

(2.2) a

_
2(q-)a_

since if not there is an no >_ 1 such that a. > 2](q-)an_ if n >_ no, implying

ano+k > 2k/(q-V)ano so that

Vq (ano -’o (Vq (ano+ ) Vq (a.o++,))
>_ -0 (a,o+)q-v (Vv (a,o+) Vv (a.0++))
>_ (an. 2k/(q-v) )q-v2

a contradiction since Vq(ano)

_
Vq(O) E] X q < .

Now if (2.2) holds,

U(an) >_ U(a,,)- U(a,_x)
>_ a,,_ (V (a,_x ) V (a,, )_

(2-*(q-)a,)-’2-n,
while V (an) 2-’+ so that a-V(an)

_
2(q+2-2P)(q-7P)U (an), completing

the proof in this case.
Dropping the assumption that [XI have a continuous distribution function,

let Y have a uniform distribution on [0, 1] and be independent of X and
let Z XI + Y. Then Z has a continuous distribution function and thus
there are arbitrarily large numbers such that

t-VZ (t) <_. 2(+-)(q-)UZ (t).

If is so large that Ux (t) > 2El X[ + 1 hen 2Ux (t) >_ Uz (t) because

ZI(iZI <_ t) <_ (IX -at- 1)I(IX[ _< t).

Since VZ (t) >_ V (t), Ca may be taken to be 2+(+-)(q-).
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The principle tool in the proof of the following lemma is the existence of
positive constants k and K depending only on such that for

_
1 and all n,

(2.3)

See Theorem 5 of [6].

LEMMA 3. If U (t) > 0 define N N (t) to be the largest integer such that
NU (t) . Then ff is so large that 0 < U (t) t/2, S C t.

Proof. LetZ Z,I(IZ} t), Y, X- Z.
Using the left-hand side of (2.3) with 1,

Let v be the first ime n ha Z > 2t. Then

Thus, if g .= Z

NU(t)/2 t/4,
the last inequality since U(t) < t/2 implies N > t/2U(t). Also,

] [ < I-’z + z g 2t + 3t,
and using Lemma 1,

P(Z t/8) P (g > t/8) > C,

finishing the proof.

LEMMA 4. Let satisfy (2.1), U(t) > 0 and N be as in Lemma 3.
S C, t.

Proof.
of (2.3),

Then

Defining Y and Z. as in Lemma 3, and using the righthand side

Since infinitely large satisfy (2.1) and N (t) -- as --, , Lemmas 3
and 4 imply
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THEOREM 1. S [l -- C51] S Ill for infinitely many n.

COROLLARY 1. P (Sn > C611S, !!) > C6 for infinitely many n.

Proof. ES+ E S, I/2, while S+ ]l - S. 11, and the result follows
from Lemma 1 and Theorem 1.

LEMMA 5. Let 1 t 2. There is a positive constant A, depending only
on such that if 0 < U(t) <_ t2/2 and t2-’V,(Kt) > KU(t), K > 1, then
1l r II Klt.

Proof. Let W, XI(X,] > Kt), andA (W,
If P(A) , then

If P (A) > , since N > t/2U (t),

k,[NP (A) V, (Kt

completing the proof.

Example 1. Let 1 < 2. Suppose X1 has the symmetric distribution
which satisfies V, (t) F, 0 _< <_ e, V, (t) r log-1 t, > e, where r is the
normalizing constant. Then using the formulas

Vl (t yl-, dV, (y ), U (t y- dV (y
+

and the fact that for every a,

lim (d (x" log- x)/dx)/xa- log-S x a,

it can be checked that

lira supt tV1 (t)/U (t) <
so that, applying the analogue of Lemma 4 with p replaced by 1,

lira supt_.= S ]]l/t < .
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However limt_. V, (tK)t-’/U (t) for every K > 1 so that by Lemm 5,

Thus lim I1S Ii./ll s I1 implying lim. s ll./[I s ll .
Example 2. Let v < t be arbitrary numbers between 1 and 2.

following example fiX11’- < for each e > 0 and

Let a satisfy
lim sup . llJli s. 11 .

(2.4)

In the

2(u v)/(2 v) < < u.

Let 1 f(1) < f(2) < satisfy limit f(n)/f(n 1) and also, for
notational convenience, let af(n) be an integer for every n.

Let X have the symmetric distribution given by P (I X 2](’) r2-(’),
where F is the normalizing constant. Define

Z, XnI(]Xn]__> 2()), Y, Xn- Z,,, A, Zn, B Yn
and

Now P (An 0) _< ’ P (Z. 0) o(1)since a < t. Thus, for large
enough n,

Also,
Bn, II IIB,, [] g /v sup Y1 %/

Thus, since (2.4) holds, !1B., llJll A, lI o, so I! , tl/ll A, II 1. Since
P (A., 0) 0 we hve II A.’IIJll A., Ill 1 by Holder’s inequality. Thus

o (I] A., llv) + o <It A., II)

2. Existence of an optimal rule for
Mry Thompson hs proved in [10] that Corollary 2 implies the existence of

an optimal rule for S,/n. The approach used here is new.
Let T be the class of all finite valued stopping rules and let T be the larger

class of all random variables tang values in {1, 2, ..., such that

{t n}eB(n) (X,,i n), n 1,2, ....
The proof of the following lemma is similar to arguments in [2]. It is also a
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special case of Theorem 4 of [8]. The proof is included for completeness.
Let An Sn/n and M sup,rEA.

LEMMA 6. There is a T such that EAI (t M.

Proof. Call r e T regular if E (A B (i)) > A on/v > i}. If u and v are
regular then max (u, v) is regular since on {max (u, v) > i},

E (A,ax(,) B (i))

E(E(AI(v > u)IB(u)) + A,I(v <_ u)IB(i)) >_ S(A,lB(i)) > A,.

Also,

and similarly

EAmax(.) EE(Ama(,,) B (u

__
EA,

EA,,(,,) >_ EA.
Now let tn e T satisfy EAn M. If vn is the first time/ such that

A >_ E(AnlB(k))

v is regular since on {i <:

E(A]B(i)) >_ E(E(AIB(i)) > A,,
and also

EA EE(A , B) <_ EA
Let r max (v, ..., v). Then rn is regular and EA, M. Let

limit rn. Since An -- 0 as n , AI (t < limit A.. Since this
convergence is dominated by sup IA [, EAt I (t < limit EArn M,
completing the proof.

THEOREM 2. An optimal stopping rule exists for Shin.

Proof. Let e T satisfy E (St/t)I (t < )) M. It will be shown
that P (t < 1. Let Dn {t >_ n}, D limit Dn and suppose P (D) > 0.
For any n,

P(S,+ > (C/2)11Sn+ I!, D.) > (C/2)P(D,,)

for infinitely many ] since S,/I] S,,+ il "-* 0 as k --+ while S+ Sn and
Dn are independent. Thus, shine n is arbitrary,

P (S >_ (C/2)!1S [[, D) >_ (C/4)P (D)

for infinitely many j. Let m be one of these j. Then

E (St/t )I (D

If this were not true r e T(R) defined by
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elsewhere would satisfy E (S,/r > E (Stir). Also

the last inequality following since (S,+/(m + k), k n, n 1, 0) is a
martingale so that inequality (3.7) on page 317 of [3] can be used. Thus by
Lemma 1,

P(t < ,n,) P((S/t)I(n,,) > O) > CsP(D)(1-).

Since m can be made arbitrarily large this gives P (t < , D > 0, a contradic-
tion.
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