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Introduction

We apply the machinery of Dirichlet spaces to the study of processes ob-
tained from a given symmetric Markov process via a random time change.
The basic results are collected and presented in their final form in Section 8.
These results are applicable in particular to the "processes on the boundary"
of K. Sato and T. Ueno in [25] and so yield information about boundary con-
ditions for symmetric Markov processes.

Necessary preliminary machinery is set up in Sections 1 through 4. Some
potential theory for regular Dirichlet spaces as developed for special cases by
H. Cartan [3 and 4] and in general by A. Beurling and J. Deny [1] and by M.
Fukushima [13] is collected in Section 1 and then applied in Section 2 to con-
struct strong Markov processes. Our construction differs from that of Fuku-
shima [13] in that we do not make use of "strongly regular Dirichlet spaces"
and the associated "Ray resolvents." The increasing processes for implement-
ing random time changes are constructed in Section 3. Also in that section we
introduce an appropriate notion of balayage more or less in the spirit of [13].
A useful form of invariance under time reversal is established in Section 4.
The real work is done in Sections 5 and 6. The time changed process is

analyzed in Section 5. The main result is that the corresponding Dirichlet
space is, in an appropriate sense, contained in a "universal Dirichlet space"
which itself depends only on a complementary "killed" process and topological
notions. A converse result is established in Section 6 so that these two sections
together effectively classify certain symmetric extensions of the "killed"
process.

Probabilistic interpretations for the original Dirichlet norm and also for the
"universal Dirichlet norm" are established in Section 7. The results here are
incomplete but promise to be useful for applications.
Our results are illustrated with Brownian motion in Section 9. In par-

ticular we show that a result in Section 7 gives a general form of Green’s
identity, similar to one established by Doob [5] for the Martin closure using
different techniques.
We plan to treat processes of purely "jump type" in a separate publication.
For related work by other authors we refer to [8], [14], [18], [25] and [26].
It is a pleasure to acknowledge my great debt to M. Fukushima whose work,

[12], [13] and [14], has inspired my own research in this area. My thanks also
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to J. Elliott for several helpful conversations and for introducing me to
Dirichlet spaces.

Finally I acknowledge my debt to Willy Feller. It was a great privilege to
know him and to learn from him.

1. Potential Theory of Regular Dirichlet Spaces
The point of view taken in this section goes back at least to H. Cartan [4]

for the classical Dirichlet spaces associated with the Laplacian and Brownian
motion. The general formulation in terms of regular Dirichlet spaces is due
to A. Beurling and J. Deny. (See especially [1].) The first detailed presenta-
tion which is adequate for further work in the direction of Markov processes
seems to be that of M. Fukushima [13]. We give in this section a slight varia-
tion of Fukushima’s presentation.
We consider a separable locally compact Hausdorff space X together with a

Radon measure dx on X. (By a Radon measure we mean a regular Borel
measure which is bounded on compact sets.) We denote by L(dx) or
L (X, dx) the Hilbert space of square integrable real-valued functions on X
and by Ccom (X) the collection of continuous functions on X with. compact
support. We use the abbreviation [a. e. ] for "almost everywhere relative to
the measure p" and adopt the usual cavalier attitude towards the distinction
between functions and equivalence classes of functions. However all func-
tions on X are Borel measurable unless otherwise specified.

1.1. DEFINITION. A symmetric (submarkovian) resolvent on L (dx) is a
family of bounded symmetric linear operators Gu, u > 0 on L (dx) satisfying"

1.1.1. Guf >_ 0 [a.e. dx] whenever f _> 0 [a.e. dx] and uGf _< 1 [a.e. dx]
whenever f <_ 1 [a.e. dx].

1.1.2 Gu Gv (v u)GGv.

To any symmetric resolvent {G, u > 0} is associated its generator A defined
by (u A )Gu f f for f in L (X), the L2-closure of the common range of the
G. The operator A is self adjoint and non-positive definite on Lo (X) and so
-A has a unique nonnegative definite square root V/ which is a self ad-
joint operator on L2o (X).

1.2. DEFINITION. A normalized contraction is a mapping T of the real
line into itself satisfying TO 0 and Tx Ty <_ Ix y I.

1.3. DEFINITION. A Dirichlet space relative to L (dx) is a pair (F, E)
where:

1.3.1. 1 is a linear (in general not closed) subset of L (dx) and E is a
bilinear form on F.

1.3.2. For each u > 0 the vector space F is a Hilbert space relative to the
inner product

Eu(f, g) E(f, g) + u j dx f(x) g(x).
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1.3.3. If f belongs to Y and if T is a normalized contraction, then also Tf
belongs to F and

(Tf, Tf) <_ E (f, f).

In general we will say that a bilinear form E* on F is contractive, if

(1.1) E* (Tf, Tf) <_ E* (f, f)

for f in Y and for T a normalized contraction. Of course 1.3.3 states in
particular that E itself is contractive on F. We will see that other contractive
forms on F play an important role.
Note that the inner products E, u > 0 are equivalent and so topological

notions in F are independent of u > 0.
The connection between Dirichlet spaces relative to L (dx) and symmetric

resolvents on L (dx) is spelled out in

PROPOSITION 1.1. There is a one to one correspondence between Dirichlet
spaces (Y, E) on L(dx) and symmetric resolvents {Gu, u ) 0} on L(dx)
given by

Y domain (V/--A), E(f, g) f dx //f(x)//-LAg(x).

Moreover

Eu(Guf, g) f dx f(x)g(x)

for f in L (dx and g in F and

(1.2) Eu(f,g) Limvfdx {f(x) vG+vf(x)}g(z) (v )

for f, g in F. Indeed the quantity

v f dz If(x) vG+v f(x)}f(x)

increases for general .f in L (dx) and has a finite limit as v if and only if
f belongs to F.

This connection between Dirichlet spaces and resolvents in a slightly differ-
ent form was first noted by Beurling and Deny [1]. A detailed verification
of the connection as stated in Proposition 1.1 can be found in [14, Chaper 2].
We remark that the argument there shows in particular that in verifying the
contraction property 1.3.3 for Dirichlet spaces it suffices to consider the two
special cases Tx max (x, 0) and Tx min (x, 1). Furthermore, once it is
verified that (F, E) is a Dirichlet space, the contractivity property can be
strengthened as follows. We say that g, is a normalized contraction of f if
g (x ) <_ f (x and if g(x) g (Y <- If(x) f(Y) for all x, y.
Then if f belongs to F, so does g and E (g, g) _< E (f, f).
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We note for convenient later reference the following easily verified facts.

1.t.1. For u :> 0 the operator uGh, is a contraction relative to any E norm
and uG,f f strongly in F for general f in F as u ’ .1.4.2. For fixed u > 0 the functions Guf form a dense subset of F as f runs
over a dense subset of L (dx).

1.5. DEFINITION. The Dirichlet space (F, E) relative to L(dx) is regular if"
1.5.1. F n Ccom (X is uniformly dense in Com (X) and strongly dense in F.
1.5.2. The measure dx is everywhere dense. That is, fa dx 0 for any

nonempty open set G.

Condition 1.5.1 was first introduced and effectively exploited by Beurling
and Deny in [1]. We give a construction (essentially the one by Fukushima
in [12]) in the appendix which shows that every Dirichlet space F, E) such
that F is dense in L (dx) (that is, L (dx) L (dx)) can be replaced by a regu-
lar Dirichlet space without changing any of the relevant structure. In the
remainder of this section we assume that (, E) is a regular Dirichlet space rela-
tive to L (dx ).

1.{. DEFINITION. f in F is a u-potential, u > 0, if Eu (f, g) _> 0 whenever
ginFandg_> 0[a.e. dx].

PROPOSITION 1.2 (i) f in F is a u-potential if and only if there exists a
Radon measure such that

Eu(f,g) (dx)g(x)

for g in F n Cco,(X
(ii) f in F is a u-potential if and only if Eu (f % g, f + g) >_ E, (f f) when-

ever g is in F and g >_ 0 [a. e. dx].
(iii) If f is a u-potential, then f >_ 0 [a. e. dx].
(iv) f in F is a u-potential if and only if vG+ f <_ f[a. e. dx] for all v > O.
(v) If f, g are both u-potentials, then so is min (f, g).
(vi) If f is a u-potential, then so is min (f, c) for any c >_ O.

Proof. We begin with (i). The if part is clear from F n Coon (X) being
dense in F. To prove "only if" let f be a u-potential and consider the non-
negative linear functional I defined on nonnegative g in F n Coo (X) by
1 (g) Eu (f, g). If g decrease to 0 pointwise, then they do so uniformly
and, after comparing to a fixed nonnegative g in F Coom (X) which is _> 1 on
the support of g, we easily see thut I (g) $ 0. The existence of the desired
Radon measure p now follows by the Daniell approach to integration (as
presented for example in [20, p. 29]). The proof of (i) is complete. The
only if part of (ii) is immediate and "if" follows upon replacing g by tg for
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> 0 sufficiently small. Conclusion (iii) follows from

E,,(]I], If]) E(f,f) A- E(]fl f, Ifl f) + 2E,(f, Ill f)

> E,(f,f) "4- E,,(lfl f, Ill f)

since by contractivity E, (f, f) >_ E, ([ f l, Ill). "If" in (iv) follows from
(1.2) and "only if" from the relation

dx {f(x) G+, f(x)}g(x) E(f, Gu+ g).

Finally (v)and (vi)follow from (iv).

Before continuing we establish a simple but useful extension of Proposition
1.2 (iv).

COROLLAIY 1.3. Let g be a u-potential and let f on X satisfy

0 _<f_< g [a.e. dx]

vG,+,f <_ f [a.e. dx], v > 0.

Then f belongs to and therefore f is a u-potential.

Proof.

f _< f ,:(x)

f dx v{e(x) vGu+, e(x)}f(z)

g f dx v{g(x) vGu+ g(x)}g(x)

and the desired result follows from Proposition 1.1 and from Proposition 1.2
(iv).

1.7. DEFINITION. The Radon measure g has finite energy if there exists a
constant c > 0 such that

f ,(dz)f(x g c (f, ) 1/2

for f in n Com(X). The collection of all such measures is denoted by .
It is routine to show that if belongs to , then for every u > 0 there

exists a unique u-potential, written Gg, such that

(1.3) E(Gu , g) f g(dx)g(x)
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for g in F n Cco (X). The resolvent identity

valid for p in and for u, v > 0 is easily verified. It is convenient to intro-
duce the special notation

for u > 0 and in 9K. Important compactness properties of relative to
the norms t I] are established in

PROPOSITION 1.4. Let u > 0 and let {,} be a sequence in .
(i) If G,,t, converges weakly to f in F, then f is a u-potential and indeed

f Guu where t is the vague limit of the ,.
(ii) If II , 1], is bounded and if tt, ----> vaguely, then t is in g and

"--> G,t weally in F.
(iii) 91 is complete relative to

Proof. If Gp converges weakly to f, then clearly f is a u-potential and so

f G for some in 9T. But then f (dx)g (x) fu (dx)g (x) for g in
F a Com (X) and it follows directly that t -* p vaguely, proving (i). Con-
clusions (ii) and (iii) follow routinely.

To make further progress we must validate (1.3) for general g in Y which
means in particular that we must represent g by a refinement which is well
defined [a. e. t] for every in g. The main tools for doing this are certain
capacities associated with the Dirichlet norms E,.

1.1. DEFINITION. For G an open subset of X let

Cap (G) inf E (f, f)

as f runs over the functions in F such that f >_ 1 a. e. on G. If no such f exist
put Cap (G) -t- . For general Borel subsets A of X put

Cap (A) inf Cap (G)

as G runs over the open supersets of A.

1.9. DEFINITION. A Borel set A is a polar set if Cap (A) 0.

Note that although in general the value of Cap (A) depends on u > 0,
still the condition Cap, (A) 0 is independen.t of u > 0. This follows from
the easily verified estimates

E,(f,f)

_
E(f,f) <_ (1/u)E(f,f), (1/u)E,(f,f) <_ E(f,f)

_
E,(f,f)

valid respectively for 0 < u < 1 and 1 < u + . Thus Definition 1.9
makes sense.

PROPOSITION 1.5. Let u > 0 and let G be an open subset of X such that
Cap,(G) < .
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(i) There exists a unique function, p in F such that Eu (p, p is minimal
among fin F satisfying f >_. 1 [a.e. dx] on G.

(ii) 0_< p _< landpa lonG[a.e, dx].
(iii) p is a u-potential and indeed p Gt with concentrated on cl (G),

the closure of G.

Proof. Let L be the subset of f in F such that f _> l[a. e. dx] on G. Clearly
L is a closed convex subset of the Hilbert space F with the inner product E
and so (i) follows from the elementary theory of Hilbert spaces. Conclu-
sion (ii) follows upon noting that if f belongs to L, then so does min (f, 1
and max (f, 0). That p Gt for some in follows from Proposition
1.2 (ii) since if g in F is >_ 0 then p z7 g belongs to L and so

E (p - g, pa
_

g) _> E (p(u, p

To show that is actually concentrated on cl(G), it suffices to consider re-
strictions to cl (G) of functions in F n Ccom (X) and to modify in an obvious
way the proof of Proposition 1.2 (i).

LEMMA 1.6. For in , or u > 0 and for G an open subset of X,

(G) _< ]]{Cap(G)}

Proof. If p were in Coom(X), the lemma would follow from (1.3). In
general this is false and instead we apply an approximation argument of Fu-
kushima. For v > 0 let g vG+. Then Gg vG+G which con-
verges strongly (see 1.4.1) and therefore weakly to G as v " . Thus by
Proposition 1.4, g (x)dx -- vaguely and so

(G) _< Lim inf f g,(x) dx_
Lim inf f dx

Lim inf Eu(p, G g,)

Eu(pu, Gu )
_< ]] [[{Cap(G)}1/.

COROLLARY 1.7. If has finite energy, then charges no polar set.

Next we establish some properties of Cap which permit the application
of Choquet’s general theory.

PaOOSION 1.8. (i) Cap (G) _< Cap (G whenever G G with both
open.

(ii) If open G, G, then Cap (G) " Cap (G ). If Cap (G is finite
then also p’ -- p strongly in F and p" increases to pu[a.e, dx].
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(iii) (strong sub-additivity

Cap (G1 u G.) + Cap (G1 n G2) _< Cap (G) + Cap (G2)

for G G: open.

Proof. (i) is clear. To prove (ii) observe first that if m < n, then

g min(p.p) 1 onG
and therefore E (g, g) E(p, p). On the other hand the argument
used to prove Proposition 1.2 (iii) shows that

E(p p E(g, g) + E(p g, p g)

and we conclude that p g orp p [a.e. dx) and so p increases with
n [a. e. dx]. Suppose now that sup Cap, (G) is finite. Then p" converges
weakly to some f in Y and it is a simple matter to check that f p. To
complete the proof of (ii) it only remains to show that p" p strongly,
which follows from the above argument with p and p playing the role of
g and p. To prove (iii) we remark first that for G open with Cap (G) <
+ , we have Cap(G) E(pg, f) whenever f 1 [a. e. dx] on G. This
is because

E (p + t[f- p], p + t[f- p]) E(p, p) for all real t.

Therefore if Cap(G) and Capu(G) are finite, then

Cap (G) + Cap (G) Cap(G G) Cap (G n G)

,p +p -p +p
which is > 0 since

1 u a a n a dx] onGluGp +p-p. -p 0[a.e.

(If/ 0 on G u G, then E(p u /, p u + tf) 0 for all > 0
etc.) The case when either Cap (G) or Cap (G) is infinite is immediate and
so the proof is complete.
We apply Choquet’s theory of capacities (as presented for example in [22,

Chapter IH]) to get

Ton 1.9. For any Borel set A and for any u ) O,

Cap (A) sup Cap (K)

as K runs over the compact subsets of A.

Coaoa 1.10. A Borel set A is polar i and only i Cap (K) 0 or
ery compact subset K of A.

Now we are ready to introduce our refinements.

1.10 DFTO. A property is valid quasi-everywhere (abbreviated q.e.)
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if the exceptional set is polar. Two functions are quasi-equivalent if the set
on which they differ is polar, that is, if they are equal quasi-everywhere.

1.11 DEFINITION A function f on X is quasi-continuous if there exists a
decreasing sequence of open sets G with Cap (G.) 0 such that f is continu-
ous on X G for every n.

THEOREM 1.11 Each f in F has a representative uniquely defined up to
quasi-equivalence such that"

1.11.1. f is quasi-continuous and Borel measurable.
1.11.2. Whenever f, --> f strongly in F, then, for a subsequence, f, - f q.e.

Proof. Uniqueness is clear from 1.11.2. To establish existence, fix f, g
inFnCoom(X) andletG= {x:lf(x)-g(x)l >}. Then (1/e) lf-gl_>
1 on G and so

(1.4) Capu (G) _<_ (1/?)El(f g,f- g).

This suffices to establish the existence for f in F of a quasi-continuous version
characterized by the condition that whenever f, in F n Ccom (X) converges to
f in F then a subsequence converges to f q.e. A routine argument serves to
remove the restriction on f, and the proof is complete.

The statement of uniqueness in Theorem 1.11 will be improved in Lemma
1.15 below.

1.12. Convention. From now on every f in F is represented by the version
specified up to quasi-equivalence in Theorem 1.11.

We extend (1.3) and (1.4) in

THEOREM 1.12. For f in F, for in and for u, > O,

(1.5) f (dx)f(x) Eu(Gu , f)

Cap{x: f(x) > } <_ (1/e)E(f,f).

Proof. The first relation has already been established for f in F n Ccom (X)
and follows in general by a passage to the limit using 1.11.2 and Corollary ].7

since

f #(dx)lf(x) g(x) E(G#, If- g I) II{E(f g, f- g)}/

for f, g in F n Com (X). The second relation is established for general f in F
by choosing f in F n Com (X) such that f -- f q.e. and in F, by noting that

except for a polar set, and by applying (1.4) to the right side in an obvious way.
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Now we are ready to prove

THEOREM 1.13 (Maximum Principle). Let f G, t and g G, , be
u-potentials with g >_ f [a.e. p]. Then g >_ f q.e.

Proof. Let h min (f, g). Then

and
E(, h) Eff, f) + E( k h I)

which implies h f by Proposition 1.2 (v) and Proposition 1.2 0i).

Applying Theorem 1.13 with g min (f, c) we get

ConoanY 1.14. Let f G be a u-potential such that f g c [a.e. ].
Then f c q.e.

We turn now to some technical results. The proof of he first is Fukushima’s
[13].

LEMMA 1.15. Let f, g be quasi-continuous on an open subset G of X. If
f g [a.e. dx] then also f g q.e.

Proof. We show that A {x in G" f(x) < g (x)} satisfies Cap (A) 0.
F e > 0 and choose an open subset of G such that Cap () < e and f, g
are continuous on G . Assume first that has the following property:if x
belongs to G , then every neighborhood U of x satisfies f_ & > 0.
Then the condition g f [a.e. dx] guarantees that A is contained in and we
are done. In general it suces to replace by the open set ’ of x in G wch
have an open neighborhood U, satisfying ._ dx O.

Ln=Ma 1.16. Let v be a bounded Radon measure such that

v(G) cCap (G)

for all open G and for a fixed constant c. Then has finite energy.

Proof. It suces to show that

v (dx )f (x constant

for f 0 in n Com (X) satisfying E (f, f) 1. But this follows from

v (dx)f(x) v{x’f(x) < 1} + 2+1 {x 2 f(x) 2k+l<

f (dx) + co 2+ Cap x f(x) 2

f (dx) + co 2k+12-e.
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LEMMA 1.17. Every Radon measure v which charges no polar set is the vague
limit of an increasing sequence of measures v, each having finite energy.

Proof. It suffices to consider the case when v is bounded and because of
Lemma 1.16 it suffices to establish the following two results.

1.13.1. There exist real aN 0 such that for any Borel set B the inequality
v (B) >_ N Cap (B) implies that v (B) <_

1.13.2. For each N there exists a Borel subset Xu of X such that
and such that (A <_ N Capx (A for every Borel subset A of X X

If Statement 1.13.1 is false, then there exist Borel sets B, such that

v(B,,) >_ a > 0 and Cpl(B,) _< 2--1.

But then v (91= 0n= B.) >__ a while

Capx u:_o B,) _< :=2-"-1 2

for all m which contradicts our hypothesis that charges no polar set. This
proves 1.13.1. To prove 1.13.2 we employ one of the standard techniques for
proving the Radon Nikodym theorem. First let

a inf{NCap(A)- v(A)}

as A runs over the Borel subsets of X. Clearly -v (X) _< a _< 0. Choose A
such that

N Cap1 (A) (A1) <:

Then for A c X A1, we have

a_< NCap(AuA) (AuA1)

_< N Cap (A) + N Cap1 (A) v(A) v(A)

which implies that N Cap (A) v (A) _> 1/2a. Continuing in this way we
find a sequence of disjoint Borel sets A, As, such thatN Cap (As) _< v (A,)
for all n and such that

N Cap1 (A) u (A) >_

for all subsets A of X (A1 u u A,). Finally we take XN U:= A, and
apply 1.13.1.

Next we establish a simple but useful extension of Lemma 1.17.

COROLLARY 1.18. Every Radon measure which charges no polar set is the
vague limit of an increasing sequence of measures ,, in each having a bounded
1-potential.

Proof. By Lemma 1.17 and a standard diagonalization argument it suffices
to consider u in 9g and then the corollary follows upon approximating u by its
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restriction to the set where G1 _< n and then applying the maximum principle
(Theorem 1.13).

We finish this section by generalizing the notion of a u-potential.

1.14. DEFINITION. A generalized u-potential (u > 0) is a Borel function
h satisfying"

1.14.1. 0_< h + q.e.
1.14.2. There exists a Radon measure charging no polar set such that

(1.6) I v (dx)h(x) f (dx)Gu(x)

for all in . We write h G.
1.14.3. For each compact subset K of X there exists a u-potential gK such

that g _> h q.e. on K.

Condition 1.14.3 is technical in nature and seems rather artificial at this
stage. However it seems to be just what is required to permit us to restrict
our attention to Radon measures. (See the proof of Theorem 3.12 below.)

1.15. Notation. i)r is the collection of Radon measures charging no polar
set such that Gu is a generalized u-potential for all u > 0.

We will see that rather than is the natural setting for much of our
work. An argument of Blumenthal and Getoor [2, p. 260] serves to establish
the following uniqueness result.

IEMMA 1.19.
then

If , , belong to 9 and if G, G, , q.e. for some u > O,

2. Construction of processes

In this section we construct a family of strong Markov processes associated
with the regular Dirichlet space of Section 1. As mentioned in the introduc-
tion, this has already been done by Fukushima [13] using different techniques.
We begin by applying the spectral theory to the resolvent operators G

considered as bounded symmetric operators on the Hilbert space F relative
to any of the inner products Eu. This yields a unique family of bounded linear
operators P > 0 on F satisfying"

2.1.1. Each Pt is contractive and symmetric relative both to the Dirichlet
norm E and to the standard inner product on L (dx).

2.1.2. PP" P+" for s, > 0.
2.1.3. G, f dt e-’tP foru > 0.

Now we apply Laplace inversion in the spirit of Feller [10, vol. 2, XIII. 4].
Tchebychev’s inequality applied to the appropriate Poisson variables shows
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that for any bounded continuous function a on [0,

a (t) Lim k0 e-Ca (k/n) (tn)/ (n

boundedly and so for any > 0 and for any f in F

fo dte-ta(t)ptf Lim fo -t -,,ca(dte Pf _..o e /n)(tn)/k! (n )

)G,+Lim .,-o a(kIn) (nG,+ f (n

where the integrals are to be interpreted as strong limits of Riemann sums.
Now condition 1.1.1 and Proposition 1.2 (iv) lead to"

2.1.4. f >_ 0 q.e. implies that Ptf >_ 0 q.e. and f _< 1 q.e. implies that
ptf

_
1 q.e.

2.1.5. e-"PCf <_ f q.e. for u, > 0 if f is a u-potential.

Note. Before continuing we remind the reader of our Convention 1.12 that
functions in F are specified up to quasi-equivalence. This plays an important
role in our construction.

To make further progress it is necessary to introduce transition probabilities
pC (x, dy) satisfying in the appropriate sense

(2.1) Per(x) f P(x, dy)f(y),

(2.2) PC+8(x,

For technical reasons we proceed indirectly, considering first the action of the
pt on measures.

LEMMA 2.1. Let , be a bounded Radon measure which charges no polar set.
Then for each > 0 there exists a unique Radon measure ,P, also charging no
polar set, such that

(2.3) f ,pt (dx)

_
f , (dx),

f (P) (dx)f(x) / , (dx)PCf(x), f >_ O, f in

Moreover if , has finite energy, then so does pC, and indeed for all u > O,

(2.5) e-U*ll P ll - II il.
Proof. If f, _> 0 belong to F Co (X) and iff $ 0 pointwise, thenf $ 0

uniformly and by 2.1.4 also Pf. 0 uniformly q.e. Then f , (dx)PCf,, (x) $ 0
and so by the Daniell approach to integration [20, p. 29] there exists a unique
Radon measure P satisfying (2.4) for f in F Coom (X). To show that
P charges no polar set it suffices to show that P (K) 0 whenever K is
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compact and Cap1 (K) 0. To do this, consider such a K and let open
G K with Cap1 (G) $ 0. Then p - 0 strongly in F and so also Ptp 0
strongly in F. Since the p decrease monotonically q.e. for a sequence (see
the proof of Proposition 1.8), it follows from 2.1.4 and from Theorem 1.11.2
that for a sequence Pp ], 0 q.e. and there f (dx)ptp (x) O. Fix one
such G and e > 0 and choose f in F n Ccom (X) with 0

_
f

_
1 such that f >_ 1/2

onK, andf_eonX-G. Thenf-p_e q.e. andso

f

and it follows readily that P (K) 0. The extension of (2.4) to general f in
F and the verification of (2.3) and (2.5) are routine.

It follows directly from the semigroup property 2.1.2 and from (2.4) that

pp= p+

for s, > 0 and for u bounded measure which charges no polar set. Now we
are ready for

LEMMA 2.2. There exist subprobabilities P (x, dy) on X defined for > 0
and for x in X such that

(i) P (. F) is Borel measurable for any > 0 and for any Borel subset
rofx.

(ii) For fixed > 0 and f in F, equation (2.1) is valid for q.e.x.
(iii) For fixed s, > 0 there exists a polar set N (depending on s and t) such

that (2.2) is valid for all Borel subsets F of X.

Proof. Clearly there exist subprobabilities pc (x, dy) satisfying (i) and
such that (2.1) is valid q.e. for fixed > 0 and fixed f in F n Com (X). There-
fore

(2.6) f ,(dx) f pt(x, dy)f(y)= f (,pt) (dy)f(y)

for > 0, for a bounded measure which charges no polar set, and for f in
F Co (X). The restriction on f can certainly be removed and then (ii)
follows easily with the help of (2.4). Finally (iii) follows directly from (ii)
and from 2.1.2.

Note. In the proof of Lemma 2.2 we used implicitly the fact that if A is a
Borel set which is not polar, then there exists a bounded measure charging
no polar set such that (A) :> 0. The existence of such a can be established
by first using Corollary 1.10 to replace A by a compact set and then considering
open G decreasing to A and applying Proposition 1.5 (iii) and Proposition
1.4 (ii).
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At this stage of the argument we restrict our attention to rational times in
order to pick out a single exceptional polar set. First choose N1 polar such
that (2.2) is valid for all rational s, > 0 and for x in X N1. From Lemma
2.1 and from (2.6) it follows that the set of x in X for which pC (x, N) > 0
for any rational > 0 is polar. Thus there exists polar N containing N such
that P (x, N) 0 for x in X N. and for rational > 0. Continuing in this
way and taking the union, we prove

LEMMA 2.3. There exists a polar set N such that (2.2) is valid for all rational
s, > 0 and for x in X N and such that

P (x, N) 0

for x in X N and for all rational > O.

Next we introduce the preliminary sample space. This is the collection
2o of mappings 0 from the nonnegative rationals into the augmented state
space X u {0}. Here 0 is the usual "dead point" which we adjoin to X as an
isolated point when X is compact and as the "point at infinity" otherwise.
Functions f on X are automatically extended to X u {0} so that f(0) 0.
For >_ 0 the past is the sigma algebra generated by the coordinate variables
o (s) with s <: t. The Borel algebra is the sigma algebra generated by all of
the coordinate variables o (s), s >_ 0. Standard arguments [6, p. 99] establish
the following two theorems.

THEOREM 2.4. For x outside the exceptional set N of Lemma 2.3, there is a

unique probability (P on the Borel algebra of o such that

f0io(t0)]fico(h)] fniOO(n)] f P"(x, dye) f P’-"(y, dye)

f Ptn-tn-(Yn-l,,dy,)fo(x)f(y) fn(Y)

for 0 to < t < < t, all rational and for Borel fo, "", f >_ 0.

Of course denotes the usual expectation functional corresponding to the
probability

For >_ 0 rational let 0 (t) be the shift transformation defined on 2o by

o(t)(s) (t +
Then

THEOREM 2.5 (Sinple Markov property). For x outside the exceptional set N
of Lemma 2.3, for >__ 0 rational and for >_ 0 a Borel function on o
(2.7) (O(t) ) ,o() [a.e. (x].

Of course ( denotes the usual conditional expectation and
is defined by

O(t)(oo) (O(t)o).



16 MARTIN L. SILVERSTEIN

Note that co (t) avoids N of Lemma 2.3 with , probability one so that g(t)
is well defined [a.e. (].
Our final sample space is the subset of co in to having one sided limits

co (t :t: 0) for all real _> 0. Standard arguments [22, p. 60] show that t is a
Borel subset of to. The starting point for establishing regularity is

THEOREM 2.6. There exists a polar set N satisfying the conclusion of Lemma
2.3 such that for x in X N the probability 5) is concentrated on the final sample
space of trajectories co having one sided limits co (t -4- O) for all real >_ O.

Proof. Let R1 be a nonnegative random variable which is exponentially
distributed with rate 1 (that is, () (R1 > t) e-t and which is independent of
the Borel algebra ft. The theorem follows by routine arguments once we
show that for each f in F n Coom (X) there exists a polar set N (f) such that for
x in X N (f) the set of co in fro for which f[co (t)] has one sided limits for all
real < R has (P probability one. (We take the usual liberty of assuming
that all structure on fro has been transferred to an appropriate augmented
sample space on which R is also defined. Fix one such f and choose f. in F
having the form f G. with bounded and square integrable such that
f -- f strongly in F and also quasi-everywhere. Choose decreasing open
G with Cap (G) $ 0 such that f --* f uniformly on the complement of each
G. With the help of the simple Markov property Theorem 2.5, it is easy to
check that for a fixed nonnegative which is bounded and square integrable
and for q.e. x the process

e-*G [co (t)], >_ 0 and rational}

is an L bounded supermartingale relative to (e, and so by standard super-
martingale estimates [22, Part B] has one sided limits everywhere for real
>_ 0 and in particular for real < R. The same is true with Gx replaced by

any f, and it only remains to show that for q.e. x,

(2.8) (P{co c0(t) is in G for some nonnegative rational < R} decreases
to0asm " .Fix a finite subset S of nonnegative rationals and put

minimum in S co (t) is in G}

with the understanding that -t- when not otherwise defined.
the process

{e-p"[co (t)], in SI

Since

is a supermartingale by 2.1.5 and since is a stopping time in the sense of
[22, T28], we have

< <
(2.9) m[(z)]

_< (x)
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which decreases to 0 as m ’ for q.e.x. The desired estimate for (2.8)
tollows and the proof of the theorem is complete since the estimate (2.9) is
independent of S.

Note. We are using the symbol I (A) to denote the indicator of the set A.

For convenient future reference we record here a result which was established
in the course of proving Theorem 2.6.

LEMMA 2.7. For any particular version of a function f in F there exists a
polar set N such that for x in X N and for [a.e. (P] trajectory in the range
of X (t, ) for 0 <_ < - belongs to a subset of the augmented space X
on which f is defined and continuous.

2.2. Extension. For a Radon measure on X which charges no polar set
let (P be the unique measure on the Borel algebra fi; of satisfying

(2.10) f (dx)

for >_ 0 and Borel measurable on f. (This makes sense since is Borel
measurable on X N.)

2.3. Conventions. From now on we work with 12 instead of o and we assume
that all structure on o is transferred in the obvious way to . For >_ 0
and real we define X (t, w) on f by

Z(t, o) Lim (s)
with the limit taken as rational s decrease to t. Then for all 0 in the trajectory
X (t, ) is right continuous and has one sided limits everywhere for real >_ 0.
We will generally suppress in the notation. For typographical convenience
we introduce the nonstandard notation

f (t) f[X (t)]
for functions f on X. We also adopt the convention

(2.11) X() 0.

For real _> 0, and for f _> 0 on X we define

Pf(x) Sf(t), Guf(X) a dte-f()

for x in X N where N is the exceptional polar set of Theorem 2.6. This is
consistent with all previous definitions.
A simple argument using the fact that G,f belongs to ’ whenever f does

suffices to establish a useful extension of Corollary 1.3.

LEMMA 2.8. Let f >_ 0 and defined q.e. satisfy the hypotheses of Corollary 1.3
and in addition

Lim vG+f f q.e. (v -- ).
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Thenf is a u-potential and is the unique quasi-continuous version of Theorem 1.11.

We turn now to the strong Markov property.

2.4. DEFINITION. A stopping time is a nonnegative Borel measurable
function T on 2 (possibly taking the value -t- such that for each > 0 the
subset [T t] of belongs to the past t. The corresponding pst r is the
sigma algebra of Borel subsets F of such that for all > 0 the intersection
F a [T < t] belongs to fit. The shift transformation (T) is defined on the set
[T < -t-] by

O(T)(s) o(T() - s).

THEOREM 2.9. Let T be a stopping time. Then
(i) The coordinate X (T, o) X (T (o), o) is r measurable. (Recall

our convention (2.9).)
(ii) Let be a bounded measure which charges no polar set and for u >_ 0

let ,’ be the measure on X defined by

f ’ (dx)f(x) Ee-rf(T).

Then ’ charges no polar set. Indeed if , has finite energy then so does ,’ and
foru > O,

(iii) (Strong Mar]cov property) There exists a polar set N independent of T
which satisfies the conclusion of Theorem 2.6 and such that for x in X N and
for >_ 0 and Borel on ,

(0(T)lr) (r) [a.e. (P].

Proof. Fix a sequence of rational valued stopping times T which decrease
to T as n " . (For example, take T to be the smallest positive number of
the form ]2-" which is _> T.) Then for K compact and for open G K,

[T < t] [Xr K] := %= :={[T, < t] [X (T,)e G]}

and the fir measurability of Xr follows. In proving (ii) it suffices becauses
of Lemma 1.17 to consider having finite energy and because of Proposition
1.4 (ii) to take T T for some m. But then (ii) follows since for any in,
{e-’G(t), >_ 0} is a supermartingale relative to 5). To prove (iii), choose
a polar set N satisfying the conclusion of Theorem 2.6 and such that for x in
X N and for [.e. d] tra,jectory the range of X (t, o) for 0 <_ +
belongs to a subset of the augmented space X u {0} on which the functions

fo (x ptf pt-t,.. P’*-’-f,(x)

are defined, bounded and continuous for all choices of f0, f belonging to
a fixed countuble dense set in " Co (X) and of 0 < t < < t rational.
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The possibility of choosing such an N follows from Lemma 2.7. Finally put

fo(O)fl(tl) f,(t,,,),
note that

xI(A)I(T < - )(T)

,I(A)I(T < + )fo(T,)(P*lfl P--f)(T)
is valid for A in r by the simple Markov property Theorem 2.5, and pass to
the limit n .
THEOREm[ 2.10 (Quasi-left-continuity). There exists a polar set N satisfying

Theorem 2.9 (iii) and such that the following is true for x in X N. If T T
are stopping times such that T T [a.e. ,], then

X(T) LimZ(T) (n )

[a.e. ] on the set [T < +].

Proof. Let R be as in the proof of Theorem 2.6. Fix m < n and f in
F Co (X). Then by Fubini’s theorem and the strong Markov property
Theorem 2.9- (iii)

<
for x in X N with N s in Theorem 2.9 (iii). The ana,lgous relation is
valid with T replaced by T. For q.e. x we hve

so that the dominated convergence theorem for conditional expectations [19,
p. 348] is applicable. Letting n , noting that , (T R) 0 and apply-
ing Lemma 2.7 we obtain

,(I(T < R)Gf(Lim X(T))ffr) ,(I(T < R)Gf(X(T))

for x in X N where N is a polar set depending only on f. Since this is true
for all m and since for bounded Borel g the function g (Lira X (T,)) is measur-
able with respect to the sigma algebra generated by the union of the
(see Theorem 2.9 (i)), we have

,I(T < R)g(LimX(T))GI(LimX(T))

,I(T < R)g(LimX(T))Gf(X(T))

and the theorem follows since we can replace Gf by f after a passage to the
limit as in the proof of Theorem 2.6.
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Note. The above proof of Theorem 2.10 is essentially the one given by
Kunita and Watanabe [26].

We turn now to the hitting times

a(A) inf{t >__ 0:X(t) isinA}

defined for Borel subsets A of the augmented space X u {0} with the under-
standing that (A) -[- if not otherwise defined. We first consider open
sets.

THEOREM 2.11.
()
(it)

(2.12)

(iii)

Proof.

Let G be an open subset of the augmented state space X
(G) is a stopping time.

If G has finite capacity, then for any u > O,

x exp {-ua(G)} p(x) q.e.

The left side of (2.12) is always quasi-continuous.

(i) is standard. To prove (it) let h (x) be the minimum of the two
sides of (2.12) and note that h satisfies the hypotheses of Lemma 2.8 as can
be verified by routine arguments. Then from Proposition 1.5 (i) and Propo-
sition 1.2 (it) we conclude that h pa q.e. and so the left side of (2.12) dom-
inates the right side q.e. The opposite inequality follows in the same way as
(2.9). Finally (iii) follows upon applying Lemma 2.8 to the minimum of the
left side of (2.12) and p’ where G’ is a general open set with finite capacity.

THEOREM 2.12 (Measurability of hitting times). Let A be a Borel subset of
the augmented state space X t {01.

(i) There exist stopping times a, (A ), a (A and a polar set N depending on
A such that a, (A) a (A) <_ a* (A) everywhere on and such that

a, (A) a* (A) [a.e.
for x in X N.

(it) Possible choices for , (A and a* (A are

(A)= Lim (K) (n " )a,(A) Lima(Gn) (n " )where the K,, form a particular increasing sequence of compact subsets of A and
the G, form a particular decreasing sequence of open supersets of A.

(iii) For u > 0 the function

h (x) x exp --ua (A)}
is quasi-continuous.

Proof. First consider A compact, let G be any decreasing sequence of open
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sets whose intersection is A and define a, (A) Lim (Gn) (n J’ ). The
set [, (A) (A)] is clearly Borel and by Theorem 2.10 there exists a polar
set N such that P(, (A) (A) 1 for x in X N. Therefore (i) and
(ii) are satisfied if we define * (A) a, (A) whenever , (A) (A)
and * (A) W otherwise. To handle general Borel A we follow Hunt
[16] and apply the Choquet extension theorem. Fix a bounded measure
charging no polar set and define k (A) for A open or compact by

(2.13) (A) f (dx) exp {-(A)}.

We want to conclude that for any Borel set A

(2.14) supremum (K) infimum (G)

as K runs over the compact subsets of A and as G runs over the open supersets
of A. To do this we must check that satisfies the following conditions.
(See [2, p. 53].)

2.4.1 X (G1) _< (G2) whenever G1 < G2 with G, G open.
2.4.2. For K compact, (K) infimum (G) as G runs over the open

supersets of K.
2.4.3. , (G u G) + (G n G.) _< (G) + (G,.) for G1, G open.

Property 2.4.1 is clear, 2.4.2 follows from (ii) for A compact, and 2.4.3
follows from

exp {-a(G)} ((z(G) < R)
and from

(Of course R is defined as in the proof of Theorem 2.6.) Thus (2.14) is
established. To complete the proof fix a Borel set A and take in (2.13)
equivalent to dx. Then there exist increasing compact subsets K, of A and
decreasing open supersets G, of A such that a, (A) a*(A) [a.e. P] for
[a.e. dx] point x in X with a, (A) and a* (A) as in conclusion (ii) of the theorem.
But the proof of Theorem 2.11 shows that the functions

h, (z) exp a, (A)}, h* (x) exp a* (A)

are quasi-continuous. Thus by Lemma 1.15 h, h* quasi-everywhere and
we are done.

It follows directly from (2.12) and from Theorem 2.12 (ii) that if N is
polar, then (( (N) - 1 for q.e.x. Thus reasoning as in the para-
graph preceding Lemma 2.3 we prove

.THEOREM 2.13. There exists a polar set N satisfying the conclusion of
Theorem 2.10 such that 5) ( (N) - 1 for x in X N.



22 MARTIN L. SILYERSTEIN

From the strong Markov property Theorem 2.9 (iii) and the obvious identity

(p(X(t) 0forallt_> 0) 1
follows

TrmOREM 2.14. There exists a stopping time , called the life time, and a
polar set N such that for x in X N and for [a.e. (P] trajectory o in

X (t) belongs to X for < ,
X(t) =0 fort >_ .

3. Additive functional and balayage
For u > 0 and in and for q.e. x the process

{e-’Gu,(t), >_ 0}

is a supermartingale relative to (e. In this section we use techniques similar
to those of Blumenthal and Getoor [2, IV.3] to construct additive functionals
which generate such supermartingales in the sense of [22, VIII and which
satisfy certain regulurity conditions. We begin with a special case. For
u, _> 0 and for nonnegative g bounded and square integrable on X let

A,(g; t) dse-U’g(s).

These functionals are certainly everywhere defined on f and with the help of
Theorem 2.9 it is easy to verify

3.1. There exists a polar set N satisfying the hypotheses of Theorem 2.13
such that for every stopping time T the functional A (g; T) is measurable
with respect to the past fir and such that for u > 0, for x in X N, and for
[a.e. (P] trajectory 0,

(3.1) ffrA(g; A(g; T) q- e-’rGg(T),

(3.2) e-rO(T)A,(g; t) A(g; T -q- t) A,(g; T)

with the second equation making sense and being valid for all _> 0 whenever

3.2. Notation. In paragraph 3.1 and at various points in the sequel we use
Hunt’s notation fir instead of ( fir) to denote the conditional expectation.

The necessary preliminaries are established in

LEMMA 3.1. Let , be a bounded measure in lZ such that G., , is bounded q.e.
for one (and therefore all) u > O. Then there exists a polar set N and a sequence
v (k) such that for x in X N and for [a.e. (P] trajectory

Lim A (v (k)G() ; t) (k o

exists uniformly in 0 <_ < q- o for all u > O.
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Proof. We establish the lemma first for a fixed u > 0 when there is no
harm in using g [u - v (1)]G in place of v (/)G, . Following Blu-
menthal and Getoor, we fix > ] and estimate

IIA (g; ) A(g; )}
2

a dte-ut{g(t) g(t)l ds’{g(s) g(s)}

Jo dte-Ut{g(t) g(t)}{Gg(t) Gg(t)}

(3.3) Jo dte-tg(t){Gu(t) Gg(t)}

--3k --u2 dte g(t)

+ c[ (sup {G,(t) Gg(t)} 2-)]/ 3 dtg(t

2-c + (2) (sup Gc[e (t) Gg(t) > 2-’)]’
for q.e. x th the supremum tuken over 0 < R (see the proof of Theorem
2.6) and with c > 0 a constant wch do,nares G, q.e. Choose v (k) $
such that

Eu(G G,g, G G,g) < (512)-.
The estimate (1.5) guarantees that the subset of X where

Gu Gg 2-has u-capacity < (128)-. Choose open G such that G G, g < 2-a

on X G and such that Cap (G) (128)-. Then by the very definition
of Cap and by Proposition 1.5 (i) the set where p 4- has
u-capacity 2- and from (2.12) it follows directly that for q.e. x there exists
a finite integer m (x) such thut

((G) < R) g 4-or k m (x). Combining this with (3.3) we conclude that for q.e. x and
forl> k re(x)

s{Au(e; ) A(a )} < -c + (V)-.2

and therefore by the maximal inequality for L bounded martingales [22, p. 81]

(sup]fitA(g; )- fftA(g; )[ 2-) c’2-
with the supremum taken over 0 < + and with c’ a second constant.
The desired uniform convergence of A, (g; t) now follows with the help of
(3.1). Finally, by a standard diagonalization procedure we can extend the
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result to rational u > 0 and then to real u > 0 after a straightforward estimate
along individual sample paths.

3.3. DEFINITION. For and v(k) as in Lemma 3.1 let

A (; t) Lim sup Au (v (k)G(k) ; t) (k J"
foru > 0andfor0_< t_< A- and let

A(;t) LimsupA(1/.)(r;t) (n " )for0_< t_< -4-.

Elementary arguments establish

THEOREM 3.2. For , as in Lemma 3.1 there exists a polar set N such that the
following is true for x in X N.

(i) For every stopping time T and for u > 0 the functional A, (; T) is
r measurable and for u > 0

rA @; oo A @; T) A- e-ur. (T) [a.e. P].

(ii) For [a.e. (P] trajectory

A(; 0) 0,

A (v; is continuous and increasing,

A(,; ) A(; d)e-,
with the last identity valid for u > 0 and 0 <_ < A-. Moreover if T is a
stopping time such that T (o) < -4-, then for u, >_ 0

e-r0(T)A(; t) A(r; T -t- t) A(r; T).

3.4. Extension. For in 9E put

A(; t) :=IA( ;t), A(; t) :.=lA(r. ;t)

where {} is any sequence of measures each satisfying the hypotheses of
Lemma 3.1 and such that -’=1. The existence of such a sequence is
guaranteed by Corollary 1.18. Elementary arguments extend Theorem 3.2
to in i).
Remark. Meyer’s uniqueness results [22, VII. 3] guarantee that if A* (v; t)

is any other family of functionals satisfying the conclusion of Theorem 3.2
with a corresponding polar set N*, then for x in X (N u N*) and for [a.e.
(e,] trajectory

A,(u; t) A*,(u; t)
for all u, >_ 0.

3,5. Notation. The symbol .u denotes the measure whieh is absolutely
continuous with respect to u and has Radon-Nikodym derivative o.
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To avoid the need for continual reference to exceptional polar sets as in
Theorem 3.2 and Theorem 2.13, we introduce at this point some nonstandard

3.6. Terminology. A property is valid quasi-surely on 2 if the exceptional
set has outer (P measure .0 for q.e. x in X.

THEOREM 3.3. Let >_ 0 be Borel on X and let be a Radon measure on X
such that both , and ., belong to 9e. Then quasi-surely on

A(t, .,) A (ds; ,)(s)

forO <_ <_ -.
Proof. Evidently it suffices to consider Al(t, q.) and A1 (t, ) in place of

A (t, .) and A (t, ) and to assume that is bounded and that satisfies the
hypotheses of Lemma 3.1. The proof of Lemma 3.1 and the remark following
3.4 show that for an appropriate sequence of v (k) " , and quasi-surely on 2

Al(t, [1 -t- v (])]G,(k)) -- Al(t, )

Al (t, [1 -t- v(])]G(k) .) -- Al (t,

uniformly in _> 0 and the theorem follows.

We introduce next the inverse process

B(,; s) inf {t > 0" A (,; t) > s}

with the understanding that B (; s) -t- when the t-set on the right is
empty or when A (; fails to satisfy the first two conditions in Theorem 3.2
(ii). Clearly each B (; s) is a stopping time and consequently for u > 0,

h (x) 8 e

is Borel on the complement of an appropriate polar set and the set

(3.4) M" {x" h(x) 1}

is a Borel set. Evidently 1 can be replaced by u > 0 in (3.4). We will
generally suppress the superscript when no confusion is possible. A point x
in X is -regular if it belongs to M. A Radon measure is -regular if it is
concentrated on M.
Now we are ready to introduce a form of balayage which is convenient for

our purposes. First we denote by () the collection of -regular measures
having finite energy and we prove

]EMMA 3.4. For in 9, the collection 9 (,) is convex and closed relative to
(and therefore to any of the norms !!).

Proof. Convexity is obvious. To show that 9r () is closed, consider .
in () and in such that u- 111 --* 0. It suffices to show that
.# belongs to () for bounded nonnegative Borel with compact support
K. Evidently . is concentrated on M if and only if f .(dx)h(x) is
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independent of u > 0 and it suffices to show that this property is preserved
by 1] [[1 convergence in . But it follows from Theorems 2.11 and 2.,12 that
h agrees q.e. on K with a u-potential and so the desired result follows from
(1.5).

We denote byF (), or simply F, the closed linear subspace of F spanned by
G 9E (). Since 9E and therefore 9E () is complete, standard Hilbert space
arguments establish for each u in i)3Z the existence of a unique measure ’ in
9E () such that ’ I1 is minimal. We denote this balayaged measure by
r p and we characterize it in the following lemma. The proof given is essen-
tially that of Cartan [3].

LEM 3.5. O) G ’ # is the E-orthogonal projection of G, t onto F (
(ii) Gu >_ G-,u q.e. and Gu Gru q.e. on M.
(iii) Gr t infimum tf in G f >_ G q.e. on M} q.e.
(iv) G, ’ is the unique element of minimal E, norm among the set of f

in F such that f >_ G,, t q.e. on M.

follows
From the relation I1 rpll < Jig h!l for allhin 9E@)

for all X in fig ().

and therefore

(3.5)

for all X in gg ().

E(Gtt- Gr,u, GX- G,,r) N 0

Taking X 0 and X 2Vu u., we conclude that

E(Gt,- Gr,,, Gr,,) 0

E,,(G,,- Gr,, GX) < 0

The inequality (3.5) implies that G, g Gr g q.e. on M
and then the previous relation implies that G Gr, [a.e. r ] and there-
fore by the maximum principle (Theorem 1.13), G _< G q.e., proving
(ii). This together with the inequality (3.5) yields the equality

(3.6) E,,(G,,# G,, r,, G X) 0

for X in gg () which is equivalent to (1). Conclusion (iii) follows from the
maximum principle. Finally (iv) is easily established for f > 0 using (1.5),
which suffices because of the contractivity of E.
At this point it is convenient to introduce the complement D X M

and the corresponding "killed" process

X)(t) fx(t) fort < B@; 0)
=\O fort > B(;0).

We will be interested primarily in the corresponding resolvent operators

(3.7) Gf(x) 8 dte-Utf(t)
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and in particular, their connection with the operators

(3.8) g,f(x) exp {-uB(; 0)}f[B(; 0)].

We note in particular the familiar and easily established identities

(3.9) G G -gG
(3.10) H H - (v u)GH.
Basic results for these operators are collected in

THEOREM 3.6. (i) If f belongs to F, then Hf is the quasi-continuous version
of the E,-orthogonal projection of f onto the linear subspace F.

(ii) For in a,d for f >_ O on M,

f , (dy)f(y)= f, (dx)Hu](x).

(iii) The operators G, u > 0 form a symmetric resolvent on L (D, dx ).
The corresponding Dirichlet space (F), E)) is given by

Y) {finY:f Oq.e. on

ED(f,g) E(f,g), f, ginFD.

Moreover F) is precisely the E-orthogonal complement of F in F.
(iv) Let r (x ) dx with r (x > 0 [a.e. dx] on D and with r (x square

integrable on D. If F c M is null for 1 , then H (x, F) 0 for q.e. x in D.
Also , is absolutely continuous relative to - u for all

Proof. We begin by proving (i), after first noting that by elementary
approximation arguments it suffices to consider the special case f
with in . The estimate

(3.11) Huf <_ f q.e.

can be established by a straight forward calculation when u g (x)dx and
follows in general by the usual approximation. A similar argument, using
Lemma 2.8, shows that Hf is a u-potential. Since f Hf q.e. on M,
clearly f Hf belongs to the E-orthogonal complement of F. (Apply
(1.5).) Now f G q.e. on M and so Hf HG p. Therefore the
estimate (3.11) for Gu , in place of f implies that Gu _> Hf q.e. Then

E(Gr, G’p) >_ E(g,f, H,f)

(using (1.5)) and since Gu is already known to be the E-orthogonal
projection of f onto F it follows that actuallyHf Gv p and (i) is proved.
Conclusion (ii) is an immediate consequence of (i). We turn now to (iii).
The resolvent identities can be established by a straight forward computation
which we omit. Symmetry follows from symmetry for G, from (3.9) and
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from the following version of Hunt’s duality relation [16, p. 168],

(3.12) f (dx)Heu(x) / (dx)HuG,(x),

which is an immediate consequence of (i). Finally, the statements about the
corresponding Dirichlet space are easily established with the help of (3.9).
Before going on to prove (iv) we note that (ii) applied to (3.10) yields the dual
identity

(3.13) ru r, T (v u)mG
where G is defined on measures in the usual way. It follows in particular
that 1 and r are equivalent measures. Now let I’ c M be null for rl

and therefore for u/. From (ii) it follows that H (x, I’) 0 for [a.e. dx]
vG,+ H, lr 0 q.e. Butx in D. Then vG+,, H, lr 0 q.e. and therefore D

from (3.9) it follows that DvGu+ H, lr increases to H lr q.e. on D as v ’ o

and we conclude that H (x, F 0 for q.e. x in D as required. The remainder
of (iv) follows easily with the help of (ii).

Next we establish an important alternate description for i) ().

LEMMA 3.7. Let , belong to 9e. Then 9E(,) is the [11 closure in 9 of
the set of measures in E which are absolutely continuous with respect to ,.

Proof. We show first that is concentrated on M. We have seen in the
proof of Lemma 3.4 that hi agrees q.e. on every compact set with a 1-po-
tential and so Lemma 2.7 implies in particular that quasi-surely hi (t) is every-
where right continuous. It follows easily upon approximating.

by sums
f A(; dt)e-hl(t)

(k+i) In
A(,;dt)e-thl[(k + 1)/n]

and applying the simple Markov property that for q.e. x

f0 A(; dt)e-thl(t) A(; dt)e-t exp (-- {O(t)B(,; 0) + t})

But it is easy to see that quasi-surely the subset of where 0 (t)B (; 0) > is
null relative to the t-measure A (; dr). Thus the last integral equals GI (x)
and it follows from Theorem 3.3 and from Lemma 1.19 that is concentrated
on M. To complete the proof it suffices to show that if f in F is not
thogonal to F1, then it is false that f 0 [a.e. ]. But the hypothesis on f
implies that f t (dx)H If (x) > 0 for some in 9 and the right continuity
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of f (t) (Lemma 2.7) implies that

A(; dt)e- If l(t) > 0

which by Theorem 3.3 implies in particular that f. 0.

Similar arguments establish

LEMMA 3.8. If v belongs to 9e, then

((M) B(v; 0) q.s. on .
In the remainder of this section we establish a characterization of general-

ized potential which will permit us to extend the domain of the balayage
operators to e. As a preliminary step we introduce for A closed in X
the subset i) (A) of measure u in 9r which are concentrated on A. Clearly
9r (A) is convex and by Proposition 1.4 it is closed relative to any of the

Anorms [I ll. For in 9r we denote by the unique member of 9r (A)
Asuch that u J]u is minimal and we denote by F(A) the linear sub-

space of F spanned by Gu 9r (A). The analogues of Lemma 3.5 and Theorem
3.6 can be established by exactly the same arguments---the role of M being
played of course by A itself and the role of B (; 0) by a (A). (It can be shown
that actually we are dealing only with a special case.) We also introduce
the special notation

(3.14) H f(x) esp{-ua(A)}f[a (A)].

Now fix an increasing sequence of open X each having compact support
and such that X [J:__X, and put A X X.. We begin with

LEMMA 3.9. Fix u > 0 and f in F. Then as n
(i) exp --u (A )}f[a (A,)] - 0 quasi-surely on ,
(ii) H" f 0 strongly in ,
(iii) Hf 0 q.e. whenever f is a u-potential.

Proof. By quasi-left-continuity, either a[A.] " -[- or X[a(A.)] -- 0
quasi-surely on 2 and (i) follows from Lemma 2.7. The operators H" form
(Theorem 3.6) a decreasing family of E-orthogonal projections on F. If f
is a u-potential, then

LimH]f Gk

exists strongly in F with ), concentrated on lA. which implies that and
therefore f 0. The proof of (ii) and (iii) is now routine.

A simple application of the dominated convergence theorem for infinite
series extends Lemma 3.9 (iii) to

LEMMA 3.10. If h is a generalized u-potential, then H h $ 0 q.e. as n --,
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Now we are ready to characterize generalized u-potentials.

THEOREM 3.11. Let Borel h on X be nonnegative and finite q.e. The follow-
ing conditions are sucient for h to be a generalized u-potential.,

3.11.1. For each compact subset K of X exists a u-potential h such that
hK h q.e. on K.

3.11.2. HhOq.e. asn .
Proof. Let h be the u-potential of 3.11.1 with K cl (X). Put h.
G and denote by u the restriction of to cl (X). The estimate

,Y)   (dx)au

fx (dx)h(x)

f (dz)g(X)h (x)

E(h, hm)

shows that for each m the norm ") is bounded independent of n. Ap-
plying Proposition 1.4 and replacing by an appropriate subsequence, we
can assume on the one hand that vaguely where is a Radon measure
on X and on the other hand that for each m, the potentials
weakly in F. For f 0 in F n Com (X),

f dx h(x) f(x) Lim f dx f(x)G (z)

with the limit tken s n . For fixed m, the first term inside the bracket
converges to

as . The seeond germ is

f f
which 0 independen of as m . Ig follows easily ha h is a general-
ied -poenial and ha h G .
We remark gha our proof of Theorem .11 is a simple variang of he one

given in [2, p. 268].
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Now it is a simple matter to extend the domain of definition of the balayage
operators r and establish

PROPOSITION 3.12. Let belong to e and let u > O. Then there exists a
unique measure - in 9 satisfying

HG G, r.

Moreover - is concentrated on M and

f ,(dx)Hu Gu X(x) f - ,(dx)H Gu X(x)

f ru (dx)G X(x)

for in 9 (with the understanding that these quantities may be infinite).

4. Invariance under time reversal

We begin by extablishing a kind of universality property for the u-equi-
Klibrium distributions . These are defined for u > 0 and for K compact

by
K(4.1) H 1 Gu.

We will make continual use in this section of the exponential holding times
R, defined in the same way as R except that R has density ue-.
THEOREM 4.1. Let be a nonnegative Borel function on and let in 9 be

supported by K compact. Then. A(; dl)O(t).

Proof. It suffices to observe that by Theorem 3.3 the right side

f u(dx)G(g. ().,)(x) ,(dx)g,(()Gu (x)

and to apply (4.1).
Next define the last exit time

Kr sup{t > 0" < RandX(t-0) isinK}

with the understanding that r 0 when not otherwise defined. It is easy
to check that r is Borel measurable (relative to the obvious augmented sigma
algebra) but not a stopping time. We will be concerned with the truncated
trajectory

(t) o(t) for0 < < r
0 fort >_ r



MARTIN I. SIIArERSTEIN

and the time reversed trajectory

J(t) o(ru t) for0_ < r
0 for >_ r

Our result on invariance under time reversal is
KTHEOREM 4.2. Let be a nonnegative Borel function on and let be

the u-equillibrium distribution for K compact in X. Then

f f(4.2) (d)() ,x(d)(J).

Proof. By the usual passage to the limit, it suffices to consider

fo(O)f, () A ()
with f 0 bounded and belonging to F. In the following computation we
use -0 to denote left hand limits and we apply Lemma 2.7 when appropriate
without comment. The right side of (4.2)

8 I[r > t]f(r t O) fo(r O)

Lim I[t W (k/m) < r t + ( W 1)m)]
k=O

X/(k/m) fo(t + (k/m))

Lim f(k/m) fo(t + (k/m))
k=O

X exp {-ut- (uk/m)} {U l[t + (k/m)]
_--u/mK-e l[t + ( + 1)/m]}

f dxt.e-u/P/Lim , P’---fn--
kO

_--u/ml/mKX Pt’fo{H l e l} (x)

f P/}foPtLim (dx)e{ 1
kO

pt-t-ifn /( x)e-te-/

f /01/ Lim m dt f(dx) -tt pt-t_ (te Jo
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K,,,(dx)fo(x)Ptfl Pt’-t"-:fn H l(x)e-ut"

which is equal to the left side of (4.2).

5. The time changed process

Fix in 9r and let M M as in Section 3. The time changed process
itself is defined by

X (t) X[B (v; t)].

However we will focus our attention on the corresponding resolvent operators

Ra (X) x ]o dt e-atq[Z

and the associated Dirichlet space. A simple change of variable establishes
the formula

(x) x J0 A(u; dr) exp -aA(u; t) }(t).R,

Important tools for us will be the modified resolvent operators

R(u)a o(x) ax A(u; dr) exp {-aA(; t)}(t).

We will generally regard the operators Ra and R()a as acting on functions de-
fined q.e. on M. We begin with

LEMMA 5.1. The family {Ra, a > 0} and also for u > 0 the family
{R(.), a > 0} is a symmetric resolvent relative to L ().

Proof. It suffices to consider R(,) since the analagous results for R can
be established by passing to the limit u $ 0. A simple computation gives

(5.1) aR(u)a 1 <_ 1.

To establish symmetry, assume first that is supported by a fixed compact set
KK and let u be the u-equilibrium distribution for K. Then by Theorem 4.1,

for , k nonnegative and defined quasi-everywhere on M,

f ,(dx),(x)R() (x)

a,. A(; ds) A(; dr) exp {-a[A(; t) A(; s)]}b(s)(t)

and careful application of Theorem 4.2 yields the desired symmetry for this
case. In general let v, be the restriction of u to compact sets K, which in-
crease to X and pass to the limit for , k bounded and integrable relative to u

which is sufficient. Of course symmetry together with (5.1) implies that



34 MARTIN L. SILVERSTEIN

aR()a is a contraction on L () and it only remains to establish the resolvent
identity. But this follows from the relation

Ru
(u;t) e--bA (u;tA(,; dt) [e-aA )]q(t)

f’ dt)e-b’(v;t)+b’(v;) (t)(b a) A(; ds)e-ai(v;) A(;

upon applying Theorem 3.2 and approximating integrals by sums in an obvious
way.

Remark. Up to this point we have discussed resolvents and Dirichlet
spaces only when the underlying set is a separable locally compact Hausdorff
space. This need not be the case with NI, but the extension of relevant defini-
tions and results is straight forward, and we take it for granted.

The corresponding Dirichlet spaces relative to L () will be denoted by
(H(0), Q) and by (H(), Q()). The generators will be denoted by B and
B(). We will see eventually that H() is actually independent of u > 0 at
which point we will use the more suggestive notation H(+). We impose the
following restrictions which will be removed in Section 8.

(5.2.1)

(5.2.2)

(5.2.3)

for some fixed constant c.
For >_ 0 on M define

GI

_
c

f (x) <_ c

R() Lim R(a)a q

and note the obvious relation

(5.3) R(,) G(.,)

In (5.3) we use to denote restriction to M.

(a , O)

[a.e. ].

From now on we define
up to quasi-equivalence on M by means of (5.3). From (5.2.1) it follows
that R() is bounded in the uniform norm, and, since it is symmetric relative
to , also in the L () and L () norms. A routine argument shows that R()
is exactly the inverse to the generator -B() corresponding to the resolvent
operators R()a. Therefore if in L () belongs to the domain of B(), then
there exists @ in L () such that R()@ and from (5.3) it follows that
H Hu G(.). Since both and belong to L (), we have

f (dx),(x)(x) < +
and it follows easily that H is in F and that

(5.4) Q(u) (, ) E(H, H), u>O.
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Approximating general in H() by in the domain of B(), we conclude that
H() is naturally contained in ,F L () and that (5.4) is valid for in H().
To go the other way consider >_ 0 belonging to L () -Y. To show that
belongs to H() it suffices to find for any specified e > 0, a function in L ()

satisfying

f ,,(dx) (x) -R(u)(x)I <
(.)

E(H Gu(b. ,), Hu G(b. ) .
Since rain (, n) belongs to L () F nd since -- in L () nd
Hq -- H, strongly in F, we my ssume that is bounded. For an appro-
prite sequence of " the functions

vG,H ---> H strongly in F

nd quasi-everywhere nd therefore ,vG,H - in L (). Therefore we
my ssume H G with k in OE (,). From Lemm 3.7 it follows esily
that there exist _> 0 in L () such that . --+ , relative to llu. Since. belongs to whenever >_ 0 belongs to L (,), it follows that

G(.) - ,G wekly in L ()

nd so after replacing the n by subsequence nd then by Cesro means
[24, p. 80], we cn conclude that R() --. in L (). This establishes (5.5)
nd we hve proved

LEMMA 5.2. Assume the restrictions (5.2). Then

H() "F L ()

and (5.4) is valid for in

Lemmu 5.2 justifies writing H(+) in place of H() for u > 0 and we do so from
now on. Next we show that it is possible to identify 9Z (v) with the measures
having finite 0-energy relative to (H(+), Q(u)). Consider in H(+) such that
Q() (, ) >_ 0 whenever in H(+) is >_ 0 q.e. on M. Then

E, (H, f) E, (H, ,, Hf) Q() (,, "),f) >_ 0

whenever f in n L (v) is >_ 0 and if follows that there exists a unique , in
(v) such that H9 G h. But then

(5.6) Q(u)(,,/) f (dx)g/(x)

for in H(+). Conversely fix in () and note that since for b _> 0 in

), (dx)q,,(x) E(G,),,Hu) <_ c{Q(u)( b) 1/2

and since H(+) is a Hilbert space relative to Q() itself (since R() is bounded),
there exists a unique in H(+) such that (5.6) is valid for general in H(+)
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and then H G, , (because of Lemma 3.7). We have proved

LEMMA 5.3. Assume the restrictions (5.2).
(i) If in H(+) satisfies Q() (, b >_ 0 whenever b in H(+) is >_ 0 q.e. on M,

then there exists a unique in () such that

"GuX, f X (dx)b(x) Q(u)(q, )

for b in I-I(+). In tis case we write R(,,) .
(ii) Conversely to each h in 9 () there corresponds a unique q in H(+) such

that R(.,) .
LEMMA 5.3 extends (5.3) to

(5.7) R() G X

valid for k in 9r (). More generally, we define R()k by (5.7) for k in e
concentrated on M. For a > 0 define R()a k by

Q()a(R(u)ak, b) f k (dx)(x)

valid for in H(+) when k belongs to () and extend this definition by passage
to the limit for k in 9 concentrated on M.
Next we note that for 0 < v < u and for , in H(+),

Q()(, b) Eu(U,Uu)

Ev(H,, H) + (u -v) f dxH(x)Hvb(x)
d(5.s)

Q(,)(, ) - (u v) f dxH(x)Hvb(x)

where we have used the fact that H H, since it vanishes quasi-every-
where on M, is E-orthogonal to F and E-orthogonal to F,. This motivates
our studying the symmetric bilinear form

U,,u(, ’) (u v) f dxHuq(x)H,C,,(x)

defined for , b in H(+) and for 0 < v < u. We can also write

U,,u(, g,) (u v) f ’vH (dy)g,(y)

where v is the balayage operator of Section 3.
we have introduced the special notation

For typographical convenience
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From the computation (5.8) and from Lemma 5.3 it follows (since H(+) is a
Hilbert space relative to both Q() and Q()) that the measure , H, be-
longs to M() for in H(+). From now on we write simply

(5.9) U,, , (u

for in H(+). Now for , in L (g) and for a > 0,

f (dx)(x)R()(z)

f (dx)(x)R(,)a(X)

(5.10) Q()(R(), R))

Q()(R()a, R()) + U.(R(), R))

f u (dx)(x)R()a(X) + U,.(R(u), R(,))

and it follows that

(5.11) R(v)a R(u)a + R(u)a Uv,uR(v)a

in the notation of (5.9) and of Lemma 5.3.
Next we apply (3.10) to conclude that

U.(, ) (u v) f dxH,(x){S,(x) (u v)GH(x)}

and therefore U. is nonnegative definite. This leads in turn to the familiar
Cauchy-Schwarz inequality

(5.12) U,(, )[ g {U,(, )U,(, )}/
We also note the relationship

(5.13) U, U, + Uw,u, O < v < w < u,

which is a direct consequence of (5.8). Now we are ready to ps to the
limit v 0. From (5.8) it follows that

U, (, ) Q() (, )
for in H(+) independent of 0 < v < u. Now (5.12), (5.13) and Lemma 5.3
imply that for 0 in H (+),
(5.14) U0, lira U, (v 0)
exists and belongs to (v). The extension of (5.14) to general in H(+) is
immediate. Now passing to the limit v 0 in (5.11) yields for a > 0 and

in L (),
(5.15)
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Next consider Ra with in L (). Then also

R(u)a -- R()a Uo,

which means that belongs to H(+) and that for t in H(+),

Q(u)a(+, O) f , (dx)b(x)O(x) "C Vo,,(, 0).

In particular
Q(u)a(Cp, p) q(, ) + Uo,(, ).

On the other hand if >_ 0 belongs to H(+) then

a f, (dx)I(x) aRab(x)}(x)

_
a f (dx)l(x) aR()a(X)

which implies that belongs to H(0). (See Proposition 1.1.). These results
plus an approximation of in H(0) n F by in the domain of B prove

IROIOSITION 5.4. Assume the restriction (5.2).
(i) The domain of B is contained in. H(+).
(ii) H(+) H(0)n F.
(iii) For u > O and in H(+)

Q() (, Q (, -t- Uo, (, ).

Before continuing, we note a simple but important consequence of Lemma
5.2 and of Proposition 5.4 (iii).

LEMMA 5.5. If f belongs to F, then

u f dxHof(x)Hf(x)

converges absolutely for all u > 0 and converges to 0 as u O.

Proof. It suffices to observe that it is always possible to choose such that
f belongs to L ().

We consider now the functions

(5.16)
p(x) ((B(;O) i" +)

q(x) (P(B(; O) - and < -t-).

Recall that is the lifetime of the process. The function p is the "passive
part" of 1 in the sense of Feller [9]. The sum q -t- H0 1 is the "active part"
and of course

(5.17) 1 H01+p+q.
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We note first that for 0 < v < u and for f

_
0 in F n Com (X),

f u’uq (dy)f(y)

f dxq(x)uHuf(x)

f dxq(x)u{H, f(x) (u v)Gg, f(x)}
(5.s)

f w q (dy)f(y) + (u v) ] dxq(x)H f(x)

u(u v) f dxq(x)G[H f(x)

An elementary computation shows that uG q q and we conclude that

(5.19) uq wq foru > v.

Similarly uG p p and the computation (5.18) for p instead of q shows that

(5.20) up xP foru > 0.

Note that by Proposition 3.12 we can be sure p and q belong to ,
but not necessarily to .
Forg 0onXwehave

H Gu g HG g HR() g

and so (3.9) leads directly to

(5.21) G,g G g + HR()g
Applying (5.21) to the special case g ul and restricting to M we get

R()ul 1
which becomes

(5.22) R(){ U0, 1 + p + u ql 1.

Now we introduce the harmonic measures H (x, dy) on M via the formula

f Hu(x, dy)(y) H(x)

and we introduce the bilinear form

u,(,)
(5.23) (u- v)] dx [ H(x, dy)]-H(x, dz)[(y)- (z)][(y)- (z)]

d
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which, since ru 1 is Radon, converges when , are restrictions to M of func-
tions in F n Ccom (X). An elementary computation using symmetry in y and
z in (5.23) establishes the relationship

(5.24) 1 Uv,u(, ) Uv.(1, ) U,u(, )

and therefore
1 U,,,(,(5.25) Q()(, ) Q()(, ) -b U.u(1, 2)

Now for q as above and for Tq with T a normalized contraction we have,

a f , (dy){(y) aR(,,),,(y)} a f , (dy){q,,(y) aR(,,),,,2(y)}

-af aR(u)a f(y)} a (dy){ (y)-

a U,(R(u)a
, R()a 1 ) + aU,(R()k, R()a 1 ).

The left side equals

a f v (dy){1 aR(v) 1}(y){v } (y)

and therefore it is always > 0. The right side equals

a f (dy)q(y){(y) aR(,),,(y)}

a f (dy)tl,,(y) {k(y) aR(,,)a’(y)- a R(,),,(,, ,p) + - a R(,)a(,,,

aU,,(R(,), ,R()I) +
where R()( ) is defined by analogy with (5.23). Since and b both
belong to H(+), it follows that the last two terms have limit inferior which is
less then or equal to

U,u (1, 2
as a ’ o. The first two terms converge (Proposition 1.1) to Q()(, )

Q(,) (,,, ) and since the remainder is _< 0 we conclude that the bilinear form

(5.26) Q() (, ) U,(1, ), 0 < v < u,

is contractive for such and equivalently (by (5.24)), that the bilinear form

1(5.27) Q()(,) - Uv.(, ), 0 < v < u,

is contractive for such . Then it follows by a passage to the limit that ac-
tually (5.23) converges absolutely for general 9, in H(+) and then it is a simple
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matter to extend the contractivity of (5.26) and (5.27) to general in H(+).
From the contractivity of (5.27) it follows in particular that

(5.28) U.(, } Lim U,.,(q,, (u ’is a well defined bilinear form on H(+). Passing to the limit v $ 0 in (5.26)
and u T o in (5.27), we have

LEMMA 5.6. Assume the restriction (5.2). Then for u > 0 the forms
i u,<, >Q(u)(q, ) Uo.(q,, ), Q(u)(q,, ) -are contractive on H(+).

Next we use (5.22) to strengthen Lemma 5.6.
for 0 < v < u,

U,,,(,, ) U,(R() U,,, )

But

Applying (5.8), we have

Q(u) (, ) Q() (o, o) Q() (R() U, o, ) -t- Q() (R() U, o, o)
Q) (R() U,, o).

R() U,,,,, y(u v)G,,H,,,

and so by Lemma 5.2, we have R() U,, --. strongly in H(+) as u T and
we have established

(5.30) Q() (o, ) Lim {U.(, q,) U.(R()U., )

with the limit taken as u . (Note the analogy with (1.2).) But

1U,u(, ) U,u(R() U,, ) U,(1, ) U,.(, >
1(U,.R(.)U.,.)(1, ) + (U.,.R()U,)<, ).

Of course the last term is defined by analogy with (5.23). Reoning as in
the proof of (5.26) and applying (5.22), we deduce

LMM 5.7. Assume the restriction (5.2). Then for u > 0 the form
1 U,.(, } Uo.(1, ) f (dy)(y)Q(.)(, ) +

u f uq(dy)(y)

is contractive on H(+).

Added in proof. See [29, Section 3] for more details in a special case.

From Lemma 5.7 it follows in particular that

U0.=(, } Lira U,.=(, ) (u + 0)
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is a well defined bilinear form on H(+) and that

r, q (dy Limurq(dy) (u "exists as a Radon measure on M nd

f . q (dy)(y) < +
for all in H(+). Replacing Q()(, ) by

Q(, ) + U0,(, )

and then U0, (, ) U0, (1, ) by

2

in Lemm 5.6 nd pssing to the limit u nd then pproximting in
H(0) by in H(+), we deduce (assuming (5.2))

THEOREM 5.8. The bilinear form
1Q(, )

is contractive on H(0).

We will continue our analysis of the time changed process in Section 8.

b. Modified ]]ch]et spaces
Throughout this section is fixed Rdon mesure in stisfying the

following two conditions.

 (dx) < +
6.2. is equivMent to 1.

Condition 6.1 is of purely technical nture nd will be removed in Section 8.
The ssumption in 6.2 that hs no piece which is singular relative to 1
is nturl since in ny cse this piece would make no contribution to the
Dirichlet spce on X which we eventually construct. Moreover in light of our
final results it seems unlikely that we hve lost generality by insisting that
be equivalent rther thn merely bsolutely continuous.

Throughout this section we work with functions on M which re specified
up to equivalence, but not necessarily up to qusi-equiwlence. It follows
from 6.2 nd from Theorem 3.6 (iv) that H, u 0 is well defined quasi-
everywhere on D for such which re either bounded or nonnegtive.

6.3. Notation. For g 0 on X the blyged mesure g is bsolutely
Ocontinuous relative to . Throughout this section we use the symbol g to

denote the density of g relative to . Thus

(6.1)
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We begin with

6.4. DEFINITION. The universal Dirichlet form on M is the bilinear form

fN(,, ,) go,(,, ,) + (),

defined when it converges for , on M (specified up to equivalence). The
universal Dirichlet space on M is the collection I-I of functions on M such
that N (, ) < + . The L ()- universal Dirichlet space is the subset
of in H which also belong to L ().

Theorem 5.8 states that H(0) is contained in Ho) and that Q N is contrac-
tive on H(0). The purpose of this section is to establish a partial converse.
Our starting point is a pair (Ho), Q*) where

6.5.1. H0) is a linear subset of Ho),
6.5.2. Q* N is contractive on Ho),
6.5.3. (H0), Q*) is a Dirichlet space relative to L().
The most important candidate for such a pair is provided in

LEMMA 6.1. The pair (I-Io), N) satisfies 6.5.

Proof. Conditions 6.5.1 and 6.5.2 are empty. The only nontrivial part of
6.5.3 is completeness relative to the norms Na and this is easily established with
the help of Fatou’s lemma and Fubini’s theorem.

Now fix a pair (H0), Q*) satisfying 6.5 and define

H+) { in Ho)" Vo,t (, ) < + oo

(6.2) Q> (, $). Q*(, b) + Uo,(, ), , b in H+>.
Of course Uo, is always dominated by a multiple of Uoa and so (6.2) makes
sense. From 6.5.2 and

1 U0,(, ) + 1 U0,(1,(6.3) Qu)(so, so) Q*(SO, so) -it follows that Q*() is contractive on H+). Now consider a sequence son in
H+) such that as m, n T m

(6.4.1) f v (dv) isom(V) so,(y) I" "+ 0

(6.4.2) Q* (sore so, so son) -+ 0

(6.4.3) U0., (so son, so son) -+ 0.

Since (Ho), Q*) is a Dirichlet space relative to L (v), it follows from (6.4.1)
and (6.4.2) that there exists a unique function so in I-I0) such that so, -+ so
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strongly in H0). Replacing . by an appropriate subsequence such that
.(y) .(z) is Cauchy on M X M, we conclude further that
U0,(, ) < + and that

Q) ( ,,,, , ,)0.
We have proved

LEMMA 6.2. For each. u > 0 the pair (H+), Q) is a Dirichlet space rela-
tive to L ( ).

Denote the corresponding resolvent operators by R (). These act ini-
tially on square integrable functions and extend in a natural way to general
nonnegative functions on M (of course specified up to equivalence).
From the contractivity on H0) of Q* N and from (6.2), (5.19) and

(5.20) follows the contractivity on H+) of the bilear form

Q)(9, ) u f (dy)r l(y)9(y).

Now consider g on X satisfying 0 g m < 1 so that the bilear form

Q)(9, ) QL)(, ) u f (dy)g(y)9(y)

makes H+) into a Hilbert space and therefore (H+), Q)) is also a Dirichlet
space relative to L(v). Denote the corresponding resolvent by R),.
Then an arment exactly analogous to (5.10) establishes the identity

(6.5) R) R*
Since (b a)R)l(y)(y) increases to [a.e. ] as b T for 0 in
H+), we have for 0 in L (),

u f dy)g(y R(L).(y

R*Lim (d)()(b )RI() (,()

Lim f (d)()(b )RI (b )R}I()*.()

which because of (6.g) is

N Lim f (d)()(b )R{ 1 (b )RI1()

f ()().

Legging 1 and 0, we deduce

(a.) *R(I() N 1.
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Of course R(u) is defined by analogy with R(u) in Section 5. Now we define
o(6.7) G* g Gg + HR*) ru g

for u > 0 and g >_ 0 on X and we prove

LEMMA 6.3. The operators G*, u > 0 defined by (6.7) form a symmetric
submarkovian resolven on L (dx

Proof. Symmetry and the submarkovian character of the individual G
follow directly from (6.6) and from the symmetry ofR on L (). To es-
tablish the resolvent identity we use (3.9), (3.13) and

(6.s) * *u )R() HR()

which can be established in the same way as (5.11) and compute

D D * o *
o D D *

We turn our tenion ow to he Dirichlet spce F*, E* which corre-
sponds to the resolvet operators G. We begin by establishing the -logues of Theorem 3.6 i d Theorem 3.6 iii.

For , 0 i L dz we hve

dxvG+HG /(x)g(x) dx/(x)HG *vG+g(x)

which increases to

,dxf(x)H,,{G* G+v}g(x)

f

J dxf(x)Hu G* g(x)

asv T o. Next

f dx{Hu G*f(x) * *vV,,+vHuVf(x)}Gug(X)v

f dx{Hu G* f(x) *v+vHu ]()}g(x)

* * Dv dxH+G+HG,](x)G,g(x)

D * V2 f D *dxG+, Gu+, /(x)g(x)v dxGu+vH,G,f(x)g(x) H H,G,
J
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From the previous result and from the fact that
DvG+Huh loHuh

for h _> 0 (see (3.10)) it follows that

Lim v f dx gG* f x * *(6.9) vGu+vHGuf(z)}Gg(x)
J

with the limit taken as v " . From (6.9) follows that

f dx G f(x)Lim vG+G](x)* }Gg(x)

Lim v f dx Gf(x) vG+Gf(z)}{Gg(x)* o O . HGug(z)} *

Lim v I dxGf x G* g x vGu+G g(x)
J

f dxGf(x)g(x).

These results together with (6.7) prove

IEMMA 6.4. Y is contained in F* and

E (f, g) E* (f, g)

for f, g in Fo. Moreover if f belongs to F*, then H,f is the projection of f onto
the E*-orthogonal complement of Fo in *.
Next we prove

LEMM 6.5. If U > 0 and If is in +) thenH is in * and

(6.10) E (H , U ) Q) (, ).

Proof. We consider first the special case when R()uf with f bounded
and integrable on X. Then by (6.6) the function is bounded and therefore
in L (). Also

(dy)a( aR(u)al(y)(y) (dy)aRL)vf(y)R(u)f(y)*

which increases as a to

E*(H G* f, Hu G* f).

We conclude that belongs to H), that H HG*f belongs to ’* and
that (6.10) is satisfied. Therefore the proof will be complete once we show
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that such are strongly dense in H+). Because of the analogue of (6.8)
for fixed a > 0, it suffices to show that for bounded on M, the functions
R) -- 0 strongly in H+) as v " oo. For _> 0 the functions R*) de-
crease as v increases and so

* (y) Lim R($v)a] (y)
exists [a.e.] for any sequence of v ]" oo. For v > u,

, fQ(u)a(R(,)ab, Rv)ad,,,) , (dy)b(y)R,,)ad/(y) Uu,v (n)a,R$(v)a)

and we conclude on the one hand that

(6.11) Lim q(*)a( * * fR(v)a, R(v)al) " p (dx)C,,(x),*(x)

with the limit taken as v 1" oo and on the other hand that U, (b*, b*) is
bounded independent of v > u. But this implies that

(v u) f dxg*(x) {gb*(x) (v u)GH*(x)

is bounded independent of v > u which by Proposition 1.1 implies that
H..* belongs to Y". Because of (6.11) it suffices to show that this is impos-
sible unless * 0 [a.e. ,]. If this is false choose g >_ 0 bounded and in-
tegrable on D such that

, (dy)rg(y)f.,*(y) > O.

It is easy to check that the functions

(6.12) Hb (z (Dn)) exp -uz (Dn)l

form a nonzero uniformly integrable martingale relative to the process (g dx.

But since H* belongs to YD it can be approximated in the usual way by
functions Gf and it follows easily that the random variables (6.12) converge
to zero [a.e. (Pg dx] which is impossible.

We return to the Dirichlet space (F*, E*) in Section 8.

7. Probabilistic Interpretation of Dirichlet norms

Throughout this section we assume that the original regular Dirichlet space
(F, E) corresponds to a conservative process. Our precise assumption is that

(7.1) uGh1 1

for all u > 0. We do this both to avoid technical complication and because
we have not been able to resolve certain diiiculties which arise in the non-
conservative case. It follows easily that the life time - quasi-surely
on t. As in Section 4 (but with K replaced by’ X) we introduce the truncated
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trajectory
(t)

fort _> R.

and the time reversed trajectory

Job(t) o(R- t-O)

=0

We also introduce the truncated trajectory variables

X,(t) X(t) fort < R
0 fort >_ R

and the special notation
f(t) f[X(t)].

for0_ < R

for 0

_
< R

for _> Ru.

We introduce for u > 0 the measure (P on 12 defined by 2.2 with udx.
For typographical convenience we use the subscript u rather than udx to
label this measure. A suitable modification of Theorem 4.2 establishes

The restriction (7.1) is removed in [29, Section 6].

Let u > 0 and let be a nonnegative Baire function on .Added in proof.

THEOREM 7.1.
Then

f f
For f G,g with g in Com(X) define

(7.2) Muf(t) fu(t) + dsg,(s).

It is easy to.check that M,f(t), >_ 0 is a right continuous square integrable
martingale and that

M,f( o dsg(s), - u{Mf( )} E,(f, f).

Now a passage to the limit using standard estimates [22, Chap. V.2] from
martingale theory establishes

THEOREM 7.2. For f in Y there is a unique right continuous (P,, square
integrable martingale M,f(t), >_ 0 on such that

(i) Muf(t) is given by (7.2) whenever f G.g with g in Co,, (X).
(ii) E,, (f f’ 1/2,M,f )M,f’ oo for f f’ in F.

Remark. Since (P need not be bounded and Muf(t) need not be integrable,
the formulation in [22] is not directly applicable. However the necessary
modifications are obvious and we take them for granted.
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By well known results of P. A. l\Ieyer [22, Chap. VIII 3] there is for each f
in Y a unique continuous increasing process (M,J}(t), >_ 0, such that
(Mf) (0) 0 and such that

{M,f(t)! (MI (t)

is an t martingale. Now fix in nd let M be s in Section 3 nd let
D X M. We begin the serious work of this section by deriving for-
mula involving the quantity

(7.3) au (Mf} (dt)l,(t)

Our analysis of (7.3) depends on the introduction of certain functions on. First
r(0) =inf{t 0"X(t) orXu(t-0)isinM

with the understanding that r (0) R when not otherwise specified. It is
easy to check that HI agrees q.e. on every compact set with a u-potential
and it follows with the help of Lemma 2.7 that HI (t) is quasi-surely right
continuous and has left hand limits everywhere for 0. Since

i {x "Hl(x)= 1,

it follows that the random set

{t > r(O) X(t) and X(t 0) are in D}

can be represented as a finite or countable disjoint union of intervals of the
form I (e, r). It is possible to index the intervals I (in general not the
"natural" ordering) so that I and its corresponding endpoints e(i), r(i),
i 1, 2,... are Borel measurable on .

In general e (i) and r (i) are not stopping times and so we introduce approxi-
mating functions e(n; i), r(n; i) which are. Also to facilitate eventual
passage to the limit, we introduce at the same time a truncation at u constant
timeT > 0. Thus

e(n; 1) inf {t > r(0) + (l/n) < T and X(t) is in D}

r(n; 1) inf {t > e(n; 1) X(t) or X(t 0) is in M}

with the understanding that e (n; 1) + when not otherwise specified,
thatr(n;1) + whenevere(n;1) +,andthatr(n; 1) Rwhen
not otherwise specified. Similarly

e(n; i + 1) =inf{t > r(n; i) + (1/n)’t < T and X(t) isinD}

r(n;i + 1) inf {t > e(n;i + 1)" X(t) orX(t-O)isinM},

with the same understanding for e (n; i 1 and r (n; i + 1 ) when not other-
wise specified. We also introduce the truncated limiting variables
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e(i; T) e(i) ife(i) < T- ire(i) >_ T

r(i; T) r(i) ire(i) < T

+ ife(i)>_T
and the special symbol

R(T) R ifR_< T

min[R,T-0(T)a(M)] ifT < R.
Consider again f Gg with g in Ccom (X) and fix > 0 arbitrary.

there exists N such that

(i f) (dr)(7.4) u i e(;i)(Mu)(dr)>_ e(i;r)

The left side of (7.4)

Clearly

(f[r(n; i)] f[e(n; i)])2
r(n;i)

+ 2 dtG g(t)g(t)
e(n;i)

dtg(t)- 2(f[r(n; i)] f[e(n; i)])
f

u (f[r(n; i)] f[e(n; i) 0])

(rule(n; i)] f[e(n; i) 0])

e(n;i)
r(n;i)- 2(fu[r(n; i)] fu[e(n; i) 0]) dtg(l)

e(n;i)

With the help of Fatou’s lemma and [23, p. 82] we can guarantee that the
last expression differs from

3 (, (f[r(T; i)] fi,[e(T; i) 0])
\

(f,,[e(T; i)] fu[e(T; i) 0])-- 2 (r;)dtGg(t)g(t)
r(/T;i)- 2 (fu[r(T; i)] f[e( V; i) 0])

(r;)
dtg(t)

by less than for n >_ N (after possibly increasing N). This together with
the corresponding argument for the time interval 0 _< _< r (0) and then a
passage to the limit T " establishes
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gu (Muf} (dt)l)(t) + 8u{fu[0]}

+ i {fu[e(i)] -fu[e(i) 01}
Ru

2u , dtGg(t)g(t) + u{fu[r(O)]}

+ u {[r(i)] -[e(i) 0]}

+ 2u{[r(0)]} [(o)dtg(t)
r(i)

+ 23u {f[r(i)]- [e(i) -0]} (,)dtg(t),
The first term on the right can be written 2E Hf, f Huf) and

Theorem 7.1 implies that the last two terms cancel. Thus, after passage
to the limit in Y we have

THEOREM 7.3. For f in Y and u > 0

1 ’ (dt)l(t) 1
2

1+ u , {[e(i)] -[e(i) 0]}

1 uifu[r(O)]}
2

1+ u {[r(i)] [e(i) 0]}

+ Eu(f- gf,f- gf).

The extra terms appearing on the left side can be best understood in the
context of another increasing functional of Meyer associated with the square
of the martingale M,f (t).

THEOREM 7.4. If belongs to the universal Dirichlet space H then

rid(x Z[(M

is well defined [a.e. dx] on D and for every u > 0,

1Y(, ) uiUo [r(0)] go [0]}
(7.5)

1+ u {go [r(i)] go [e(i) 0]} .
Conversely if is specified up to 11 equivalence on M, if Ho is well defined
[me. dx] on D and if the right side of (7.5) converges, then q belongs to the
Dirichlet space HN.
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Since the right side of (7.5) dominates

lff- u dx Hu(x, dy) {H0 (x) Ho (y)12

it suffices to prove the theorem under the assumption that is bounded and
therefore H0 is well defined q.e. on M. We begin by fixing v > u and com-
puting

Uo.(, ) W v f p(dy)2(y)

fo"’f fvu dt H(t, dy) Ho(t, dz){(y) (z)}
r(o)

+ v dt p(t)H(t, dy)(y)

r(i)

dt j H(t, dy) j Ho(t, dz) {(y) (z)}
r(i)

f+ dt p(t) H,(t, dy)(y)

va I[r(O) < R] d Ho(, de) exp [v ][r(O) ])

er(o)] e[]/’
()

+ va I[r(O) < R] d p() exp -Iv ][r(O) ])

l[r(O)]l
(i)

dt

f go(t, dz) exp (-Iv -u][r(i) t]) {[r(i)] [z]}
r(i), I[r(i) < R] (,) dt p(t)

exp (-Iv u][r(i) t]){[r(i)]}

Applying Theorem 7.1 and combining terms, we get

Uo.(, ) + v f , p(dy)(y)

(7.6) dt exp (-Iv u][t e(i)])
e(i)

{[r*(i)] [e(i) 0]}
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where r* (i) is the time of next (after e (i)) return to M for the untruncated
trajectory, with the convention r* (i) and therefore o[r* (i)] 0 when
no such return occurs. On the other hand

{[r* (i)] o[e(i) 0]}
can be replaced by

{H0 [r(i)] [e(i) 0]} + {[r* (i)] H0 [r(i)]}

in the right side of (7.6) and so after computing the t-integrals and passing
to the limit v T o we get

Uo.oo(q, ) -q- f rl p(dy)q(y)

i {H0 [r(i)] [e(i) 0]} -t- 8u i {o[r*(i)] Ho[r(i)]} 2.

The theorem will be proved once we establish the identity

(7.7)
u /[r*(i)] H0 [r(i)]} -t- u f dx p(x)H q2(x)

{U0 [r(0)] H0 [0l} 2.
Before continuing we remark that it is relatively easy to give false proofs

of (7.7) by expanding both sides and treating individual terms separately--
ignoring the fact that these terms may not (and in general do not) converge.
A legitimate proof seems to require some care.

First define
H (x) {[a (i)] U0[0]}

R(x) ,x {H0[r(0)]- H[0]l"
and note the identity

(7.8) H (x) _:..o {uG}"R (x)

which can be established as follows. Let R(1), R(2), be a sequence
of independent copies of R and let T (0) 0, T(1) R(1), T(2)
R (1) -t- R (2) etc. Then

S (x) ’:=0 [H0{ min [a (M), T (n -t- 1)]1

S0{ min [a (M), T (n)]l ]
and it is easy to check that the nth summand agrees with the nh summand
on the right in (7.8). A similar argument establishes

(7.9) Ho 1 (x =o {uGh}H l(x ).

After substituting (7.8) into the left side of (7.7) and then applying (7.9),
we see that (7.7) will be proved once we have established
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(7.10) u J dx p(x)H ,(x) u ] dx p(x)R(x).

We first prove (7.10) under the assumption that the right side of (7.5) con-
verges. Since R (x) dominates

f H,(x, dy){(y) H0 (x)}2

we conclude that

f dx p(x){g0 (x) H (x)

converges. On the other hand the earlier part of the proof shows that the
right side of (7.5) dominates the left side of (7.10) and we conclude that

(7.,11) f dx p(x)

converges. But then the right side of (7.10)

u f dx p(x)[H

2H (x)Uo ,(x)

-t- uG 1 (x)/H0 (x) }2 2H0 (x)uG So (x)]

u f dx p(x)H

-t- / dx [ue{Uo }(x) Ill0 (x)}2]

and the last integral is zero since p uG p and since (7.11) converges.
(The convergence of (7.11) is essential for this argument. For example, the
last integral is not zero if we replace {H0} by H02.) This proves (7.10)
and therefore the theorem under the assumption that the right side of (7.5)
converges. In fact our proof is valid under the assumption that both sides
of (7.10) converge and therefore we will be done if we can show that con-
vergence of the left side of (7.10) implies convergence of the right side. But
then

dx p(x)H,, 2(x)

converges for all v > 0. Since it suffices to consider _> 0, convergence of
the right side of (7.10) follows from Fatou’s lemma and the computation
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u J dx p(x)Sx{Hv [r(o)] Hv q[0]}

u f dx p(x)[Hu 3(x) -4- H, l(x){H (x)}3

2Hu (x)H (x) -4- uGlg }(x)
4- uG l(x){H (x)}3 2Hv (x)uG H (x)]

u f dx p(x)H

2v f dx p(x)H, (x)uG H (x).

In the remainder of this section we apply the technique used in the first
part of the proof of Theorem 7.4 to transform Theorem 7.3. As a preliminary
step, fix v > u and in the universal Dirichlet space I-IN and compute

U,(, )

(v u)a. dt H(t, dy) H(t, dz)/[z]

dt f H, t, dy f Hv t, dz [z]+ (v U)u

,o)

f(v u)8 I[r(0) < Ru] dt exp (-Iv u][r(0) t]) H(t, dy)

{q[r(0)] [y]}
r(i)

dt exp (-iv -ul[r(i) tl)"4- (v u)8 i I[r(i) < R]

/H(t, dy) {[r(i)]

which, after applying Theorem 7.1,

fdt exp (--Iv u][t e(i)]) jH(t, dy)

{[e(i) O] [y]}

fe
r(i)

(v u)8 I[r(i) < R] dt exp (-Iv u][t e(i)])
()

{q[e(i) 0] [r(i)]} .
As in the proof of Theorem 7.4 we compute the t-integrals and pass to the limit
v " otoget
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LEMMA 7.5. For q in the universal Dirichlet space t-Yv and for u > 0

Vu,(q, q} ,I[r(i) < R]{[r(i)] [e(i) 0]} .
Now we consider the special case f with f in Y and apply Lemma 7.5 to

Theorem 7.3 to get

2 a (Mu f}(dt)l,(t) + u dx (x)

1+ {fie(i)] fie(i) 0]}

1 f f u,(f,]) + 1
u dx U (x) + u I[r(i) R]f[e(i) 0]

+ E($- HL$- U)
which, after applying Theorem 7.1 to the third term,

u,(f, f) + u f dx Sf(x) + S( HL S)
2

1N(f,f) + Uo.(1,f) Uo.,(f,f} + E(f- Uf,f- Sf)

and we have proved

THEOaEM 7.6. For f in Y and u > O,

2
1+ a /I[e(i)l [e(i) oll

We will improve Ns resul in Section 8.

8. Extension of Dirichlet norms

We begin with

$.1. DEFINITION. A function f specified and finite up to quasi-eqvalence
on X belongs to the extended Dirichlet space Y() if there exists a sequence f.
in which is Cauchy relative to the Diricet norm E and such that f f
q.e. For such f put

E (L f) Lim E (f, f).

In the next lemma we show in particular that E (f, f) is well defined for f
in (,) and that Y Y(,) n L (dx ).

LEMMA 8.1. If f belongs to the extended Dirichlet space () then
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f 1 e f a, fE(u) (/, f) u dx{ 1 uG,, 1 (x) }]’(x) q-

converges for all u > 0 and

E(") (f f T E (f f
Proof. The lemma follows from Proposition 1.1 for f in Y. For f in

it suffices to choose f. as in Definition 8.1 and to observe that the f. are uni-
formly Cauchy relative to the E(u).

Important contractivity and completeness properties for Y(e) are estab-
lished in

LEMMA 8.2. (i) Let f belong to Y(e) and let T be a normalized contraction.
Then Tf belongs to F() and E (Tf, Tf) <_ E (f, f).

(ii) Let f be specified and finite up to dx equivalence on X and let f,, be a
sequence in F(,) which is Cauchy relative to E and such that f,, ---+ f [a.e. dx].
Then f has a quasi-everywhere defined refinement f* belonging to Y() and, for a
subsequence, f,, -+ f* q.e.

Proof. To prove (i) it suffices to observe that if f, in Y form a Cauchy se-
quence relative to E and if f, -+ f q.e. then, for the Cesttro means of a subse-
quence [24, p. 80], Tf,, is Cauchy relative to E and Tf,, --+ Tf q.e. In proving
(ii) we consider first the special case when f and fn are bounded by a fixed con-
stant c. Fix n and choose f,.= in Y bounded by c such that as m varies the
f,,,, form a Cauchy sequence relative to E and such that f.m --+ f. q.e. as
m ’ . For open G with finite capacity the functions pf,,,,, are E1 bounded in
Y (since Tx x is a contraction for ix -< 1/2 and since

a 1 1
plA,m (p q- fn.) (P A,)2)

and therefore the Cesro means of a subsequence are Cauchy relative to Ex.
It follows that the function p f. belongs to F and that as n varies thepf. form
a Cauchy sequence relative to E. The lemma for this case can now be estab-
lished by approximating the f. with functions in , by letting G expand to X,
and by applying the Tchebychev estimate (1.5) together with a diagonaliza-
tion argument. The general case is easily established upon approximating
f by truncations and verifying with the help of (i) that these truncations form
a Cauchy sequence relative to E.

We now improve the results of Sections 5 through 7, in particular dispensing
with the restrictions (5.2) and (6.1).
LEMMA 8.3. (i)

(8.1)
If o belongs to I-I(0) r 7’(,), then

0(x) s,[(/)]
is well defined q.e. and belongs to Y(,) and

(8.2) E (H0, H0) Q (, ).
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(ii) If belongs to ,F(), then there exists a sequence q,, in H(0) F which is
Cauchy relative to the Dirichlet norm Q and such that q, ----> q q.e. on M.

Proof. Consider first bounded belonging to H(0) F. For v, u > 0 the
function H H, belongs to Y" and therefore

E(Hq H,H H)

E(H H,H) E(H Hu, Hq)

-v f dx{H,,,(x) Hu(x)}H,,q(x)

/ u f dx{g,,g,(x) Hu,(x) }Hu(x)

-v f dx{H,,(x) H,(x)}H(x)

+ u f dx{H,,(x) Hu(x)}H,(x)

which -- 0 by Lemma 5.5. Thus H0 belongs to F(e) and (8.2) follows upon
passing to the limit u $ 0 in (5.4). The restriction that be bounded is
easily removed by considering truncations and (i) is proved. It follows from
Proposition 5.4 (ii), with I-I(0) playing the role of ’, that H(0) increases if is
replaced by an equivalent measure satisfying (5.2). This, together with (8.2),
shows that in proving (ii) there is no loss of generality in assuming (5.2).
But then (ii) follows easily from Lemma 5.2 and from (8.2).

8.2. Extension. For in F(e) put

Q(, ) LimQ(., )

with as in Proposition 8.3 (ii). The analogue of Lemma 8.1 shows that
Q (, ) is well defined.

Now it is a simple matter to prove the following two theorems.

THEOREM 8.4. (i) H(0) F()a L().
(ii) If f belongs to Y(), then Hof (defined by (8.1)) belongs to Y() and (8.2)

is valid. Moreover

(8.3) E (f, f) E (Uof, Hof) - E (f Hof, f Sof).

THEORE 8.5. q in H(0) belongs to the domain of the time changed generator B
if and only if there exists b in L () such that

E(Ho, f) f (dy)f(y)(y)

for all f in F() L (). In this case
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Next we put Theorem 7.6 into a more natural form.

THEOREM 8.6. (Assume (7.1).) Then for f in F and u > 0

12 au (Muf) (dt)lD(t) + - g . {fu[e(i)] fu[e(i) 0]}
(8.4)

N(f,]) + E(f- Hof, f- Ho]) +- u dxf2(x).
Proof. We remark first that (3.10) leads to

Ev(Hf gf,gf Hf) E([u v]GHf,g]- Huf)

which upon passage to the limit v 0 becomes

(8.5) E(gof Hf, Hof H]) u f, dxHf(x){Hof(X) H f(x) }.

A similar argument establishes

E(Ho f gf f Ho f) u j dxg f(x) {f(x) Ho f(x) }.

Then

Eu(f Uuf, f Huf) + u f)dxUof(x)Uf(x)
E(f- Uof, f- Uof) + E(Uof- Uf, Uof- Uf)

+ 2E(f- Hof, Hof- Hf) + u f, dx{f(x) Hf(x)

f, dxUo f(x)H f(x)U

E(f- Uof,]- Uof) + u f dxHf(x)lHof(x) --Sf(x)}

+

dxHof(x)Hf(x)

and we are done.

Remark. It would be interesting to pass to the limit u 0 on the left side
of (8.4) and then extend Theorem 8.6 to general f in Y(). We can do this in
special cases, but we are not sure what is the correct formulation (if any) in
general. It seems clear, for example, that the recurrent and transient cases
must be handled differently.

In the remainder of the section we assume the following.

8.3. Condition of Universality. This condition is satisfied if
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(i) Every function in the universal Dirichlet space H has a quasi-
everywhere defined refinement which is the restriction to M of a function in
F().

(ii) There exist positive constants c, C such that

(8.6) cN (, <_ E (So, Uo <_ CN (, q for in H.
Remark. The left hand inequality in (8.6) actually follows from (i) be-

cause of Theorem 5.7 and Theorem 8.4. We do not know if the same is true
for the fight hand inequality. Standard results in this direction are not
directly applicable since the relevant inner product spaces are not complete
in the usual sense. It is clear from Theorem 6.6 that there exist Dirichlet
spaces which fail to satisfy condition 8.3. In this case it is natural to replace
the given Dirichlet space (Y, E) by the one constructed in Section 6 with
I-I0) Ho) and Q* N. We discuss this point in Section 9 for Brownian
motion.

8.4. Convention. Every inH is represented by the version specified up to
quasi-equivalence in 8.3 (i). Thus I-I is identified with ,F(,).

Finally we consider again the modified Dirichlet space of Section 6. Note
that by convention 8.4, functions in H0) belong to -Y(,) and are specified up to
quasi-equivalence on M.
Lemmas 6.1 through 6.4 are unchanged, but before proceeding beyond that

point we expand the function spaces H0) and F*.
8.5. DEFINITION. (Assume condition 8.3.) A function in ,F() belongs to

H* if there exists a sequence in I-I0) which is Cauchy relative to the Dirichlet
norm Q* and such that - q.e. For such q put

Q*(, ) LimQ*(n, ).
Also put

Q) (, ) Q* (, ) -t- U0.(, )

whenever U0.(, ) < -t-.
8.{}. DFINITION. (Assume condition 8.3.) A function f in the extended

Dirichlet space F() belongs to F(*) if there exists a sequence f, in F* which is
Cauchy relative to the Dirichlet norm E* and such that f, -. f q.e.

The extension of Lemma 8.1 and of Lemma 8.2 (i) to both F(*) and H* is
immediate. The extension of Lemma 8.2 (ii) to H* can easily be made by
considering H0 in place of and applying the right hand inequality in (8.6).
Now consider R,) vo, f with f bounded and integrable. After approxi-

mating f from below by functions in L (), we conclude from the proof of
Lemma 6.5 that belongs to H*, that H belongs to F* and that (6.10) is
valid. Since also belongs to F() by condition 8.3, it follows easily from
the square integrbility of H that actually belongs to ?F and H belongs
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to Y. Then the proof of Lemma 8.3 together with Lemma 6.4 implies that
the H are Cauchy relative to E* as u 0. Therefore H0o belongs to
F(*e) and then a passage to the limit in (6.10) establishes

(8.7) E* (H0 , H0.) Q* (, )

and a passage to the limit in Lemma 6.4 establishes

(8.8) E* (Uo, h) 0

for h in FD. Now we are ready to prove

THEOREM 8.7. (Assume 6.2 and 8.3.) Let (*, E*) be the Dirichlet space
corresponding to the resolvent of Lemma 6.3. Then:

(i) Lemma 8.2 (ii) is valid for F
(ii) F* is the subset of f in such that "f belongs to H*.
(iii) F(*) is contained in the subset of f in F() such that "f belongs to H*.
(iv) Iff belongs to F(*e) then so does Hof and (8.2) and (8.3) are valid with

E replaced by E* and Q by Q*. Also

E* (f Uof, f- Hof) E(f Hof, f- Hof).

(v) For f in F(),

(8.9) E*(f, f) E(f Hof, f- Hof) q- Q* (f, "/f).

Proof. Equation (8.9) follows from (8.7) and (8.8) for the special case

f G* g with g bounded and integrable and then it is routine to prove (i),
(iii), (iv) and (v) with the help of the right hand inequality in (8.6). To
prove (ii), consider bounded o in H* n q:F. Then for u > 0, the function
H, belongs to F and from 1.4.1 it follows that Rv)a belongs to H* and that

Uo,u (R(:)a qg,

for v, a > 0. The proof of Lemma 6.5 shows that for fixed a > 0,

Q) *(R(v)a, R,)a) 0

s v T o and it follows from the nlogue of (6.8) for a > 0 that

( u)R(

converges to R()a s v T relative to the Q) norm. After approximating
HR) from below by integrble functions on X, we conclude from (6.10)

*nd from the first part of the proof thatHR() belongs to nd that (6.10)
is wlid with replaced by R(). It follows upon pproximting by
aR()o, gain with the help of 1A.1, that H belongs to F*. But this im-
plies (ii) since it suffices to consider f bounded and since f H,f belongs to
F nd therefore to F*.
One important consequence of Theorem 8.7 is that the Dirichlet space

(Y*, E*) depends only on H* and Q* and not on the measure . We do not
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know if F(*e) is actually equal to the subset of f in F(*) such that ,f belongs to
H*. This would follow if we knew that general in H* could be approximated
by in H* n F. Proposition 5.4 (i) implies that this is true for H* H.
We complete this section by describing the generator A* which corresponds

to the Dirichlet space (F*, E*). To facilitate comparison with the work of
other authors, we introduce

8.7 DEFINITION. f in F belongs to the domain of the local generator
a if there exists g in L (D, dx) such that

E(f, h) -f, dxg(x)h(x)

whenever h belongs to F". In this case

THEOREM 8.8. f in F, belongs to the domain of the generator A* if and only if:
8.8.1. .f belongs to the extended Dirichlet space It*.
8.8.2. f belongs to the domain of the local generator (.

$.8.3. There exists b in L (M, dx) such that for in I-I* n "Y,

(8.11) Q*(.f, ) f dxb(x)(x) Lim f, dxaf(x)Huq(x)
with the limit tatcen as u O.
In this case

A*f(x) af(x)
(z)

from

onD
on M.

The direct part of the theorem follows from Theorem 8.7 (i) and

E* (f h) f dxA *f (x )h (x ), h in Y*,

upon applying (8.9) with h in F" and then with h H and passing to the
limit with the help of (8.5) and Lemma 5.5. To establish the converse, note
that by Theorem 8.7 (ii) f belongs to F* and then for h in F*,
E*(], h) E(f Hof, h- Uoh) + Q*(f, ,),h)

Lira E(f, h Huh) f, dxC/(x)h(x) Lim f,) dxafHh(x)
-Lim f, dxaf(x) lh(x) Huh(x)}

f, dxb(x)h(x)- Lim f)dxaf(x)Huh(x)

and the proof is complete.
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Remar]c. We cannot justify passing to the limit under the integral sign in
(8.11) since in general we cannot restrict our attention to the case when
af>_O.

9. Brownian motion

Throughout this section, X is d-dimensional Euclidean space R and dx is
standard Lebesgue measure. We introduce the familiar functions

Pt(x) (2t)-/2 exp {-Ix[/2t}

G(x) fo dte-Utpt(x)

for u, > 0 and for x in R. Of course xl denotes the standard Euclidean
norm. The operators

Guf(x) J dyGu(x y)f(y)

form a symmetric Markovian resolvent on L (dx). The corresponding transi-
tion operators pt are

Ptf(x) f dypt(x y)f(y).

The generator A is the L closure of 1/2A applied to any reasonable class of
smooth functions. Of course A is the usual Laplacian operator on R.
The probabilities ( of Theorem 2.4 can be defined for all x in R and the

regularity properties which are established in Section 2 using the potential
theory of Section 1 can be verified by direct arguments involving only the
properties of P (x). Moreover the exceptional x-set is always empty and the
probabilities (P are concentrated on the subset of 0 in 2 such that X (t, 0)
is everywhere continuous and such that the life time (o) -t- . The collec-
tion of probabilities is generally referred to as standard d-dimensional Brownian
motion. For verification of the above statements and other properties of
Brownian motion used below, we refer the reader to any of the books [7, 17,
or 21].
We begin by noting that for f in Co2om (Id) (twice continuously differentiable

with compact support) the defining relation (7.2) becomes

Muf(t) f(t) + ds uf(s) - Aft(s)

Application of Ito’s formula [21, p. 32] yields the alternative formula

Mf(t) f(O) I[R < t]f(Ru) -t-u dsf(s)
,0

(Ru, )

+ grad f(s).dX(s).
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The last integral is an example of a stochastic integral in the sense of Ito. A
tedious but routine calculation involving the calculus of stochastic integrals
shows that for s > 0 and >_ 0,

{M,f(t + s) Muf(t)l
(9.2)

Vt dr {[grad f(r)] -u[f(r)]2}.
d rain (Ru, t)

Again we are using Hunt’s notation for conditional expectation. Notice that
this conditional expectation can be relative to any of the (. Equation (9.2)
implies

min (Ru, )

(9.3) (Muf)(t) ds {[grad f(s)] + u[f(s)]}
and in particular

(9.4) (Muf)( ds {[grad f(s)] -[- u[f(s)]2}
and therefore

Theorem 7.2 establishes

(9.6) 1/E(f f) - dx [grad f(x)]5

Ccon, (Rd). A passage to the limit using the fact that such functionsfor f in
are necessarily E, dense in F (see 1.4.2) shows that F is the Sobolev space W
of square integrable functions on 1d which have square integrable gradients in
the distribution sense and that (9.1) through (9.6) are valid for f in W. it
would be interesting to establish in general the analogue of (9.5) for u 0.
Hunt’s construction of approximate h:chains in [15, pp. 334, 335] shows how to
do this for the transient cases d >_ 3, but the recurrent cases d 1 or 2 seem
to require new ideas.

In the remainder of the section we use the notation of Sections 5 through 8
corresponding to in 9e. For the sake of simplicity and to avoid certain
technical complications, we introduce

9.1. Restriction. M is C1 (G), OG or R G where G is an open subset of
1 whose Euclidean boundary OG has Lebesgue measure zero and such that
both G and ext (G) 1 C1 (G) are connected.
From the continuity of trajectories it follows that the harmonic measures

H, (x, dy) are, for x in G and for x in ext (G) concentrated on the boundary
OG. From the easily verified fact that nonncgative u-harmonic functions in a
connected open set can vanish at a point only if they vanish identically, it
follows that the harmonic measures H (x, dy) for u >_ 0 are equivalent as x
runs over G and as x runs over ext (G). Therefore we fix reference points x
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in G and xe in ext (G) and introduce the notations

H (dy) Ho (x,, dy), H (dy) Ho (xe, dy)

H,, (x, dy H (x, y )H (dy for x in G

H(x, y)He(dy) for x in ext (G).

The functions H (x, y) are understood to be specified up to H or H equiva-
lence on OG. It is knox that H and H are equivalent if G has a smooth
enough boundary. We doubt that this is true in general, but do not have a
counterexample. We introduce the function

p (x) [a (0G) + o

and then

p*i(y) fa dxp(x)Ht(x, y)

p*(y) dxp(x)gt(x, y).
xt(()

It follows from the analogue of (5.13) with v 0 and from Theorem 5.8 that
the functions

fo dxHo(x, )g,,(x,U).oo(y, z) Lim u y z

z) Lim u f dxHo(x, y)H,,(x, z)
ext(o)

with the limit taken for any sequence of u T oo, exist and are finite
[a.e. H X H] and [a.e. H’ X He] respectively. The kernel U0. (y, z) is tho
analogue of the one introduced by Feller in [9, p. 559] for the Kolmogorov
equations and by L. Na’im in [27, Chap. III, 15] for Brownian motion on the
Martin closure.
We now have all of the ingredients for a general formulation of Green’s

identity.

THEOREM 9.1. (i) If f belongs to W(e), then

(9.7) Hof(x) ,f[a(OG)]

is defined q.e. and belongs to W(e) and

l fo dx {gradf(x)} 1 L- - dx {grad f(x) grad H0 f(x) }2

l f H’ I H(9.8) + - (dy) (dz) U..o(y, z){f(y) f(z)

+IH d *( Y)P (Y)f(Y)
d



66 MARTIN L. SILYERSTEIN

1 )

(9.9) -+-

+ f H" (dy)p*’(y)f(y).

(ii) If specified up to H equivalence on OG satisfies
1 f Vo,(y,z) {(y) (z)
2(9.1o)

then

(9.) Hoe(x) ,[(0G)]

is defined and harmonic for x in G and

1 f .’ f .’(9.12)

H d $i+ f Y)P (Y)(Y)

(iii) If specified up to H" equivalence on OG satisfies (9,10) th i replied
by e, then (9.11) is defined and harmonic for x in ext (G) and (9.12) is satisfied
with G replaced by ext (G ) and with i replaced by e.

Proof. To prove (ii), choose u ’ such that M Ra G and apply
Theorem 7.4 (together th faliar facts about the connection between
harmonic fctions and Broian motion) to conclude that Ho is defined
and harmonic on G and that the right side of (9.12) equals

12 8,{H0[r(0)] Ho[0]} + 8, . {Ho[r(i)] Ho[e(i)]}

the notation of Section 7. Now (9.12) can be established by applyg a
simple extension of (9.3) th u 0 together th the teciques used to
prove Theorem 7.3. Concision (fii) follows from (ii) and the symmetric
role of G and ext (G). Fally (i) follows from Theorem 5.8, from Theorem
8.4 and from (fi) and ).
Theorem 9.1 suggests the foowg question. If is specified and te up

to H
have a quasi-everhere deed reement wch is the restriction to OG
of a function in F(,). T is true if and only if H can be approximated in
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the sense of Definition 8.1 by functions in Y(e) which is certainly the case
when G is a half space. We do not know about the general situation. Notice
that a yes answer is equivalent to the condition of universality 8.3 for the
Dirichlet space W().

9.2. Convention. Throughout this section the functions H0 and Hof are
defined by (9.8) and (9.11) no matter what in ’ is being considered.

Theorem 8.4 becomes in the present context.

THEOREM 9.2. (i) Let in
H(0) W() n L () and

e be such that M

Q(,)

(9.13)

for in H(0).
(i)

and

(9.14)

OG. Then

J J  (z)l
2

1 H" f H+ - (dy) (dz) Uo.(y, z) {(y) (z)

+ f U(dy)p*(y)’(y) + f
Let in be such that M R G. Tn

(o) W() i ()

1
dx {grad (x)}Q(, )

Uo.(y z){(y) (z)1’+

for in H(0).
(iii) Let , in i)K’ be such that M R. Then

H(0) W()1 L
and

(9.15) Q(, q) - dx {grad (x)I for in H(0).

We finish by discussing the modified Dirichlet space and resolvent of Section
6, considering first the case M OG. The universality condition 8.3 is
satisfied and therefore Theorem 8.7 is directly applicable only if we can be sure
that actually H Y. (See the discussion above.) In this case Theorem
8.7 characterizes Dirichlet spaces (F*, E*) relative to L (R, dx) which are
formed by combining in the manner of Section 6 the Dirichlet space for
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Brownian motion "killed" upon hitting OG with a Dirichlet space relative to
L (H -t- H’). It follows from (6.7) that the corresponding resolvent opera-
tors G* satisfy

(9.16) G*f(x) Gf(x) -[- , exp {--u(M)}G*f[a(M)].
The converse is also true. Every symmetric resolvent {G*, u > 0} on
L (R’, dx) which satisfies (9.16) arises in this manner from a unique Dirichlet
space relative to L (H + H’). This follows from Theorem 5.8 applied to
(*, E*) rather than to (F, E). Of course we cannot apply Theorem 5.8
directly since (Y*, E*) need not be regular, but there is no difficulty modifying
our arguments to establish an appropriate version. Thus our results classify
symmetric resolvents on L (I(, dx) which satisfy (9.16). If condition 8.3
fails, then there is still a classification with F(,) replaced by I-I. But our
arguments provide only a weakened version of Theorem 8.7.
To classify symmetric resolvents on L (G, dx) satisfying (9.16) it is neces-

sary to replace the Dirichlet space W by a different one.

9.3. A function f specified and finite up to quasi-equivalence on G belongs
to the Dirichlet space W (G) if it satisfies the following three conditions.

(i) f is square integrable on G.
(ii) f has a square integrable gradient on G in the distribution sense.
(iii) There exists a function specified up to H equivalence on OG such

that f H0 q.e. on G.

According to Theorem 7.4 a function $ belongs to W (G)if and only if f= H
q.e. on G where satisfies (9.10) and in this case (9.12) is tree. It follows
that W (G) together with the bilinear form

12 f( dx {grad f(x)}

is indeed a Dirichlet space relative to L (G, dx). For the Martin closure this
follows from results of Doob in [5]. Consideration of special cases suggests
that the corresponding process should be regarded as reflecting Brownian
motion on the Euclidean closure cl (G). Our results, with this Dirichlet
space playing the role of (F, E), classify symmetric resolvents on L(G, dx)
which satisfy (9.16). Again we must modify our arguments since in general
we cannot be sure that this Dirichlet space is regular.

Condition (iii) can be removed and (9.16) can be replaced by the more
intrinsic requirement that G,* f DG,f be u-harmonic on G if we replace the
Euclidean closure of G by the Martin closure. This is done for bounded G
by Fukushima in [14] using different techniques.

Appendix
We consider a Dirichlet space (Y, E) relative to L (dx) such that Y is dense

in L (dx) and show how to replace it by a regular Dirichlet space without
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changing any of the relevant structure. Our construction is only slightly
different from the one given by Fukushima in [12].
Note first that if f in Y is [a.e. dx] bounded then f2 belongs to Y and so the

subcollection of f in Y which are integrable and [a.e. dx] bounded form an
algebra. From contractivity it follows easily that this algebra is dense in
Y. Moreover Y itself (being the domain of a self adjoint operator) is separable
and, putting everything together, we conclude that there exists a subset Bo ofY
satisfying"

A.I.1. Bo is countable.
A.1.2. Bo is a subalgebra over the rationals.
A.1.3. Every member of Bo is integrable and bounded [a.e. dx].
A.1.4. Bo is dense in Y (and therefore in L (dx)).
A.1.5. If 1 belongs to F, then also 1 belongs to Bo. Otherwise there

exists a sequence g >_ 0 in Bo such that g ’ 1 [a.e. dx].

Fix one such Bo and let B be the uniform closure (in the [a.e. dx] sense) of
Bo. Then B is in a natural way a commutative Banach algebra. We now
introduce the Gelfand transform of B. For the reader’s convenience we
develop the relevant part of the theory for this simple special case rather than
appeal to the general theory.

Let Y be the collection of real valued functions , on B, not identically zero,
which satisfy"

A.... (f) (f)().
A.2.3. 5’ (af + bg) a’ (f) + b’ (g).

We give Y the weakest topology which makes continuous all of the real-
valued functions F on Y which can be represented F (,) (f) for some f in
B. It is well known and easy to verify directly that Y is then a separable
locally compact Hausdorff space and is compact if and only if 1 belongs to B.
Once and for all choose everywhere defined measurable versions for f in Bo.

Let Xo be the subset of x in X satisfying:

A.3.1. If(x)! <_ l[fllforfinBo.
A.3.2. (fg ) (x f (x )g (x forf, ginB0.
A.3.3. (f+g)(x) =f(x) +g(x) forf, ginB0.
A.3.4. (af) (x) af(x) for a rational and f in Bo.
Then Xo is a Borel measurable subset of X of full measure. That is,

dx O.
--Xo

Clearly for each x in X there exists a unique , in Y such that , (f) f(x) for
f in B0. Thus there exists a unique mapping J" Xo --* Y such that

(A.1) (J (f f(
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for f in Bo and x in X. Clearly J is Borel measurable and so there exists a
unique measure d, on Y such that

(A.2) f d,), (,),) fx dx

for nonnegative Borel in Y. We use the same symbol J to denote the natural
mapping of B onto C (Y) (continuous functions vanishing at given by

(A.3) Jf() (f).

It follows from (A.3) that for f in B and for any polynomial P

(h.4) JP (f P (Jr).

Since any normalized contraction T is continuous and therefore can be uni-
formly approximated by polynomials on compact sets, we have also

(i.5) JT (f) T (Jr).

Using max (f, g) 1/21 f - g -t- 1 f g and a similar formula for man (f, g),
we conclude from (A.5) that

(h.6) J max (f, g) max (Jr, Jg)

(h.7) J min (f, g) min (Jr, Jg)

for f, g in B. Next we show that J can be extended from B n L (dx) to an
isometry from L (dx) onto L (,). For this purpose note that the relation

for f, g in B0 is an immediate consequence of (A.4) and (A.2). Denote by J*
the unique isometry of L (dx) into L (d,) which agrees with J on Bo. Our
problem then is to show that J J* on L (dx) a B. Equations (A.1) and
(A.3) imply that Jf f for f in B0 and therefore J (Bo) is uniformly
dense in C (Y). With g as in condition A.1.5 (put g. 1 for all n if 1 is in
B0) the functions Jg, increase to 1 [a.e. d,] on Y. Therefore functions of the
form Jg, (),p (,) with in C (Y) are dense in L (d) and it follows by the
dominated convergence theorem that JB0 is dense in L (d). Now fix f in
B L (dx) and let f in B0 converge [.e. dx] uniformly to f. The dominated
convergence theorem implies that

dx f(x)h(x) Lim f (n$

and similarly

f d,), Jf()Jh() Lim f d,), Jf,(,),)Jh(,),) (n$ )
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for h in B0. Thus (A.8) is valid for f and h and since JB0 is dense in L (d),
certainly J*f Jf for f in B n L (dx) as required. It is easy to check that
the pair (JF, JE) is a Dirichlet space relative to L (d). Of course JE is
the bilinear form on J’ determined by

JE (Jr, Jg E (f g ).

To establish regularity, it only remains to check that d is dense. For this it
suffices to show that

(A.9) meas = {x f,(x) ff) < } > 0

for any choice of > 0, off, f, in B and of in Y. If (A.9) is false, then
there exist polynomials P in n indeterminates such that P (f, ..., f,)
converges uniformly to

and so there exists g in B such that

and therefore

for all h in B. Since the function min (x, x) can be uniformly approxi-
mated on bounded sets by polynomials which do not contain the constant term

and therefore 7 (h) 0 for all h in B, which possibility has been ruled out by
hypothesis. This proves regularity and we are done except for checking that
(A.5) through (A.7) can be extended to square integrable f and g.
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