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1. Introduction

If T is a transformation from a first measure space (S, 2;, tz) onto a second
measure space (S’, 2’, ’), and one wishes to transform a problem involving
integration in the second space to an equivalent problem in the first space, he
usually introduces a weight function W’ which assigns to each point s in
S’ a value reflecting its importance relative to the image under T of a subset
D of S which belongs to a class having suitable properties. For the case
when W’ is non-negative, quite general solutions to this question are known
[12], [14], [1], [3]. Brooks [2] introduced Banach-valued weight functions; as
a special case, signed weight functions may now be used when the spaces are
oriented. In this case it is natural to try to express such functions as the
difference of two non-negative weight functions [12], [11]. One obvious ap-
proach is to consider the total variations V’, together with the positive and
negative variations V$ and V’--, of W’ relative to and to seek conditions
which insure that these are non-negative weight tunctions for which the rela-
tions V’= V-q- V’--, W’= V-- V’-hold almost everywhere. This approach
is explored in [5], where it is shown that if W’ satisfies suitable relations uni-
formly with respect to , then such Jordan-type decompositions do exist for
W’. Each weight function W’ determines a weight W by the relation

W (D f, W’ D dt’.

Chaney [9] observed that when T is absolutely continuous witt respect to
these weights, it is possible to determine the weight function W’ from the
weights W. This suggests that in the absolutely continuous case, for
signed weight function W’ one might consider the variations of the weights W,
use the result of Chaney to associate weight functions with these and thus
obtain a Jordan-type decomposition of the weight function W’. This
proach is studied below. Because of the differences in the hypotheses and
in the approach, the results obtained here are neither included in nor include
the results obtained earlier by the authors in [5]. Our results lead to a trans-
formation formula for signed weight functions under more general conditions
than any heretofore known.
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2. The setting
In this section we list the standard hypotheses H1-H8 [14] under which the

theory is to be developed. For brevity, E, E’, D, B’, 0’ will be generic nota-
tions for sets belonging to 2, 2;’, , ’, (C)’ respectively.

HI, H2. (S, 2, t) and (S’, 2’, ’) are complete z-finite non-negative
measure spaces.
H3. T is a function (transformation) from S onto S’.
H4. is a subfamily of 2 containing 0 and S.

T 2/and the intersection of two sets from can be expressed as a counta-
ble union of disjoint sets from . S [J=l ,D., where t(.D) < o. If
E e 2 and E

_
,D., for some j, then for every > 0 there exists a disjoint

sequence {D} such that

E [JD and Zu (D) < t (E) + .
DEFINITIONS. A (D) (A* (D)) denotes the family of all finite (countable)

collections of disjoint sets in contained in D. A set E S is tm’-null if
E A1 u A., where t (A1) ’ (TA2) O. An element D is of type " if it
belongs to a countable partition of S, where the partition (empty set per-
mitted) consists of sets from and a gg’-null set.

Hh. Every member of D can be expressed as the union of a monotone
increasing sequence of sets of type ,.
H6. ’ is a sub-z-algebra of 2/. T-I 2;. For each E’ there exist

sets B, B such that B[

___
E’ B and u’ (B B) 0.

DEFINITIONS. ’ is the family of subsets 0’ of S’ such that T-IO is
countable union of disjoint sets from . 0’ is of type
countable partition (empty set permitted) of S’, where the partition con-
sists of sets from (C)’ and sets A’, C’ such that
is of type ’ if it is the union of a monotone increasing sequence of sets of type /’.

HT. S’ [Jj .0., where t’ (.0.) < oo for every j. If E’

___
.0., for

somej and u’ (E’) 0, then for every e > 0 there is a set 0’ such that E’

_
O’

and ’ (0’) < e.

HS. For every B’ there is a monotone decreasing sequence of sets E,
each of type ’, and g’-null sets M’, N’ such that ([E) u M’ B’ u N’.

The above hypotheses provide a setting in which absolute continuity can be
defined and transformation formulas can be derived. When S and S’ are
topological spaces and T is a continuous map, there is a theory [15] which
includes a large class of topological spaces satisfying H1-H8. For other
papers relating to transformation theory, the reader is referred to the bibliog-
raphy.

DEFINITIONS. A signed weight function (for T) is a real-valued function
W’ defined on S’ satisfying the following conditions"
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(1) IfDe,thenW’(.,D) 0a.e.’onS’- TD.
(2) If D e and Dj D, then lim. W’ (., D) W’ (., D) a.e. ’.
(3) If D e and {D.} A* (D) is such that D (J D is ’-null, then

W’(.,D) W’(.,Dj) a.e.’.
(4) For each D e , W’ (., D) is measurable.

A non-negative weight function (for T) is a non-negative function W satisfy-
,ng the above conditions, except (3) is replaced by the requirement that

W’ (., D)

_
W’ (., D) a.e. , whenever {D} A* (D). The term weight

function will refer to either of the above types of functions. If a signed weight
function is non-negative, then it is also a non-negative weight function [5, 1.7].

If W, W are weight functions such that W (., D)

_
W(., D) a.e. ’ for

every D, write W - W If W - W’ and W2 - W1, write W1 W2.

Remark. One can show that if W’ is a signed weight function and V is a
non-negative weight function such that V’ >_ W’, then V’ W’ is a non-
negative weight function for T.

3. Absolute continuity
DEFINITIONS. Let W’ be a signed weight function. We extend the notion

of bounded variation in [2] and say T is of bounded variation with respect to W’
(BVW’) if there exists a non-negative ’-integrable function K’ such that

W’ (., D) --< K’ a.e. ’ whenever {D} e * (S). T is absolutely contin-
uous with respect to W’ (ACW’) if T is BVW’ and there exists a -integrable
function f such that

f f d f W’ D d’ W (D for every(*) D.
D D

f is called a generalized Jacobian for T relative to W’ (the term gauge was
previously used). For brevity we write f J (W’). It follows hat J (W’)
is unique in the a.e. sense. W (D) is called the weight attached to D. If
W’ is a non-negative weight function and f is a non-negative function for
which (*) holds, then f is called a glbf W (see [14]), and we say that T is
ACW.
By an argument similar to the one in [2], it can be shown that f J (W’)

satisfies the following condition" if ’ (E’) 0, then f 0 a.e. on T-E’.
In the sequel, any function which satisfies this condition is said to satisfy
condition IN.
Suppose that W’ is a non-negative weight function. One can show that

if T is ACW and f is a glbf W, then W’ is a signed weight function, T is ACW’
and f J (W’).

4. Preliminaries

LEMMA 1. Let W W be signed weight functions for which T is both ACW
ACW Then there exists a function f such that f J (W; J (W) if and

if w;
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Proof. Sufficiency is obvious. To show necessity, since the difference
W’ W W is a signed weight function for which T is ACW’, it suffices
to prove that if for each D, fs, W’ (., D) dt’ 0, then for each D and every
E’, rE, W’ (., D) dt,’ 0. Use the methods employed in the proofs in [14;
4.6, 4.7, 4.8] to verify these equalities in three stages--first for sets O’ of type
’, next for sets E’ of type V, lastly for arbitrary sets E’.

LEM:MA 2. Let f be an extended real-valued #-integrable function defined on S.
For each D define afunction I (., D) on !3’ by

I (B’, D) nr-w f d#.

Then I (., D) is counlably additive. It is absolutely continuous with respect to
the measure t,’/3’ for each D if and only if f satisfies condition IN. Assume
that f satisfies IN. Then there exists a ’-integrable function W’ (., D) defined
on S’ such that

I(B’,D) fB, W’(.,D)

The function W’ is a signed weight function for T, T is ACW’, f J (W’).
Finally, W’ is unique in the sense that if W’. is any signed weight function for
which T is ACW’. and f J (W’.), then W’. W’.

Proof. Use the properties of the integral, the Radon-Nikodym theorem,
and the above lemma to construct a proof. Alternately, observe that if f
satisfies IN then so do fl and fl + fi and use the corresponding result for
non-negative functions established in [9, 4, 5] to devise a proof in the signed
case.

The preceding result has the following

ConoL,tnY 3. Let W’ be a signed weight function for which T is ACW’
and let f J (W’). Then

f dt W’( D) dt’, D .
NTIB

Given D, any collection {Dd in A* (D) for which D [JD is ,t,’-null is
termed an almost T parlition of D. Use an inductive argument to prove the
following"

LEMMA 4. If {D (h, i) 1 i}, 1 h <_ p, are p almost T partitions of D,
then there is an almost 7’ partition D (il, ip, /c)} of D such that for each
(h, i),
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is an almost T partition ofD (h, ih) andfor each set ih 1

_
h p}

{D (h, ih) 1 <_ h <_ p} [J{D (il i k) 1 <_

Let k (D) be the set of those collections {Di} in k (D) each of whose ele-
ments D is of type /. Use induction to show the following:

LEMMA 5. Every [D 1

_
i

_
m} in A (D) is a subset of an almost T

partition {Dk} of D.

DEFINITIONS. Let L be a real valued function on for which L (0) 0.
Designate by V (., L), V+ (., L), V_ (., L) respectively the total, positive
and negative variations of L on , having the extended real values

V(D,L) sup IL(D) I, V+(D,L) sup L(D),

where the sup is taken over sets {D} in A (D). From the definitions it follows
that V+/- < V _< V+ V_. A real-valued function L defined on is termed
inner continuous if D " D implies lim-L (Dj) L (D). When L is inner
continuous, the classes/ (D) determine V (D, L), V+/- (D, L). A real-valued
function L on is termed almost T additive if for each D and every almost T
partition {Di} of D, it is true that L (D) L (D). When L is almost T
additive, L(0) 0.

LEMMA 6. If L is a real-valued inner continuous almost T additive function
on , then V (D, L) V+ (D, L) + V_ (D, L Moreover, if either V+ (D, L)
or V_ (D, L) is finite, then both are finite and L (D) V+ (D, L) V_ (D, L).

Proof. If either of V+/- (D, L) is 0, the first equality follows. Otherwise,
let r+ be positive numbers such that r < V+/- (D, L), and choose {D+i} in
/(D) such that r+/- < +/- L (D+/-). Extend {D+} to almost T partitions
{D+/-k} of D, then choose an almost T partition {D} of D such that for each
k, {D "1 < l, m} is an almost T partition of D+e and for each
l, {D 1 _<_ k, m} is an almost T partition of D_. Use the almost T ad-
ditivity of L to obtain

L(D+) ,L(Di,) <_ {L(D)’.L(D,) > 0},

L (D-s) -n (Dk.,) < {n (D,) L (D,) < 0},

r+ + r_ < L(D)

_
V(D, L).

Thus V+ (D, L) -+- V_ (D, L) < V (D, L), and the first equality follows.

Next suppose that V(D, L) is finite. Consider any {D," 1 < i < m} in
/ (D) and extend it to an almost T partition {D} of D. Then

[L(D) 1 _< i < m} L(D) <L(D) __< L(D) -4- V_(D,L).
Hence V+(D, L) is finite, and V+(D, L) < L(D) -4- V_(D, L).
Similarly if V+ (D, L) is finite, then so is V_ (D, L), and V_ (D, L) _<
--L (D) A- V+ (D, L). This concludes the proof.
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THEOREM 7. Let f be a t-inlegrable function defined on S, and consider the
funclion L defined on by L (D fz f dt. Then L is inner continuous, and
V (D, L) <_ fl fldt. If f satisfies condition IN, then L is almost T additive
and

V(D, L)

Finally the variations V (., L ), V_ (., L) are also inner continuous and almost
T additive.

Proof. Use the above lemma, properties of the integrals and the variations
to see that all the conclusions in the theorem follow readily if one shows that
when f satisfies condition IN, then

Consider first the case when there is a j such that

(1) D

_
,D.,

where ,D is one of the sets described in H4. G-iven > 0, there is > 0
such that

(2) f.,Ifld, < e/4 if ,(M) <

Consider the measurable partition M+, M_ of D defined by

(3) M+ {seD f(s) >_ 01, M_ {stD f(s) < 0}.

Use H4, H5 to conclude that there are {D+ I _< i _< I+} in zX (D) such that

(4) u(M+/-/x U O,) < a/2.

Use (2), (3), (4) to conclude that

(5) L(D+,) -t- L(D_.) > j If d. e/2.

Extend {D+/-} to almost T partitions {D} of D; then choose an Mmost T
partition {Dt} of D such that for each /c {D. 1 <: l, m} is an almost T
partition of D+, for each {D,., 1 < /c, m} is an almost T partition of
D_,, and for each/, l,

(6) D+ n D_ U{D,, 1 _( m}.

From (5) one now obtains

" I.,(Dz,) 1 <_ tc <__ I+, <__ l, m}
(7) + , {I L (D,,)I" <_ <_ -, <_ , m} > l lfl d, /’2.

aD
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On the other hand,

V(D,L)
(s) -t IL(Dkzm) I" either 1

_
]c

_
I+ or 1 < I_, 1

_
m}.

Now the left side of (7) minus the right side of (8) equals

(9) {[L(D) ["

and in view of (6), the sum in (9) does not exceed

Relations (3), (4), (10) imply that u(M) < , wlmnce it follows from (7),
(8), (9), (10)that

Thus (0) is established when (1) holds.
Now consider the case when (1) does not hold.

D UD so that for eacit h there is a j (h) such that D+, .D/().
D as the union of disjoint sets M+ so that

(11) D UM, M) D ,Ds(+)

Given > 0, there is an integer p such that

(12)

Use (11), (12), H4, H5.to conclude that for erich h there re

such that

(13)

where

(14)

and

For each h extend

{D(h, ih)’l _< i Ihie A(Dh)

(MhA U D (h, i) < /2,

Use H4 to write
Express

flil lu < e/p if .(M) <

{D(h, i,)’1 __< it,

___
Ih}

to an almost T partition {D (h, i,) 1 _< ih} of D, and cttoose an almost T
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partition {D (il, i, k)} of D with the properties described in Lemma 4.
For each set (h, ih) designate by I (h, its) the set of indices

l < il,---, 1 < ih_l, 1 < i+,...,1 < i, 1 < k}.
Then

(i ,ip ,k) (h ,ih)

hence by (15)

E{E{fD(il ip,k)()
[fldu’I(h,i)}’l <_i<_I,1 <_h <_p}

> fo Ill dt e/2.

Let I designate the subset of {i, iv, k} for each of wtfich there is at least
one value of h such that I _< i _< Ih. Then

V(D,L) > {V(D(il, -.-,i,k) "I},
hence by the special case

(17) V(D,L) >_ -’{f,,(l ,)
If du "I}.

Clearly every term occurring in the right side of (17) occurs in the left side of
(16), and the left side of (16) minus the right side of (17) can be expressed as
the sum of not more than p (p 1)/2 terms, each having the form

{f= f l < h2 p}
where

M(h,h) [U{D(hl,i,) 1 i L,}]
n [U{D(h=, i) 1 i I}1

so that g (M (h,, h=) < 8. In view of (14), the value of the above difference
does not exceed e/2. Thus one concludes that

Y(D, L) > f. [f dg e.

Hence inequality (0) always holds.
By applying Lemma 6 and Theorem 7 to the weights, we derive"

ConoAnY 8. Let W’ be a signed weight function for which T is BVW’.
WThen the weights W (D f, D) du’ satisfy

V(D, W) V+(D, W) + V_(D, W), W(D) V+(D, W) V_(D, W).

Moreover, if T is ACW’ and f J (W’), then

V(D, W) f If] @, V+/- D W) f d, De.

THEOREM 9 (Jordan decomposition of signed weight functions). Assume
H1-HS. Let W’ be a signed weight function for T. Suppose that T is ACW’
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and f J (W’). Then there exist non-negative weigh! functions V’, V+ which
satisfy the following conditions:

(1) V’ V; + V’_, W’ V;- V’_.
(2) T is ACV and If[ is a glbf V, T is ACV+ and f+ is a glbf V.
(3) V (D f d V (D, W) Y+/- (D f) d V:e (D, W)
(4) If U’, U’ are non-negative functions on S’ X such that

v’_ w’ u’_ u’U’ U+ + U’+ and is a non-negative weight function for
which T is ACU, then U are non-negative weight functions for which T is
ACU: and U [-- V:.

Proof. Since f is a tt-integrable function on S satisfying condition IN,
satisfies condition IN. By the results in [9; 4, 5] (cf. the proof of Lemma 2),
there exists a non-negative weight function V’ such that for each D and every
B’

V’( D) d/z’

Since by Corollary 3,

fB, W’(.,D) d’

it follows tIat one may choose V’ _> [W’ [. Then let the equality in (1)
define V+/- and use Corollary 8 to show that (1), (2), (3) are satisfied.
Now let U’, U be as described in (4), and let g be a glbf U. Thus U’

is a signed weight function for which T is ACU’ and g J (U’). Hence
U are signed weight functions for which T is ACU=, and (g -+- f)/2
J (U:). Since the U+ are non-negative, it follows that U+/- are non-negative
weight functions for which T is ACU= and g f >_ 0 a.e. , or g >_ If[ a.e.
Thus U - V, and the proof is complete.

THEOREM 10 (transformation formula). Assume H1-HS. Let W’ be a
signed weight function for T. Suppose that T is ACW’ and f J (W’). As-
sume that H’ is a real-valued measurable function defined on S’. Then for each
D such that H’ Tf is -integrable on D it is true that H’W’ (., D) is ’-integrable
and the following transformation formula holds"

(#) f,H’ Tf d f, H’W’(.,D) d’.

Proof. Since f satisfies condition IN, the measurability of the functions
involved follows. Let V be the non-negative weight functions described in
the above theorem; then T is ACV+ and f are glbf V+/-. Since H’ Tf is
-integrable on D so are H’ Tf. By the results for non-negative weight
functions [14; 4], we conclude that H’V+(., D) are -integrable and

f) H’ o Tf: dt fs, H’V( ., D) dt’.

Now the conclusions follow.

Remarlc 1. Contrary to the situation for non-negative weight functions,
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the t’-integrability of H’W’ (., D) does not imply the t-integrability on D of
H’ Tf, as the example in Remark 1 in [4] shows.

Remark 2. For real-valued weight functions, this theorem generalizes
Theorem 3.2 of Brooks [2].
Remark 3. A proof of the above theorem can be given which avoids

Theorem 9. We very briefly indicate the proof. Assuming the hypotheses
in Theorem 10 and using the technique in Section 4 of [14] (the dominated
convergence theorem is used instead of the monotone convergence theorem),
one can obtain (#) for bounded and measurable H’. Since fi satisfies
condition IN, the method in [9] can be used to obtain a non-negative weight
function V’ such that T is ACV and Ill is a glbf V. Observe that one may
choose V’(., D) >_ W’(., D) I- The integrability of H’ o Tfl implies
the integrability of H’V’ (., D), which in turn implies the integrability of
H’W’. By using the fact that (#) holds for simple functions and the domi-
nated convergence theorem, one establishes the conclusion of the theorem.
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