MOMENTS OF RANDOM WALK HAVING INFINITE VARIANCE
AND THE EXISTENCE OF CERTAIN OPTIMAL
STOPPING RULES FOR 8S./n

BY
Buraess Davis!

Let X1, X,, --- be independent identically distributed random variables
with mean 0, 8, = X1 + -+ + X,. If [|X1]® < o for some ¢ > 2 the
asymptotic behavior of the distributions of S, is known to be very regular.
One crude indicant of this is the fact that sup, || Sa ||¢/l| Sulls < «. This is
provedin [1]. If [ | X1|” <  for some ¢ between 1 and 2but [ | X;|* = o,
the situation considered here, the behavior in this norm sense of the distribu-
tions of S, can be much worse. An example will be given to show that, for any
gbetween 1 and 2, [ | X1|? can be finite but lim || S, ||¢/|| Sa | = ©. However,
for any such example it is proved that [ | X;|** = o, & > 0. That is, if
l1<a<pB<2and [|X:1]® < » then liminf || Sy |la/[| Sal: < ©. The
lim sup need not be finite and an example is given to show this.

Using this small amount of regularity which does exist it is then proved that
if some absolute moment of X; higher than the first is finite then an optimal
stopping rule exists for S,/n, verifying a conjecture made by Dvoretzky in
[4]. The existence of such a rule when VarX; < o has been shown by
Dvoretzky in [4] and by Teicher and Wolfowitz in [9]. Some results if
Var X; = « appear in [11]. It was very helpful to see a copy of Mary
Thompson’s thesis, [10], before its publication.

1. Moments of S,

In what follows p < ¢ will be numbers between 1 and 2, X will be a random
variable satisfying E| X |? < «, EX = 0, Var X = o, and X1, X,, --- will
be independent random variables each having the distribution of X.
C1, Cy, -+ will be positive constants depending only on p and gq.

The idea of the following lemma is well known.

Lemma 1. Let f be a nonnegative random variableand 1 < a < b < «. Then

PG> (1£1/2) 2 2/ (15 1o/ 17 1.

P(f > [ flla/2) = I flla/2l f % -
Proof. Let E = {f > | fllo/2}. Using Holder’s inequality,

17172 < [ 5 < U8 bl Q) ooy = 115 P CE)O",

Also,

Received September 14, 1970.
1 Research partially supported by a National Science Foundation grant.

75
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proving the first inequality, while

1512 < [ 1 < 15 1eP @),

proving the second.
For s > 0 define

U(s) = U(s) = EX’I(|X| <s) and

Vu(s) = Vi(s) = E(X['I(X]| > s).

LemMA 2. There are arbitrarily large numbers t such that
2.1) £V () < CLU ).

Proof. Assume without loss of generality that V,(0) = 1. First suppose
that the distribution function F of | X | is continuous. Let ao, a1, -+ be a
sequence of numbers satisfying V, (@,-1) — Vp(as) = 27". Then for infinitely
many n

(2.2) an < 299 Pq, 4

since if not thereis an ng > 1 such that a, > 2V ?a,_; if n > no, implying

Anork > 27 Pa,, so that
Ve (ano ) = Z:=0 (V, (ano+k) -V, (ano+k+l) )
P E;‘O (ano+k )q-p (Vp (a'no+k) - Vp (ano+k+1) )
> Z (ano 2k/ (g—p) )q—pz—(no+k+l)
= o0 s

a contradiction since Vg (an,) < V,(0) = E| X |* < .
Now if (2.2) holds,
U(a.) 2 U(a.) — U(“n—l)
Z azn_—’i (Vp(an—l) - Vzl(am))
> (2~1/(q—p) a”)‘l—pz—n’
while V,(as) = 27" so that a5 ?V,(a,) < 29?P[(q,), completing
the proof in this case.
Dropping the assumption that | X | have a continuous distribution function,
let Y have a uniform distribution on [0, 1] and be independent of X and

let Z = |X|+ Y. Then Z has a continuous distribution function and thus
there are arbitrarily large numbers ¢ such that

t2~pr, (t) < 2(q+2—2p)/(q—p) UZ (t)
If ¢ is so large that U* (t) > 2E| X | + 1 then 2U* (¢) > U’ (t) because
Z1(Z| <) < (X|+DI(X|<0).
Sinee VZ(t) > VX(t), C: may be taken to be 2'+ ¢/,
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The principle tool in the proof of the following lemma is the existence of
positive constants k, and K, depending only on u such that for u > 1and all n,
(2.3) ol (28 X" I < N1 8alls < Kull (28 XD [l
See Theorem 5 of [6].

Lemma 3. If U(@t) > O define N = N (8) to be the largest integer such that
NU@t) <. Thenif tissolarge that 0 < U(t) < /2, || Sy |1 > Cat.

Proof. LetZ, = X, I(|Xn]| <), Y = X0 — Z,.
Using the left-hand side of (2.3) with u = 1,

I Sxlls 2 Fall (27 X" |la
2 k| (220 29" |
> (thy/3)P (21 27 > £/8)
Let v be the first time n that D1 Z; > 2. Then
P < N)SEQIZYH/28 = NU@)/2f < &.
Thus, if g = > ra®¥ 73,
Bg=EQANZd0w>1)) = 21E@Z)Pw>1)> 21 EZY2
= NU@®)/2 > t/4,
the last inequality since U (t) < ¢*/2 implies N > £/2U (t). Also,
lglle < 207122 4+ 22 < 20 + £ = 303,
and using Lemma 1,
PO YZE > £/8) = P(g > £/8) > (s,
finishing the proof.

LemMma 4. Let ¢ satisfy (2.1), U(t) > 0 and N be as in Lemma 3. Then
” SN ”p _<. C4 L.

Proof. Defining Y, and Z, as in Lemma 3, and using the righthand side

of (2.3),
[ 8xlls < Kull (27 XD I,
S K (I (V2" |, + 1 2V YD (1)
<K, (| QY ZD)" |, + (221 Bl Y P)'™)
< K,((NU@)' + (N2 U (£))?)
< Cqit.

Since infinitely large ¢ satisfy (2.1) and N({) — « as { — «, Lemmas 3
and 4 imply
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THEOREM 1. || S, ||, < Cs|| Sa |1 for infinitely many n.
CoroLLARY 1. P (S, > C4|| S, l|n) > Cs for infinitely many n.

Proof. ES; = E|8S.|/2, while |87 ]I, < [|Sxll», and the result follows
from Lemma 1 and Theorem 1.

LEMMA 5. Let 1 < u < 2. There is a positive constant A, depending only
on u such that if 0 < U(t) < /2 and ¢V, (Kt) > KU(@t), K > 1, then
” SN ”F 2 Au Kl/”t-

Proof. Let W: = X,I(|X:| > Kt),and A = {W: = 0,1 < 5 < N}.
If P(4) < 3, then

I Sxllu = all 23 WH™
2 kel supr<icn | Wil lju
> kll KeI () |l
> k, 27Kt
If P(A) > &, since N > ££/2U (),
| Swllu = Full suprgica | Wil llu
> Ikl 25 B W T(Ws = 0,4 < j)™
> k25 E| W 'P(W. = 0,4 < j)I™
> kNP (A)V, (Kt)]"™
> k, 27K,
completing the proof.

Example 1. Let 1 < u < 2. Suppose X; has the symmetric distribution
which satisfies V,(t) = T,0 < ¢ < e, V,(t) = T'log™' t,t > e, where I' is the
normalizing constant. Then using the formulas

no=[ e, o= [ @
and the fact that for every a,
limase (d(z° log? 2)/dz)/a* " log 2 & = a,
it can be checked that
lim suprtVi()/U@{#) < =
so that, applying the analogue of Lemma 4 with p replaced by 1,

lim supe.e || Sy |1/t < .
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However lim., V, (K){¥™#/U(t) = « for every K > 1 so that by Lemma 5,
limg [| Sy flu/t = .
Thus lims.e || Sy [[u/|| Sxlli = o implying limu.e || Sallo/[| Salli = .

Example 2. Let v < u be arbitrary numbers between 1 and 2. In the
following example [ | X1 [*™ < o for each ¢ > 0 and

lim sup || Sa[lo/]| Salls = .
Let « satisfy

2.4) 2w —0)/Q2—-v)<a<u

Let 1 = f(1) < f(2) < --- satisfy limit f(n)/f(n — 1) = « and also, for
notational convenience, let of (n) be an integer for every n.

Let X have the symmetric distribution given by P(| X | = 2/™) = r2™#/®,
where T' is the normalizing constant. Define

Zn =X, I(|X,| > 2™), Yo=Xo—Zn, An= 2 1Zn,B.= 2.0V,

and

n' = 29",

Now P(4, #0) < 2.7 P(Z, # 0) = o(1) since « < u. Thus, for large
enough 7,
v 1 = v 1 ! of (M) v =S (n)
[14.] 2<§>;f|zk1 2(—2—>n2 o™,

| Ballo < || Barlls < /7 sup | Y| = \/,'_,L—IZf(n——l).

Thus, since (2.4) holds, || Ba ||o/|| Aar|lo = 0, 50 || Sar ||o/]] An|ls = 1. Since
P(A, # 0) >0wehave || A,'T|,/|| A’ || — 1 by Holder’s inequality. Thus

[ Surlls < [ Anfl + [ Bur s
< [ 4nrlls 4 || Bar [ls
=o( An o) + o(ll 4w II1)
o(ll S o).

2. Existence of an optimal rule for S,/n

Also,

Mary Thompson has proved in [10] that Corollary 2 implies the existence of
an optimal rule for S,/n. The approach used here is new.

Let T be the class of all finite valued stopping rules and let 7', be the larger
class of all random variables ¢ taking values in {1, 2, ---, o} such that

{t=n}eBn) =0X:,2<n), n=12---.

The proof of the following lemma, is similar to arguments in [2]. Itisalsoa
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special case of Theorem 4 of [8]. The proof is included for completeness.
Let An = Su/n and M = sup.rFEA..

LEmMA 6. Thereisate Ty suchthat EA,I(t < o) = M.

Proof. Call 7¢T regular if E(4,|B()) > A:on {r > 4}. If » and v are
regular then max (u, v) is regular since on {max (u, v) > 4},

E (Amaxww | B(@))
= E[EA.I@>u)|B@)) + Al <u)|B@E)) 2 E(Au|B@)) > As.
Also,
EAmaxun) = EE(Amaxn |BW)) 2 EA,

and similarly
EAmax(u,v) Z EAv .

Now let ¢, e T satisfy EA,, — M. If v, is the first time &k such that
Ay 2 E(4,,|B(k)),
v, 18 regular since on {7 < w,l,
E(A..|B(G)) 2 E(E(4,,|B@)) > 4,
and also
EA, = EE(A, |B,,) < EA,,.

Tet 7, = max (v, -+, v»). Then 7, is regular and EA,, — M. Let
t = limit r,. Since A, —>0asn— o, A, I({ < ) = limit 4,,. Since this
convergence is dominated by sup | 4. |, EA. I < ») = limit EA,, = M,
completing the proof.

THEOREM 2. An optimal stopping rule exists for S,/n.

Proof. Let te Ty satisfy E((S;/t)I(t < «)) = M. It will be shown
that P(¢ < «) = 1. LetD, = {t > n}, D = limit D, and suppose P (D) >0.
For any n,

P (8nir > (Co/2)|| Satr llp, Dn) > (Co/2)P (Da)

for infinitely many k since S,/|| Satx ||l — 0 as k — « while S, — S, and
D, are independent. Thus, since 7 is arbitrary,

P(8; = (Co/2)| 85, D) = (Co/4)P (D)
for infinitely many j. Let m be one of these j. Then
E((8/)I (D)) = (C5/8)|| Sm/m ||, P (D).
If this were not true 7 ¢ T, defined by 7 = tift < m,{r = m} = {S,. > 0} nD,,
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7 = o elsewhere would satisfy E (S,/7) > E(S:/t). Also

| S/ D), < |l SUPk>m [ Sk/k| |l < Call Sm/m ||,

the last inequality following since (Spx/(m + k), k =n,n —1,---,0)isa
martingale so that inequality (3.7) on page 317 of [3] can be used. Thus by
Lemma 1,

P(t < @, Dn) = P((S/)I(Dn) > 0) > CsP(D)"'*™.

Since m can be made arbitrarily large this gives P (t < «, D) > 0, a contradic-
tion.
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