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Introduction

In this paper we study the partially ordered set of locally compact group
topologies on a given abelian group. Our main interest is the cardinality of
given interval [a, b] in this set. We prove that [a, b] _> c or is finite. This
generalises the results obtained in [4] and [5] and also answers a question raised
in [5]. Our methods involve delicate ways of embedding R in a compact
group. These embedding theorems are given in Section 1. We have to study
a relation in the set of subgroups of a given torsion free abelian group. This
notion resembles that of quasi-isomorphism used by Beaumont and Pierce [1].
This is done in Section 2. We make heavy use of the results proved in [4]
and [5].

Notation. All groups considered in this paper are abelian. All topological
spaces considered are Hausdorff. The notions and terminologies on topological
groups are as in [3] in general. T denotes the circle group with usual topology
and multiplication. If G is a topological group, we say G is T-free if T is not
a topological summand of G. Similarly G is said to be Z-free if G does not have
Z as an algebraic summand. If G is a group and al, as, a, are ele-
ments of G then [al, -.-, a,] denotes the sub-group generated by a,

a, in G. Isomorphism (topological) of two groups (topological) G,
is denoted by

Isomorphic embeddings of R into a compact abelian group G
LEMMA 1.1. Let H be a subgroup of R’(n

_
1). Let IZI F @ V where V

is a subspace of R and F is a free group different from {0}. Then Z is a sum-
mand of H.

Proof. Follows from standard arguments and the structure of closed sub-
groups of R.
LEMMA 1.2. Let be a torsion free group of ranlc n n 1). Then can be

embedded as a dense subgroup of R by a group isomorphism if and only if is

Z-free. When is Z-free, we can obtain such an embedding as follows: Choose
a maximal independent set (al, a,) in over the integers. Define a map

o {al a,} --- R
arbitrarily except that the set {0(al), 0(a,)} generates R over R. Using
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divisibility of R extend o to a group isomorphism of into R’. Then is
one such isomorphism.

Proof. Follows from Lemma 1.1 and suitable choice of independent sets in

COnOLLARY 1.3. Let G be a connected compact group such that

rankG n (_>1).

Then there exists a continuous dense isomorphism of R into G if and only if
G is T-free.

Proof. Now there exists a continuous dense isomorphism " R" - G of
R into G if and only if there exists a dense group isomorphism from into
Rn. So the result follows from Lemma 1.2.

LEMMA 1.4. Let n be an integer >_ 1. Then a free group of ran]c n 1
can be densely embedded in R" by a group isomorphism. Consequently a torsion

free group of countably infinite rank or of ran]c k >_ n - 1 can be embedded .densely
in R by a group isomorphism.

Proof. Let {al, a2, a+} be set of generators of . Let {el, e.,
.-,e} be a basis for RoverR. Let(a) efori 1, 2, ...,n, and
(a,+) x/2o - x/3e + + /pn-1 e,,_ + x/p, e where p is the i
prime. Then n application of Theorem 5.1.3 of [6] gives the required result.

LEMMA 1.5. Let G be a compact group. Let H be a closed subgroup of G.
Let O" R" -- G/H be a continuous isomorphism from R into G/H. Let

G --> G/H be the natural map. Then there exists a continuous isomorphism
b from R into G such that o

Proof. By duality, there is an algebraic homomorphism t from (G/H)
into R which is the adjoint of 0. Now (G/H) is subgroup of and R" is
divisible. So there exists an extension of ti which is a homomorphism of
into R. Then the adjoint of this map from R" into G is the required map.

LEMMA 1.6. Let G be a compact connected group. Let be its dual. Let
be of rankn + 1. Let beZ-free. LetO’R--Gbeacontinuousiso-

morphism of R into G. Then there exists a continuous isomorphism
into G such that 0(R"+1) (Rn). Moreover if b is any other continuous
isomorphism of R+ into G then bl(Rn+)

Proof. Let us treat R" as subspace of R+. We take el, e2, ...,
e, e+ to be the coordinate vectors in R"+ so that the first n of them are in
R" and span R" over the reals and e,+ is a unit vector not lying in R. We
treat as a mp from the subspace R" into G. Consider now the dual of
R"+1 which is again R"+1. In this dual we take unit vectors fl, f, ...,
f, fn+l SO that f+ is orthogonal to el, e, ..., e and f, f, ..., fn are
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orthogonal to e+l and fl, f, f,+l span the dual space R+1. Then the
vector space spanned by fl, f, f. over R in the dual space R"+1 can be
treated as the dual of the vector space R" generated by el, e, e.. Then
the adjoint map of can be treated as a map from into the vector space
spanned by fl, f., in the dual R+ space. Let us call this subspace V.
Let a, a., a, a+ be a maximal set of elements in which are in-
dependent over the integers. Now () is dense in V. So () generates
V as a vector space over R. So V is generated by some n among the elements
$(al), (a.+l). Without loss of generality we assume that $(al),
(a) generate V as a vector space over R. Then by choosing a different
coordinate system in V if necessary and renaming we may as well assume that
(a) f, (a.) fn. Let the coordinates of (a+l) with respect
to fl, "",f+l be (M, 2, "", k, 0). Now we define amap tfrom
into R+ as follows:

O(a) -f for i 1,2, ...,n; t(a+) (M,k2, "-,k,a)

where a is a non-zero real number. We complete the definition of t) on by
requiring it to be a homomorphism. Then it is clear that the set t(al),
t(a) and t(a+l) generate R+ over R. So t(G) is dense in R+ by Lemma
1.1 since is Z-free and hence () is Z-free and t) is clearly an isomorphism.
Let be the adjoint map of from Rn+l into G. Then 0 is a continuous iso-
morphism of Rn+ into G. Moreover, we claim that t(x) (x) for all

R . Let us write to denote the naturalxeR For letxe andge
inner product of a group and its dual. Then

((x) 0(x), g) (x, (g) (g)).

Now (g) and t(g) are in the dual R+1 space and their first n-coordinates are
the same with respect to fl, f, f+l as coordinate vectors. So the first
n coordinates of (g) t(g) are zeros. Since x is in the space R" generated
by {el, e} and fn+ in the dual R+ is the annihilator of [el, e] we
have that

((x) O(x),g) 1 for all ge.
SoCk(x) t(x) for allxeR. So 0(R+1) (R’). So this proves the
first part of Lemma 1.6. Now let b Rn+ - G be any continuous isomor-
phism of R+1 into G. Let 1 be its adjoint. Then 1() is dense in R+.
So 1(al), 1(a+) generate R+ over R. Then there is an invertible
matrix/1 that acts on the dual space R+ such that ((a)) 1(a) for
alli 1,2, ,n+ 1. Then it is clear that2 ]ot. LetMbethe
transpose matrix of that acts on the vector space R+ generated by e,
e+l. Then it is clear that 0 M. Since M is non-singular it follows
that b(R+) 0(R+). Hence the lemma.

LEMMA 1.7. The real line R can be embedded into the two-dimensional torus
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T by a continuous isomorphism in a continuum many ways so that the images
are all different.

Proof. Choose a Hmel base of R with 1 e . Then the mp

k, R --* T where .(x) (e2rix 2.iax),e for all ae

are continuous isomorphisms of R into T and 6,(R) # (R) if a, e

and a .
LEMMA 1.8. Let G be a compact connected group. Let R" G be a

continuous isomorphism of R into G. Let A (R). Let G/A have rank
2. Then there exists a set J of cardinality c and continuous isomorphisms, ofR+ into Gfor each a e J such that the following hold:
(i) ,(R+) (R) for all a e J
(ii) ,(R+) (R+) ff a, e J and a .
Proof. Let A be the annihilator of A in , where is the dual of G.

Then A is of rank at least two. So there exists a closed subgroup H in G
so that H A and G/H is the torus T. Let h be the canonical map from G
onto G/H. Let J be a set of cardinality c and let (,),, be a collection of
continuous isomorphisms of R into G/H so that ,(R) (R) if a, e J
and a . This is possible in view of Lemma 1.7. Now by Lemma 1.5,
ven a e J, there is a continuous isomorphism 0, from R into G so that, ko0,. Now treatRasasubspaceofR+. Lete,e, ,e,,e+
be a coordinate system for R+, where e, e, e generate the subspace
R’. Given a e J define , from Rn+ into G by

,(e) (ei) if 1 i n, ,(re+) O,(r) for r e R

and require , to be a homomorphism from R+ to G. Then it is easily seen
that , is an isomorphism. Thus the collection {,} is easily verified to
satisfy the conditions of the lemma.

LEMMh 1.9. Let F be a free subgroup of rank n + 1 confined in R. Then
there is a subgroup S of F and a vector space V {0} in R" such that S is dense
and contained in V.

Proof. We consider the vector space L generated by F over the reals.
Without loss of generality we take L to be R. Then there are vectors a,
a:, a in F which can be taken as unit coordinate vectors in R. Let
a+ be in F and be independent of {a, a} over integers. Let a,+ have
coordinates (h, h,) with respect to a, a, a,. By taking suitable
integral linear combinations of a, a, a+ we get an element b+ of F
such that a, a, a, b,+ are independent over integers and b,+ has
coornates (, u, ) where the ’s are irrational or 0. By renaming
the coordinates a, a, a we might as well assume that b,+ has coordi-
nates of the form

(11, 12, 1r, 0, O)
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and r >_ 1 and ’s are irrational. Now consider all the subsets E of {]1,
#,} which are dependent over integers. If {1, "", ik} is such a set it
satisfies an equation of the form

n xl + nx 0

where n, n are integers. There re only finite set of such equations.
All these equations long with the system x+ x,+ x O, define
subspce V of R". Let S V F. Then dopting the rgument of

Lemm 1.4 we get that S is dense in V.

LEMMA 1.10. Let R T+ be a continuous isomorphism of R into
the torus of dimension n 2. Then there exists a set J of cardinality c and a
continuous isomorphism of R"+ into T+ for each J such that t follow-
ing hold:

(i) a(Rn+l) (R+) for all a, e J and a .
(it) ,(R+) (Rn) for all J.

Proof. Using the solutions of simultaneous equations with integer coeffi-
cients, it can be shown that the number of a’s such that ,(R+) (R+)
for a fixed real number is countable. So (i) follows. Also ,’s can be so
chosen that ,(R"+) (R’).

LEMMA 1.11. Let G be a connected compact group. Let R G be a
continuous isomorphism. Let R be the adjoint of where is the
dual of G. Let the kernel of be of rank at least 2. Then there exists an index
set J of cardinality c and continuous isomorphisms from R+ into G so that
a(Rn+l) (Rn+l) for all distinct a, J and (R+) (R) for all

Proof. We consider R"+ nd tke basis o, e.+ for R"+ over R.
We consider that is defined on that subspce R" of R+ which is generated
by e, e, e. Put A O(R’) in G. Then our hypothesis implies
that the dul of A has rnk t least two. So there exists compact sub-
group B of G so that B O(R) nd G/B is the torus T. Then by Lemm
1.8 we get the result.

LEMMA 1.12. Let G be a compact connected group with dual G. Let

.RG
be a continuous isomorphism and its adjoint. Let have rank at
least n + 2. Let the kernel of have ran 1. Then there exists at least a con-
tinuum many isomorphisms of R+ into G so that their images contain (R’).

Proof. Follows by n rgument using Lemmas 1.5, 1.9, 1.10.

LEMMh 1.13. Let G be a compact connected group with dual G. Let



182 S. ,IANAKIRAMAN AND M. RA,IAGOPALAN

be a continuous isomorphism. Let be of rant at least n + 2. Let be the
adjoint map of . Let the kernel of be/O}. Then there exists a set J of cardi-
nality c and continuous isomorphisms b, from R’+1 into G for each a J so that
(R’+) (Rn+l) if a, J and a and b(Rn+) (R) for all

Proof. Let a, a2, a+2 be n + 2 elements of which are independent
over integers. Then (al), (a,.), ..., (a.+) are independent over the
integers. By using Lemma 1.9, we get that the free group generated by
$(al), b(a+) contains a subgroup F which is dense in a. vector space V.
Again, by renaming if necessary we may assume that V is generated over the
reals by (a), $(ak) and that F is generated by (a), ;(ar) and
r >_ k -+- 1. If we have that r >_ / -k 2, then our construction ends here.
If not we havethat r =/c -- 1 and (ai), i 1, / + 1, generate F and F is
dense in V and V is generated over the reals by 5(a), (ar). Then con-
sider the free group S generatedby(al), (a.), (a+,.) andapply Lemma
1.9 again. Wegeta subspace V’ and a free subgroup F’ contained in the group
S such that F is dense in V’ and rank F’ >_ dim V’ -- 1. So by considering
F -+- F’ and V -k V’, we get a free subgroup L in () such that L is dense
in a subspace M of R" and rank L _> dim M -k 2 and L is contained in the
free group generated by (a) (a.+.). So we have that in any case
there is a vector subspace H of R" and a free subgroup F of () such that
F is finitely generated and F1 H and is dense in H and rank F2 _> dim H - 2.
From this point on we follow the proof of previous lemma and get the required
result.

2. The equivalence relation among subgroups of an
abelian group

DEFINITION 2.1. Let G be a group. Let H and K be subgroups of G. We
say that H is equivalent to K and write H K if H/(H K) and K/(H n K)
are finite.

Remark 2.2. The relation above is an equivalence relation in the set of
all subgroups of a group G.

DEFINITION 2.3. Let G be a group. A canonical collection of Z-free sub-
groups of G is a collection ) of subgroups of G with the following properties:

(a) If H tD, then H is Z-free
(b) If H and H e ), then H1 is not equivalent to H unless H H.
(c) If A is a subgroup of G and A is Z-free, then there exists a subgroup

H e 0 such that H A.

Remarlc 2.4. Let G be a group. Let be the set of all Z-free subgroups
of G. Let 0 be a canonical collection of Z-free subgroups of G. Then is
an equivalence relation in and the quotient space of by and D have the
same cardinality.
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Remart 2.5. We also note that all canonical collections have the same
cardinality.

LEMMA 2.6. Let G be torsion free countable group. Let A G be a sub-
group and ( the collection of all subgroups of B G, such that A B and
A B. Then ( is countable. Suppose in addition to the assumption above,
that A/nA is finite for all integers n >_ 1. Then the collection of all subgroups
C G so that C A and C A is countable. So if all the above conditions
hold then the collection of all subgroups F of G, which are equivalent to A is
countable.

Proof. Let S be the collection of all elements x in G such that nx e A for
some integer n >_ 1. Then ( consists of groups generated by A u X where
X is a finite subset of S. And S being countable it follows that a -< b0.
We note that if c e then there exists an n >_ 1 such that c hA. By an
argument similar to that of (, we again get that l is countable. Putting
a and together, the last statement in the lemma follows:

LEMMA 2.7. Let G be a torsion free group offinite rank. Suppose that there
exists an uncountable collection 1 of mutually inequivalent subgroups of G.
Then there exists a collection 6 of mutually inequivalent subgroups of G so that

161 1 land Z is not a summand of any group in (R). In particular if
c then (B c.

Proof. Since G is of finite rank, the collection of all free subgroups of G
is countable. Let the set of all free subgroups of G be written as F1, F2,

Fn, .... Let F0 denote the identity subgroup of G. Let be the set
of all those subgroups in a which can be written as Fn X X where X is Z-free.
Then U n=0 e. e. Hence there exists no > 0 such that e0 el
Then each group C e a0 can be expressed as F X Ac where A c is Z-free.
Let (g be the collection of the groups A c where C e e0. Then (g is easily
seen to be the required collection.

LEMMA 2.8. Let G be a group and H a subgroup of G. Let $(G) (respec-
tively $(G/H) be the collection of all subgroups of G (respectively of G/H).
Then IS(G) >_ IS(G/H) I. If G/H has a collection e of mutually inequiva-
lent subgroups then G also contains a mutually inequivalent collection ’ of sub-
groups so that e’i >_ e I. If G/H contains a direct sum n= d,, of an

infinite set of non-zero subgroups An, then it contains c mutually inequivalent
subgroups.

Proof. We need prove only the last statement. To show this, we note
that there exists a collection ff of subsets of the set Z+ of strictly positive
integers so that I[ c and such that

A @ B (AuB) (AnB)

is infinite for all distinct subsets A, B e Y. For each S fi;, let Fs be the
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group ns An. Then the collection of all such Fs is the required collec-
tion.

THEOREM 2.9. Let G be a torsion free group of finite rank n. Let M be a

free subgroup of G of maximal rank. Then either G has at least c subgroups or
G/M is of the form i1C(p. @ F where {pl pn} is a finite set of distinct
primes and F is a finite group. In the latter case, the set {p p,} is inde-
pendent of the choice of M.

Proof. Now G/M is a torsion group. So G/M , eG(p) where (e is
a set of primes and G(p) is a p-primary group; for each p e (P. If (p is infinite,
then the previous lemma applies. Suppose 6 is finite. Let p e (P. The G(p)
can be expressed as A (p) + B(p) where A (p) is a direct sum of a number of
copies of C(p) and B(p) is reduced. If there are two copies of C(p)
in A (p), then there are c subgroups for A(p) and so for G/M and G too. If
some B(p) is infinite and bounded then it is a direct sum of an infinite collec-
tion of finite non-zero cyclic groups and we again get that I(G) > c.
If B(p) is unbounded then it has a basic subgroup and hence I$(G) >- c.
So if some B(p) is infinite then Is(G) > c. So we get that either ](G)
> c or G/M is of the form stated in the theorem. Now suppose G/M is of
the form stated in the theorem and M’ is another maximal free subgroup of
G. ThenM n M’ is of finite index in M and G/M is a quotient of G(M n M’)
with the kernel M/M n M’. So it follows that G/(M n M’) is of the same
form as G/M. As M n M’ is of finite index in M’ and

G/M (G/(M n M’))/(M’/(M n M’)),

the last assertion follows.

Note 2.10. The above theorem remains valid even if G is not assumed to
be torsion free but the torsion free rank of G is finite. We also get in view of
the preceding lemmas and theorem that either >_ c or G/M is as in
Theorem 2.9.

DEFiNiTiON 2.11. Let G be a group. Let M be any maximal free subgroup.
Then G is said to have a type if G/M is of the form i= C(p.) @ F where
{p, ..., p} is a finite set of distinct primes and F is finite and the
set {pl, p} does not depend on M. In this case we denote by 5(G), the
type set {pl, p.} of G.

Note 2.12. If G is a group of finite torsion free rank and does not admit at
least c subgroups then G has a type and so does every one of its subgroups and
everyone of its quotient groups.

THEOREM 2.13. Let G be a torsion free group offinite rank and let G not have
at least c subgroups. Then the following hold:

i) For every subgroup H of G we have that

5(H) nS(G/H) 0 and 5(G) 5(H) ,iS(G/H).
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(ii) For every subset S of 5(G), there exists a subgroup Hs of G so that
Hs is Z-free and 5(Hs) S.

(iii) Two Z-free subgroups H1, He of G are equivalent if and only if 5(H1)
3(H.).

(iv) The collection H S 3(G)} is a canonical collection of Z-free sub-
groups of G. So ) is finite and is of the form 2" for some integer n.

Proof. Let H be subgroup of G. Let M nd Me be mximal free sub-
groups of H nd G/H respectively. Then H/M is of the form () C(p)
@ F where F is finite. We cn djust M nd M so that F1 /0} nd
(G/H)/Me (/)C(p). Now there exists free subgroup M in G
which mps onto Me in 1-1 wy by the cnonicl mp from G onto G/H.
Then M @ M is mximal free group in G nd

G/(M @ M3) i() C(p) -k ,((/) C(p.).
Now (i) follows using Theorem 2.9. Now let S be a given subset of 5(G).
Let M be a maximal free subgroup of G so that G/M C(p). Let- G -- G/M be the canonical map. Put F ,s C(pT). Then O-(G)
can be written as A @ Hs where A is free and Hs is Z-free. Using (i), we
note that Hs satisfies (ii). If H1 and H. are two subgroups of G so that
H1 He, using (i) we get that 5(H) 5(H n H.) 5(He). Conversely
let H, H. be subgroups of G for which Z is not a direct summand. Let
5(H) 5(He). Consider H1 n He. Then

5(H1) 5(H He) u 5(HI/(U He) ),

5(H.) 5(U He) u 5(He/(U n He) ).

Since 5(H) 5(He), from (i) we get

5(U/(Ul n U,.) 5(He/(U n He)).
But

(H /(H n H,.) n (He /(H n H,.) {0} in G/HI n H2
and since G does not have c subgroups we have that G/H n He does not have
c subgroups. So we get that

5(H/(H He)) 5(He/(H H) 0.

But Z is not a summand of H/(H r H) or H He) since it is not a
summand of either H or He. So H /(H n H) and H /(H H) are finite.
So Hi He. This proves (iii). Now (iv) follows from (i), (ii) and (iii).
As we shall see subsequently, we will be interested in groups G which are

subgroups of R. Then we will be interested in subgroups of G, which are
dense in vector spaces. So we can ask the relation between two groups A1
and As which are equivalent and which are dense in some vector subspaces.

LEMMA 2.14. Let F be a free group of rantc n -k I which is a subgroup of R’.
Let F generate R over the reals and be dense in R". Then a non-zero subgroup A
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of F can be dense in a vector subspace (i.e. is a vector subspace) if and only if
A F. In this case 2

Proof. Follows from standard structure theorems on closed subgroups of
R

LEMMA 2.15. Let G be a subgroup of R" and of rank n + 1. Let G generate
R over R. Let H G be a subgroup, which is dense in a subspace V of
(i.e. I:I V and V is a vector space). Then ran H is either equal to dim V or
dimV + 1. IfZisasummandofHandHisdensein VthenrankH
dim V + 1. If S is a Z-free subgroup of G, then is a vector subspace of

Proof. This follows easily from Lemma 1.1 and the fact that G generates
R over R.

LEMMA 2.16. Let F be a free subgroup of R’* and of rank n + 1. Let F
generate R"+ over R. Then there exists one and only one non-zero vector sub-
space V of R so that V n F is dense in V. If two subgroups A and A of F are
dense in some non-zero vector subspaces of R then they are equivalent.

Proof. Now {0} # F R". So R # {0}. So the existence of V follows
from Lemm 1.9. The uniqueness of V follows easily from Lemmas 2.14 and
2.15. The last statement follows easily from the first and Lemma 2.14.

LEMMA 2.17. Let G be a subgroup of R with rank n + 1 and generating R
over R. Let H G be a Z-free subgroup. Let I V. Let V be any fixed
complementary subspace of V in R". Let A be a free subgroup of G so that
A n H {0}. Then A H is dense in a vector subspace of R if and only if
one of the following is true.

(a) A {0}.
(b) A V and A is infinite cyclic.
(c) A n V {0} and the projection r(A) of A on V along V is dense in

some vector subspace.

Proof. Let (H @ A)-be a vector space. Now G generates R over R
and G is of rank n + 1. SoGn V can be at most of rank ((dimV) + 1).
Since A n H {0} and rankH dim V we get that A n V can be at most
of rank 1. So if A V, then A {0} or infinite cyclic. Suppose now that
A V. Now

(H @ A)- V @ r(A)-.

Since (H @ A)- is a vector space, it follows that z(A)- is a vector spce.
The converse is obvious.

LEMMA 2.18. Let H be a subgroup of a group G of R’. Let G be of rantc n + 1
and generate R over R. Let H be Z-free. Let A and A: be non-zero free sub-
groups of G such that H n A H n A. {0}. Let H @ AlandH @ A. be
dense in vector subspaces ofR. Then (H @ A) (H @ A).
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Proof. Let/- V. Then V is a vector space. Let V1 be a complemen-
tary vector subspace of Rn. If A1 V, then rank (G n V) dim V + 1,

Since G has to generate R over R, and G has rank n -{- 1, it follows from
Lemmas 2.15 and 2.17 that A2 c V. Since G n V cannot be of
rank (dim V -t- 2) by Lemma 2.15, we get that H A1 H @ As. If
A1 : V then A. : V and r(A) r(A) where v is the projection on V1
along V. (This follows from Lemmas 2.17 and 2.16.) So if b, b, be is
a maximal set of integrally independent elements of A. then there exists an
element x e A and integer nl 0 such that

nlbl- xlVnG.

Then there exists x. H and integer ns 0 so that n(nl bl xl) x. because

rank(Gn V) dimV rankH.

Putting nl n. k, we get a non-zero integer/cl so that kl bl e H @ A1. Simi-
larly forby, --.,be. So we get that

is finite.

is finite.

(H @ A.)/((H @ A) (H A))

Similarly we get that

(H A)/((H A1) (H A.))

Soil @ A --H @ A:.
DEFINITION 2.19. Let C be a subgroup of R" and of rank n or (n -k 1).

A collection 2 of subgroups of G is called a canonically dense collection if the
following hold:

(i) A e 2 A is dense in a vector subspace.
(ii) A, B e and A B A is not equivalent to B.
(iii) If D G is a subgroup of G which is dense in some vector subspace

then D C for some C e 2.
This class is important for our subsequent investigations and so we discuss

them below:

THEOREM 2.20. Let G be a subgroup of R so that rank G is either n or n + 1
and G generates R over R. Let H and H be subgroups of G so that Z is not a
summand of either H1 or H and let HI H Let A and A be non-zero free
subgroups of G so that H n A1 {0} and Hs n As {0} and H @ A and
Hs As are dense in vector spaces. Then H @ A1 Hs @ A:. So 2
is a finite set or has c elements.

Proof. Consider H1 n H. It follows from Lemma 1.2 and H H. that
(H a H:)- /1 /. So (H H) @ A and (H H) @ A are dense
in vector spaces. So

(H1 A) (H @ A.) and (HnH) @ Ax--(HHs) @ A
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by Lemma 2.18. Now let ) be a canonical collection of Z-free subgroups of
G. Then Il

_
ii which follows from Lemma 1.1. If I)1 c, we get

the last statement. If not I)l is finite by Theorem 2.13. Let {H1, H2,
Hk} be such a finite canonical collection. Then for each i 1, 2, k,

there can be at most one non-zero free subgroup A of G up to equivalence so
that H A is dense in a vector space, using Lemma 2.18. If we choose one
such A for each i 1, 2, ], we get that 21 is a subset of the set

{Hi ,..., Hk, (H + AI), ..., (Uk -- A)}by Lemma 2.18. So 21 is finite in this case.

DEFINITION 2.21. Let G be a group and b G -- R be a homomorphism.
A canonical -dense collection of subgroups of G is a collection a of subgroups
of G such that the following hold"

(a) If H e a, then h(H) is dense in a vector subspace of R.
(b) IfH and H. are distinct elements of , then they are not equivalent.
(c) If A is a subgroup of G so that (A) is dense in a vector space of Rn,

then there exists M e so that A M.

LEMMA 2.22. Let G be a group of torsion free ranlc n 1 and b a homo-
morphism of G into R with kernel K {0}. Let b( G) be dense in R and let G
have at least c-subgroups. Then a canonical collection of b-dense subgroups of G
has cardinality at least c.

Proof. By Note 2.10 there are at least c subgroups of G which do not have
Z as a summand. Then a collection of canonical Z-free subgroups of G
has cardinality at least c. If H e ) then it is clear that Z is not a summand of
(H) since otherwise H is not Z-free. Then from Lemma 1.1, it follows that
(H) is dense in some vector space in Rn. So if a is a canonical collection of
-dense subgroups of G, then e -> ) >- c as required.

THEOREM 2.23. Let G be a group of torsion free rank n 1 and b a homo-
morphism of G into Rn. Let K be the kernel of b. Let K be of rank 1 and b(G)
dense in R’. Then ( is finite or >_ c for any canonical collection a of b-dense
subgroups of G.

Proof. If G has at least c subgroups then a -> c by the previous lemma.
So we can assume that G has a type and a finite canonical collection ) of
Z-free subgroups of G say H, H. Now we will show that if L is a
subgroup of G so that (L) is dense in some vector subspace of R and L
A $ B where A is a free group and B is a subgroup for which Z is not a sum-
mand, then there is a free subgroup S K and a subgroup T G so that
L S Tand THforsomei 1,2,3, ---,k. IfA {0} this is
clear. So let A {0}. By Lemma 1.1 and the fact that (L) is of rank n
and dense in R, we have that h(L) is Z-free. So L n K B K. So there
exists a e A and b e B such that a -t- b e L and a 0. So we must have that
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B o L {0}. Otherwise using the fact that K is of rank 1, we will get.that
there exists a non-zero integer m so that ma B which contradicts the assump-
tion that A n B {0}. Let {a, a2, at} be a maximal integrally inde-
pendent set in A. Let F be the free group generated by {a, a., ..., at}.
Then F @ B A @ B. So (F -t- B) b(A + B) and hence is dense in
a vector subspace of Rn. So (F + B) is Z-free. But we see easily that
F @ B F1 @ B where F1 is the free group generated by {a - b, a., at}.
Moreover the cyclic subgroup C generated by a -[- b is precisely (F @ B) n K
since K is of rank 1. So if N is the free group generated by {a2, as, a,},
then we get that(Fl+ B) is isomorphic toN+ B. SoN {0}. SoF1
is cyclic and we get that L S @ B where S is the free group contained in K
and generated by a + b. Thus we have established our claim that if a sub-
group L of G has Z as a summand and (L) is dense in a vector subspace that
L is equivalent to a subgroup of the form S $ H where S c K is an infinite
cyclic group and H H for some i 1, 2, k. Since D is finite, we get
that is finite and we get the theorem.

3. In between topologies in a group
Notation 3.1. A group topology on G means a locally compact Hausdorff

topology on G, making G a topological group.

Notation 3.2. (X, r) denotes a set X with a topology r. If 1, are two
topologies on a set X, we write r _< r2 or r _> to mean that . is stronger
or finer than r (i.e. r has more open sets than ).

Notation 3.3. Let G be a group with group topologies rl and r. Let
r. [r, r2] denotes the set of all group topologies r on G such that r _<

T__ T2.

Notation 3.4. If X is a set X denotes the cardinality of X.

Notation 3.5. If (X, r) is a topological spaceandA c X, then vIA denotes
the topology r restricted to A.

DEFINITION 3.6. Let G be a group with a group topology r. Let H be a
closed subgroup of G. Then the group topology r’ on G such that r’IH
r H and such that H is open in r’ is called the group topology induced by H
in G. This is denoted by r.. The collection {r.IH is a closed subgroup of
G} is denoted by rs. (G, r) is used to denote the locally compact group G.

Note 3.7. If (G, r) is a locally compact group, then each member of rs
gives a finer group topology than r.

DEFINITION 3.8. Let (G, r) be a locally compact group with an open
subgroup of the form H X A, where (H, r) is a compact group and (A, r)
is topologically isomorphic to some Rn. A quintet (L, , t, ], C) consists
of a closed subgroup L c H, a continuous isomorphism of a vector group
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R into H, an integer k and a closed subgroup C of G satisfying the following
conditions"

(i) (R) n L {0}.
(ii) 0_<k <n.
(iii) C is topologically isomorphic to R.
DEFINITION 3.9. Let (G, r) be a locally compact group with an open sub-

group H )< A where H is a compact group and (A, r) is topologically iso-
morphic to a vector group R. Let (L, , t, k, C) be a quintet. Let rl be the
topology on (Rt) which makes the map R -- (Rt) a homeomorphism.
Let r be the restriction of r to L C. Let r0 be the group topology on G
in which L @ (Rt) @ C is open and r0/L @ 6(R) @ C is the same as

(L, r.) X (b(Rt), r) X (C, r).

We sy that r0 is the topology on G induced by the quintet (L, , t, k, C).

Note 3.10. It ws proved in Theorem 1 of [4] that the topology r0 induced
by the quintet (L, b, t, ], C) on (G, r) is stronger thn r nd every group
topology r on G which is stronger thn r is obtained in this wy by quintet.

LEMMA 3.11. Let G be a group with group topologies rl and r: Let r < r
Let H be an open subgroup in ri Let r*l and r2 be the restrictions of r and ’2

respectively to H. Then I[r, r2]i [r*, r*] I.
Proof. If r e [r, r2] then H is also open in ra. Moreover r is induced in

G by H as in Definition 3.6. So the result follows.

Note 3.12. Let G be a group with group topologies r and r and such that
r < rz. Let H -4- A be an open subgroup of (G, ) where (H, r) is a com-
pact group and (A, r) is topologically isomorphic to a vector group. Then to
discuss ][r, r2] it is enough to discuss I[r, r2*]l as in Lemma 3.11. So we
can and also do assume hereafter that (G, rx) is of the form H @ A, as above.

LEMMA 3.13. Let G be a group with group topologies r and r2 Let rl < r2

Let G, r) be of the form H @ A where H is compact and A is a vector group.
Let r2 be induced by the quintet L, , t, k, C). Then there exists a subgroup B
of G, rl) such that the following hold:

(i) B C.
(ii) BaH {0}.
(iii) B @ H A @ H G.

Proof. Since . is induced by the quintet, we have that (C, ) is a closed
subgroup of (G, ), topologically isomorphic to a vector group. Hence C is a
direct summand of (G, r). So (G, r) C @ M, where M is closed in (G,
). Since (H, ) is compact (M, ) will split as H @ B where (B, )
is vector group. Writing B @ C B, we get the required result.

Remark 3.14. Let (G, r) H @ A as in Note 3.12. Let r: >_ rbea
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group topology on (G, rl) induced by the quintet (L, , t, k, C). In view of
the Lemma 3.13, we can assume that C c A, when discussing the [rl,

LEMMA 3.15. Let rl and r. be two group topologies on a group G. Let
r > rl Let G, r) H @ A as in Note 3.12. Let r. be induced by a quintet
L, , t, k, C), where C C A. Let dimension of A >_ k + 2. Then

C.

Proof. There exist at least c distinct closed subgroups V, of A in the
topology so that each V, D C. Then each closed subgroup H V, induces
a group topology r, on G as in Definition 3.6. It is easily verified that all

Sthese r, are distinct and each r, e [r r.]. Hence the lemma.

Remark 3.16. In view of Lemmas 3.15, 3.13 and 3.11, it is enough to con-
sider the following: (G, r) is of the form H @ A as in 3.12 and (G, r) is
induced by the quintet (L, , t, k, C) where C A and dim C _< dim A _<
dim C -t- 1.

LEMMA 3.17. Let rl and r. and G be as in Lemma 3.13. Let (G, r) be of
the form H @ A and (G, r.) be induced by (L, , t, k, C) with C A and

dimC N dimA _< dimC+ 1.
,

Let r and r be the restrictions of TI and r respectively to H. Then

lit1, r2]l l[r, r*]l or 21[;, *] !.
Proof. Suppose dimC dimA. Then C A. So every topology

ra e [r, r2] is induced by the quintet (L, , t, k, A), where k dim A. So
it follows, from Definition 3.6 and Note 3.10, that I[r, r2]l [r*,
in this case. Suppose that dimA dim C -t- 1. Let ra e [r, r2]. Then
ra is induced by (L, , t, k’, B) where k’ dim C or 1 -4- dim C and B C.
Iflc’ dimCthenB C. Ilk’ dimC+ l then r3 is the same as that
induced by (L, , t, k, A). So by an argument as above, it follows that
I[rl, r2]l 2 [r*, r*] in this case. Now the assertion follows.

Remark 3.18. Let (G, 1) be a compact group. Let . be a stronger group
topology on G than r. Then the quintet (L, , t, k, C) that induces r. on
G as in Note 3.12 has to be of the form (L, 6, t, 0, 0). So we write, (L, , t)
instead of (L, , t, 0, 0) in this situation and say that r2 is induced by the
triple (L, , t) instead of (L, , t, 0, 0, ).

LEMMA 3.19. Let (G, -) be a compact group. Let r2, r3 be group topologies
on G, which are stronger than rl Let r2 be induced by the triple (L, , t) and
r3 be induced by K, b, s). Then - r3 if and only if the following hold:

(i) K n L is open in both K and L or equivalently K/(K n L)
and L/ K n L) are finite.

(ii) (R’) (gnL) @6(R)
(iii) (Rt) c (KnL) @(R8)
(iv) s=t.
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Let conditions (i), (it) and (iii), (iv) hold. Then

(KnL) @(R) (KnL) @

from (it) and (iii). So from (i) we get that

(K nL) @ h(Rt) (K nL) @ ,(R)

is open in T and also r. Now from the structure theorem of locally compact
abelian groups, we get and r coincide on this open subgroup. So r. .
Conversely let T ra. Then K and L are both compact in r.
So K n (L "t- 4)(Rt) is compact in and hence c L. So

K n L .- ck( Rt) K n L.

So K n L is open in K in vs. So K/(K n L) is finite. Similarly L/(K n L)
is finite. Then (K n L) @ 4)(Rt) is open in T and hence in 3. Since k(R8)
is a connected subgroup in , we get

(R’) c (K n L) @ (R).
Similarly

(Rt) c (KnL) @

Then clearly from the structure theorem for LCA groups, we get s t.

THEOREM 3.20. Let G, rl) be a compact group and r a group topology on G
stronger than TI Let r be induced by (L, , n). Let rl and r2 be the respec-
tive quotient topologies on G/L from r and T by the natural map G ---) G/L.
Then [rl, r2] [r r] I. Moreover (G/L, r) is a compact group and
and r. a group topology on G/L stronger than - and r is induced by ({0},, n). So to prove the main theorem when (G, rl) is compact, it is enough to
do so with the extra assumption that L {0} where L, , n) induces r.

Proof. Now r.IL TIL since r is induced by (L, , n). So if
r e[rl, r.] then raiL rIL and hence L is compact in r. So if

G G/L is natural map from G onto G/L and r is the quotient topology
on G/L obtained from (G, r), we get that (G/L, ra is a locally compact
group. Clearly (G/L, r) is a compact group and (G/L, r) is a locally
compact group and r r and r e r]. So there is a mp

$ [TI T2] --+ [Tf T2

namely r -- r for 11 r e [rl, r]. Now we observe that if e [r, r] and
is induced by (H, , n), then H L and r is induced by (),(H),), o , n).
From this and using Lemma 3.19 we get the 1-1 nature of the map, .. Now
let r be an element of [r*, r*] induced by (K, b, t). Then an application of
Lemma 1.5 shows the existence of a continuous isomorphism

O Rt.__+ G

such that O(R) n H {0} and ),(0(R*) (R*) where H ,-(K). Then
it can be verified that H @ (O(R)) dp(Rn). So the triple (H, 0, t) gives
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an element rae[r, r.]. It is also easy to see that ra r. So,is onto.
So [rl, r2ll l[r, r]l i. Now the last remark is obvious whenwelook at
(G/L, r ).

COROLLARY 3.21. Let (G, r) be a compact group and . a stronger group
topology induced by (0, , n). Let H G be a closed subgroup in and hence
in . such that H (R) 10}. Let G -- G/H be the canonical map and

and the quotient topologies of and respectively in G/H by . For every
[ r.], let ra be its quotient topology in G/H.

* *] and the map [1, r] - [, r*] which takes to rThen ra [
is onto.

Proof. To prove this, we have to only imitate the last part of the proof of
Theorem 3.20.

LEMMA 3.22. Let G, rl) be a compact group with a stronger group topology
r. induced by (0, , n). If there exists a closed subgroup H in (G, rl) such that
[r, r*]l >_ c where r r= are the respective quotient topologies of r and r in

G/H, then [r r=] >_ c. So to prove the main theorem it is enough to do so
under the assumptions (G, r) is compact, r. is induced by (0, , n)
and l[r, r* < c for all closed subgroups H of G, r).

Proof. This is an easy consequence of Corollary 3.21, Theorem 3.20 and
Lemma 3.17.

DEfiNITION 3.23. Let (G, rl) be a compact group and r a stronger group
topology in G induced by ({0}, , n). We say that G satisfies condition (.)
if I[r, r*]l < c for all closed subgroups H of (G, r) where r and r are
as in Lemma 3.22.

Notation 3.24. Let (G, r) be a compact group and r,. a stronger group
topology on G induced by ({0}, , n). Then we sometimes say that r,. is
induced by O(R’) instead of by ({0}, , n).

LEMM 3.25. Let (G, r) be a compact group. Let r be a stronger group
topology in G induced by (R"). Let G satisfy condition (.). Let Go be the
connected component of 0 in G, r,). Then there exists a closed subgroup A of
G, rl) so that A n Go {0} and A @ Go is open in r

,
Proof. Let r r2 respectively be the quotient topologies of rl and r= in,

G/Go. Then r,. is discrete since (R) c Go. So [r’, r*] is just the set of,
all stronger group topologies on G/Go, stronger than r Since G satisfies
condition (.), (and Go is closed) the set of stronger group topologies on G/Go
is finite. So (G/G0, r) contains an open subgroup S which is topologically
isomorphic to I1, X X Ik where p, .-., p are distinct primes [5].
By taking the full inverse in G, we get an open subgroup H of (G, rl) con-

taining Go and such that H/Go is a finite product of p-adic integers. Now the
p-adic integers is projective in the category of compact groups. So H
A @ Go where A is as in the lemma. Hence the result.
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Note 3.26. In view of 3.25 and 3.11 to prove the main theorem, it is enough
to assume the following conditions"

(i) (G, rl) is of the form A @ Go where A is a finite product of distinct
p-adic integers and (G0, rl) is a connected compact group.

(it) 2 is induced by (R") and hence (R") c Go.
(iii) G satisfies (.).

LEMMA 3.27. Let (G, r) be a compact group of the form A @ Go where A,
Go are as in Note 3.26. Let r2 be a stronger group topology on G induced by
)(R). Let o be the dual of Go. Let o have rank >_ n + 2. Then

> c.

Proof. Now (Rn) is connected in (G, rl) and hence is contained in Go.
So by Lemmas 1.11, 1.12, 1.13 there exists at least continuum many iso-
morphisms , of Rn+ into (G, r) so that ,(Rn+l) (Rn) for all a and
b,(Rn+l) b(Rn+l) if a . For each such , we get a group topology
induced by [{0}, ,, n + 1] in [r, r2]. So [r, r.]l >_ c.

LEMMA 3.28. Lel G, rt) be a compact group and r a stronger group topology
on G induced by (R’). Let ra e [rl, r]. Then ra is induced by a triple
L, b, k) such that L (R) ( V) for some vector subspace V R and
L b(R) (V.) where V is a complementary vector subspace of V in R.
If further (G, -) is of the form A @ Go where A is a finite product of distinct
p-adic integers and Go is connected and rank o n, then ra is induced by
(L, ]) where . is the restriction of to V above and dim V k.

Proof. Now

4)" R’ --* G,

is a homeomorphism of R into G. So if r e [r, ], then R -- (G, )
is continuous. So if r is induced by (L, b, k), then (R) L @ (R).
Let r be the projection from L @ k(R*) onto (R). Let K R be the
kernel of r . Then K is a vector subspace of R", otherwise ((R*), r),
which is isomorphic to R, would contain a closed subgroup isomorphic to T.
Clearly L (R") (K). Hence the first part of the lemma follows. Let
now (G, r) be of the form A (R) Go as in the second part of the lemma. Let
rank of 0 n. Then R+ cannot be embedded into (G0, rl) by a continu-
ous isomorphism. But r is induced by (L, b,/c) where

Ln(R) (V) and L @ h(R) 4)(V2)

and V, V. are complementary subspaces of R". So dim V _</ by structure
theorem of locally compact abelian groups. But dim V cannot be
Otherwise by looking at b(V) k(R), we get that R"+ cn be embedded
into (Go, r) by continuous isomorphism, which is not possible. So
/ dim V.. So L @ (R) L @ (V2). Hence the second part follows.
Hereafter we shall follow the following"
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Convention 3.29. Let (G, rl) be a compact group. Let r2 be a stronger
group topology induced by (Rn). Let A be a vector subspace of R and L
a compact subgroup of (G, 1) such that L n (A) {0}. Let dim A
and the restriction of to A. Then (L, ,/) gives a topology 3 in [,
we say 3 is induced by L @ (A). Similarly let S be a closed subgroup of
(G, ) and M a subgroup of G so that M n S {0} and M is the range of
continuous isomorphism 0 of a vector group R into G. We say that S @ M
induces the topology given by (S, 0, t) in G.

LEMM_ 3.30. Let (G, ) be a compact group of the form A @ Go, where A
is a finite product of distinct p-adic integers, and Go is a connected group. Let
the rant of o be n -- 1. Let r be a stronger group topology induced by (R").
Let there be a continuous isomorphism 0 from R"+ into G. Then eery group
topology [, -] is induced by L @ M where L is a closed subgroup of
G, -) and M is a subgroup of G so that M L {0} and one of the following

holds:
(1) LaO(R) (V) and M (V) where V and V. are comple-

mentary subspaces of R’.
(2) L a O(R+) L a(R’) O(V) and M O(V) where V and V

are .complementary subspaces of R+.
Proof. If 3 e [, ], then ra is induced by (L, , ]c). Then

L n dp(Rn)

for some vector subspace of Rn, as in Lemma 3.28. Suppose Vs is a comple-
mentary vector subspace of V in R and k dim Vs. Then following the
proof of Lemma 3.28, we get that L + (Vs) L + (R). Tak-
ing M (V.) we see that case (i) occurs this time. Suppose k dim
Then we have that

O(Vs) O(Rn) L @ (R)
since r

_
r. But La(Vs) /0}. Hence dim /c

_
dim Vs. Since

rank 0 n 1, we have that R"+s cannot be continuously embedded in
(G, 1). But (V) @ (R) is clearly the image of a continuous isomorphism
ofR"-+wherel dim Vs. Son- l+/_ nl. So/dimV+ 1.
Since/ dim Vs, we must have that/ dim Vs - 1. Then(V) @ (R)
is a continuous isomorphic image of R+. So by Lemma 1.5 and 1.2, we have
that

0(R+1) (V1) @ (R).
Following the proof of Lemma 3.28, we see that the second case arises this
time.

LEMMA 3.31. Let (G, ’)be a compact group of the form A - Go and - a
stronger ffroup topology induced by (R), as in the previous lemma. Let the
dual o of Go have ran n or n - 1. Let be the dual of G, .) and 5 - R
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be the adjoint of. Let L be a compact subgroup of G, rl) and L" its annihilator.
Then L n (Rn) ( V) for some vector subspace V of R if and only if (L’)
is dense in a vector subspace. If (LI bl tc) induces a group topology r3 in
[r r.] and (L. b2 t2) induces r4 e [rl .] then ra r4 if and only if LI L
is of finite index in both L and L and k k Let L be a compact subgroup
of (G, rl). Then there exists a topology [r, ] induced by a triple of the

form (L, O, t) if and only if L (R) (V), for some vector subspace V of
R. In this case there can be at most two such topologies.

Proof. The first statement is an easy consequence of Pontrjagin’s duality
theorems. The second follows easily from Lemmas 3.30 and 3.19. The last
statement follows again by the same lemmas.

LEMMA 3.32. Let G, ) be a compact group of the form A @ Go and r a
stronger group topology induced by O(R’) as in Lemma 3.31. Let and 4 be
topologies in [ r] induced respectively by (L h) and (L2 t). Let
L and L be the annihilators of L and L. respectively in . Then r3 4 if
and only ifL L in the sense of Definition 2.1 and tl t

Proof. From Lemmas 3.19 and 3.31, we have that r3 4 if and only if
L1 a L is of finite index in L and L and h t.. Then by duality theorems
it follows that L1 L. is of finite index in both L and L if and only if Li L
is of finite index in both Li and L. Hence the lemma.

LEMMA 3.33. Let G, ) be a compact group of the form A @ Go and r a
stronger group topology on G induced by (R’). Let the rank of o be n or
n + 1. Let e be a canonical collection of dense subgroups of as in Definition
2.21. Then le <_ I[r, r.]] _< 2 le I.

Proof. This follows easily from Lemmas 3.30 and 3.31 and 3.32.

THEOREM 3.34. Let G be an abelian group with group topologies r and r
such that r

_
r: Then i[r r] is either finite or _c.

Proof. From Note 3.26 it is enough to prove our theorem when

(G, r) A @ Go,
where A is a finite product of distinct p-adic integers, and Go is a connected
compact group and r is induced by O(Rn) aS in Lemma 3.30. Let fi and 0
be the duals of A and Go. From Lemma 3.27, we get if rank 0 >_ n + 2 then
l[rl, r]] >_ c. Suppose that rank 0 nor n+ 1. Now the dualof
G is fi @ O0 and fl C(p) where pl, p, p are distinct primes.
For every subset S of {p, p:, ..., p} put Hs ,s C(p) if S 0
and {0} if S 0. Let e be the canonical collection of dense subgroups
of Go. Then from Theorems 2.23 and 2.20 we have that levi is finite or
>_c. If levi >- cthenLemma3.33givesthat[[r, r.]] >_ c. So letlell
be finite. Let {F1, F} be such a collection e. Then O0 has a type.
If

5((0)) n {p, p., p} 0
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then there are c subgroups for G and following the proof of Lemma 2.22, we
get that a canonical collection of dense subgroups of has at least c ele-
ments. So we will get that Iv1, r] -> c by Lemmu 3.33 if

5((0) n {pl, p,--’, p} 0.

Suppose now that 5(0) n {pl, p., pn} 0. Then by standard struc-
ture theorems in abelian groups we get that if M c is a subgroup then M
is equivalent in the sense of Definition 2.1 to a subgroup Ha @ M1 where
S c {p, pn} and M1 is subgroup of 0. So if we put

e {Hs- FiIS {pl, ,p,,} and i 1,2,

then e is a canonical collection of dense subgroups of . So
and hence is finite. So [r, r]l is finite by Lemma 3.33. Thus we get the
theorem.
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