CONTINUOUS REPRESENTATIONS OF INFINITE SYMMETRIC GROUPS ON REFLEXIVE BANACH SPACES

$\mathbf{B}\mathbf{Y}$

ARTHUR LIEBERMAN

Abstract

Let S be an arbitrary infinite set and let G be the group of finitely supported permutations of S; give G the topology of pointwise convergence on S. Let B be a reflexive Banach space and let Γ be a continuous representation of G on B such that $\|\Gamma(g)\| \leq M$ for all $g \in G$ for some fixed positive number M. Through the use of a canonically defined dense subspace of cofinite vectors, it is shown that Γ is strongly continuous and contains an irreducible subrepresentation. An equivalence relation of cofinite equivalence of representations is defined; if Γ is irreducible, then Γ is cofinitely equivalent to an irreducible weakly continuous unitary representation of G on a Hilbert space.

1. Introduction and notation

The author [1] has shown that any weakly continuous unitary representation of an infinite symmetric group on a Hilbert space is the direct sum of irreducible representations; these irreducible representations were explicitly constructed.

Below, we consider a weakly continuous uniformly bounded representation Γ of an infinite symmetric group on a reflexive Banach space B. We show that B contains a canonically defined dense subspace which is invariant under Γ ; a vector v is in this subspace iff it is invariant under the action of a certain type of subgroup. Γ is strongly continuous and contains an irreducible subrepresentation. If Γ is irreducible, then there is a unique (up to unitary equivalence) weakly continuous unitary representation Ω of G on a Hilbert space such that the restriction of Γ to its canonically defined dense subspace is algebraically equivalent to the restriction of Ω to its canonically defined dense subspace.

S will denote a fixed arbitrary infinite set and G will denote the group of those permutations Π of S such that $\{s \in S : \Pi(s) \neq s\}$ is finite. Give G the topology of pointwise convergence on S; G is a topological group but is not locally compact.

If B is a Banach space, then B' denotes the dual of B. If D is a subset of B, then sp(D) is the subspace of B that is spanned algebraically by D and cl sp(D) is the closure of sp(D);

$$D^{\perp} = \{ f \in B' : f(v) = 0 \text{ for all } v \in D \}.$$

A representation of G on the Banach space B is a homomorphism of G

Received August 2, 1971.

into the bounded linear operators on B. The representation Γ is weakly (strongly) continuous if $\Gamma(g)v$ is a weakly (strongly) continuous function of g for every $v \in B$; Γ is uniformly bounded if there is a real number M such that $\|\Gamma(g)\| \leq M$ for every $g \in G$.

If $T \subseteq S$, let

$$G_{T} = \{g \in G : g(s) = s \text{ if } s \notin T\}$$

and let

$$G^{T} = \{g \in G : g(s) = s \text{ if } s \in T\}.$$

Note that $G_{s-r} = G^r$.

DEFINITION. Let Γ be a representation of G on the Banach space B.

(1) Let $v \in B$. Then v is a cofinite vector for Γ if there is a finite subset T of S such that $\Gamma(g)v = v$ for all $g \in G$.^T The vector v is cofinite of type n if T may be chosen to have cardinal number n and if it is impossible to choose T with cardinal number less than n.

(2) Let v be a non-zero cofinite vector for Γ of type n. Then v is a minimally cofinite vector for Γ if no non-zero vector in cl sp $(\Gamma(G)v)$ is cofinite of type less than n.

(3) Γ is uniformly of type *n* if no non-zero vector in *B* is cofinite of type *m* with m < n and if cl sp({cofinite vectors of type *n*}) = *B*.

(4) If T is a finite subset of S, then

$$B_T = \{ v \in B : \Gamma(g)v = v \text{ for all } g \in G^T \}.$$

(5) B_{Γ} is the subspace of all cofinite vectors for Γ .

(6) Let D be a Banach space and let Ω be a representation of G on D. Then Γ is cofinitely equivalent to Ω iff there is a 1-1 linear mapping U from B_{Γ} onto D_{Ω} such that $U\Gamma(g)v = \Omega(g)Uv$ for every $v \in B$ and $g \in G$.

(7) A Banach space B is an \mathfrak{N}_1 space [2, p. 60] if there is an arbitrary index set Λ and a family $\{N_{\lambda} : \lambda \in \Lambda\}$ of finite-dimensional subspaces, directed by inclusion, whose union is dense in B and such that each N_{λ} is the range of a projection P_{λ} of norm one of B.

(8) Γ is completely decomposable [4, p. 230] if $\{v \in B : T(G) \text{ acts irreducibly on cl sp}(\Gamma(G)v)\}$ is dense in B.

Remarks. (1) Clearly cofinite equivalence is an equivalence relation on the set of representations of G on Banach spaces.

(2) It follows from [1] that two weakly continuous unitary representations of G are cofinitely equivalent iff they are unitarily equivalent.

(3) Complete decomposability as defined in definition 8 agrees with the usual definition in the case when Γ is a unitary representation on a Hilbert space.

Example. Let M_0 be a positive number and let m be a measure on S such that $M_0 \ge m(\{s\}) \ge 1/M_0$ for each $s \in S$. Let 1 , let <math>n be a positive integer, and let $B = L^p(S^n, m^n)$. Then B is a reflexive Banach space and

the canonical representation Γ of G on B, defined by

$$\Gamma(g)v(s_1, s_2, \cdots, s_n) = v(g^{-1}(s_1), g^{-1}(s_2), \cdots g^{-1}(s_n))$$

is weakly continuous and is uniformly bounded by M_0^{2n} .

If $v \in B$, then v is a cofinite vector for Γ iff there is a finite subset T of S such that support $(v) \subseteq T^n$. The non-zero vector v is minimally cofinite iff v is the characteristic function of $\{(s, s, \dots, s)\}$ for some $s \in S$.

2. Statement of the results

In the next section, the following theorems are proved.

THEOREM 1. Let Γ be a uniformly bounded weakly continuous representation of G on the reflexive Banach space B. Then

(1) B_{Γ} is dense in B,

(2) Γ is strongly continuous.

THEOREM 2. Let Γ be a uniformly bounded weakly continuous representation of G on the reflexive Banach space B. Assume there is a non-negative integer n such that Γ is uniformly of type n. Then Γ is completely decomposable.

If, in addition, $\Gamma(g)$ is an isometry for each $g \in G$ and there is a minimally cofinite cyclic vector for Γ , then B is an \mathfrak{N}_1 space.

THEOREM 3. Let Γ be a uniformly bounded weakly continuous representation of G on the reflexive Banach space B. Then Γ contains an irreducible subrepresentation.

THEOREM 4. Let Γ be an irreducible uniformly bounded weakly continuous representation of G on the reflexive Banach space B. Then there is a Hilbert space H and an irreducible weakly continuous unitary representation Ω of G on H such that Γ is cofinitely equivalent to Ω . Ω is unique up to unitary equivalence.

Remarks. (4) The theorems and their proofs hold, with trivial modifications, if Γ is an antirepresentation of G.

(5) If β is an infinite cardinal number, let G_{β} be the set of those permutations Π of S such that $\{s \in S : \Pi(s) \neq s\}$ has cardinal number less than β ; note that G_{β} is the group of all permutations of S if β is sufficiently large. Give G_{β} the topology of pointwise convergence on S. Theorems 1, 2, 3, and 4 remain valid if G is replaced by G_{β} . The proofs require trivial modifications.

3. Proof of the theorems

For the remainder of this paper, Z will denote the set of all finite subsets of S. If $Q \in \mathbb{Z}$, |Q| will denote the cardinal number of Q and \mathbb{Z}_Q will denote the set of all finite subsets of S - Q. Z and \mathbb{Z}_Q are directed sets with respect

452

to set inclusion as the partial order relation. If m is a non-negative integer, $S_m = \{Q \in \mathbb{Z} : |Q| = m\}.$

M will always denote a fixed real number such that $\| \Gamma(g) \| \leq M$ for all $g \in G$.

If Λ is an index set and $x_{\lambda} \epsilon B$ for each $\lambda \epsilon \Lambda$, then $x_{\lambda} = 0$ a.a. (almost always) if $\{\lambda \epsilon \Lambda : x_{\lambda} \neq 0\}$ is finite.

Proof of Theorem 1. (1) Let $f \in B'$, $f \neq 0$. Pick $w \in B$ so that f(w) = 1. By continuity, there is a neighborhood U of e such that real $f(\Gamma(g)w) > \frac{1}{2}$ if $g \in U$. Therefore, there is a finite subset T of S such that $f(\Gamma(g)w) > \frac{1}{2}$ if $g \in G^{T}$.

If $Q \in \mathbb{Z}_{T}$, let $R_{Q} = |Q| : \sum_{g \in \mathcal{G}_{Q}} \Gamma(g)$. Note that $\Gamma(h)R_{Q} = R_{Q}$ if $h \in \mathcal{G}_{Q}$. $||R_{Q}|| \leq M$. Therefore $||R_{Q}w|| \leq ||R_{Q}|| ||w|| \leq M ||w||$. Since *B* is reflexive, the ball of radius *M* in *B* is weakly compact. Consequently, there is a subnet $\{R_{Q} : Q \in \mathcal{Y}_{T}\}$ of $\{R_{Q} : Q \in \mathbb{Z}_{T}\}$, where $\mathcal{Y}_{T} \subseteq \mathbb{Z}_{T}$, such that $\{R_{Q}w : Q \in \mathcal{Y}_{T}\}$ converges weakly to a limit point *v*.

Let $g \in G^T$ be given. Let $Y = \{s \in S : g(s) \neq s\}$; then $Y \in \mathcal{Y}_T$.

 $\Gamma(g)v = \Gamma(g) \text{ weak } \operatorname{limit}_{q \in \mathfrak{Y}_T} R_q w$ $= \operatorname{weak } \operatorname{limit}_{q \in \mathfrak{Y}_T} \Gamma(g) R_q w$ $= \operatorname{weak } \operatorname{limit}_{q \in \mathfrak{Y}_T, q \supseteq Y} \Gamma(g) R_q w$ $= \operatorname{weak } \operatorname{limit}_{q \in \mathfrak{Y}_T, q \supseteq Y} R_q w = v.$

Consequently, v is a cofinite vector for Γ .

Let $Q \in \mathcal{Y}_T$. Then

real
$$f(R_Q w)$$
 = real $|Q| \vdash^{-1} \sum_{g \in G_Q} f(\Gamma(g)w) \ge |Q| \vdash^{-1} \sum_{g \in G_Q} \frac{1}{2} = \frac{1}{2}$.

Therefore real $f(v) \geq \frac{1}{2}$. Consequently, $(B_{\Gamma}) = 0$ and B_{Γ} is dense in B. (2) Let $x \in B_{\Gamma}$. Assume $x \in B_{T}$, where T is some finite subset of S. Then G^{T} is a neighborhood of e, and $\Gamma(g)x = x$ if $g \in G^{T}$. The strong continuity of Γ follows immediately from the density of B_{Γ} and the uniform boundedness of Γ .

Proof of Theorem 2. Let v be a non-zero cofinite vector of type n; assume $T \in S_n$ and $\Gamma(g)v = v$ for all $g \in G^T$. Let $D = \operatorname{cl} \operatorname{sp}(\Gamma(G)v)$. If $g \in G$, let $\Omega(g) = \Gamma(g) \mid D$.

Since G_T is a finite group, sp $(\Gamma(G_T)v)$ is a finite-dimensional subspace and consequently there is a positive integer m and subspaces D_{jT} , $1 \leq j \leq m$ of sp $(\Gamma(G_T)v)$ such that sp $(\Gamma(G_T)v) = \bigoplus_{1 \leq j \leq m} D_{jT}$ and $\Gamma(G_T)$ acts irreducibly on D_{jT} for $1 \leq j \leq m$. There are vectors v_j , $1 \leq j \leq m$, such that $v = \sum_{1 \leq j \leq m} v_j$ and $v_j \in D_{jT}$. Let $D_j = \operatorname{cl} \operatorname{sp}(\Gamma(G)v_j) = \operatorname{cl} \operatorname{sp}(\Gamma(G)D_{jT})$. To prove that Γ is completely decomposable, it suffices to prove that $\Gamma(G)$ acts irreducibly on D_j for $1 \leq j \leq m$. This will be proved by a sequence of lemmas; the hypotheses of Theorem 2 are assumed in these lemmas. The second conclusion of Theorem 2 is an immediate consequence of Lemma 3 and Lemma 5. Several of these lemmas are used in the proof of Theorem 4.

LEMMA 1. Let $Q \in S_n$ and $x \in B_Q$. Let Q_0 be a non-empty subset of Q. Assume $Q_0 = \{t_1, t_2, \dots, t_m\}$, where $t_j \neq t_k$ if $j \neq k$. For $1 \leq k \leq m$, let s_{kj} be a sequence of elements of S - Q. Assume $s_{kj} \neq s_{k'j'}$ unless k = k' and j = j'. Let $g_j = h_j \prod_{k=1}^m (t_k, s_{kj})$, where $h_j \in G^Q$, $h_j(s_{kq}) = s_{kq}$ for all j, k, and q, and $h_j^2 = e$. $((t_k, s_{kj})$ is the 2-cycle which interchanges t_k with s_{kj} .)

Then there is a subsequence g_{j_i} of g_j such that

weak
$$\lim_{i\to\infty} \Gamma(g_{j_i})x = 0$$
.

Proof. $\| \Gamma(g_j)x \| \leq M \| x \|$ for all j. Since B is reflexive, there is a vector $w \in B$ and a subsequence g_{j_i} of g_j such that

weak $\lim_{i\to\infty} \Gamma(g_{j_i})x = w$.

Pick $h \in G^{Q-Q_0}$ arbitrarily. Pick a positive integer p so that $h(s_{kj_i}) = s_{kj_i}$ if $1 \leq k \leq m$ and $i \geq p$.

$$\Gamma(h)w = \Gamma(h) \text{ weak } \liminf_{i \to \infty} \Gamma(g_{j_i})x$$

$$= \text{ weak } \operatorname{limit}_{i \to \infty} \Gamma(h)\Gamma(g_{j_i})x$$

$$= \text{ weak } \operatorname{limit}_{i \to \infty} \Gamma(g_{j_i})\Gamma(g_{j_i}hg_{j_i})x$$

$$= \text{ weak } \operatorname{limit}_{i \to \infty} \Gamma(g_{j_i})x$$

$$= w$$

since $g_{j_i} h g_{j_i} \epsilon G^{\mathbf{Q}}$ if $i \geq p$ and since $g_j^2 = e$ for each j.

Therefore $\Gamma(h)w = w$ if $h \in G^{Q-Q_0}$. Since $Q - Q_0$ has cardinal number less than n, this implies that w = 0.

LEMMA 2. Let W be a finite subset of S. Let

$$x = \sum_{\mathbf{Q} \in \mathfrak{S}_n} x_{\mathbf{Q}},$$

where $x_Q \in B_Q$ for each $Q \in S_n$ and $x_Q = 0$ a.a. Then

$$||x|| \geq M^{-1} || \sum_{Q \in \mathfrak{S}_n, Q \subseteq W} x_Q ||.$$

The subspaces B_Q , $Q \in S_n$, are linearly independent.

Proof. Let X be a finite subset of S such that $x_q = 0$ if $Q \in S_n$ and $Q \nsubseteq X$. Let $X_1 = X - W$. Assume $X_1 = \{t_1, t_2, \dots, t_q\}$, for some integer q, where $t_j \neq t_k$ if $j \neq k$. Let s_{kj} be a sequence in $S - (X \cup W)$ for each $k, 1 \leq k \leq q$; assume $s_{kj} \neq s_{k'j'}$ unless k = k' and j = j'.

Let $g_j = \prod_{k=1}^q (t_j, s_{kj})$. By repeatedly applying Lemma 1, obtain a subsequence g_{j_i} such that weak limit $_{i \to \infty} \Gamma(g_{j_i}) x_q = 0$ if $Q \in S_n$ and $Q \not \subseteq W$.

Then weak $\liminf_{i \to \infty} \Gamma(g_{j_i}) x = \sum_{Q \in \mathfrak{S}_n, Q \subseteq W} x_Q$. Therefore

$$\|\sum_{q\in \mathfrak{S}_n, q\subseteq \Psi} x_q \| \leq \sup_{1\leq i<\infty} \|\Gamma(g_{j_i})x\| \leq M \|x\|.$$

If $W \in \mathbb{Z}$ and $x = \sum_{Q \in S_n} x_Q$, with $x_Q = 0$ a.a., let

$$P_{W} x = \sum_{Q \in S_n, Q \subseteq W} x_Q.$$

 $P_{w}^{2}x = x$; $||P_{w}x|| \leq M ||x||$ by Lemma 2. P_{w} has been defined on the subspace spanned by the minimally cofinite vectors; consequently, P_{w} can be extended in a unique way to a linear operator on B; this operator is a projection and has norm $\leq M$. Note that

$$P_{W} x = \sum_{Q \in S_n, Q \subseteq W} P_Q x \quad \text{if } x \in B.$$

The range of $P_W = \operatorname{sp}(\{B_Q : Q \in S_n, Q \subseteq W\}) = \operatorname{cl} \operatorname{sp}(\{B_Q : Q \in S_n, Q \subseteq W\}).$

LEMMA 3. Let $x \in B$. Then strong $\lim_{w \in \mathbb{Z}} P_w x = x$. If $P_Q x = 0$ for all $Q \in S_n$, then x = 0.

Proof. Assume $x = \sum_{Q \in S_n} x_Q$, where $x_Q \in B_Q$ for each $Q \in S_n$ and $x_Q = 0$ a.a. Then $P_W x = x$ if $W \supseteq \bigcup \{Q \in S_n : x_Q \neq 0\}$. The result for a general vector x follows from the density of the subspace spanned by the minimally cofinite vectors and the uniform boundedness of the P_W .

LEMMA 4. Let $x \in B$ and $W \in \mathbb{Z}$. Then $P_W x \in cl \operatorname{sp}(\Gamma(G)x)$. If in addition $\Gamma(g)x = x$ for all $g \in G^W$, then $P_W x = x$.

Proof. Let $\varepsilon > 0$ be given. By Lemma 3, there exists $Y \in \mathbb{Z}$ such that $Y \supseteq W$ and $||x - P_Y x|| < \varepsilon$. By the proof of Lemma 2 and a weak compactness argument, there is a sequence $g_j \in G^w$ and an element $y \in B$ such that

 $y = \text{weak limit}_{j \to \infty} \Gamma(g_j) x$, and $P_W P_Y x = \text{weak limit}_{j \to \infty} \Gamma(g_j) P_Y x$.

However, $P_W P_Y x = P_W x$ and

$$||y - P_{w}x|| = ||y - P_{w}P_{y}x|| \le M ||x - P_{y}x|| < M\varepsilon.$$

Since $y \in cl$ sp $(\Gamma(G)x)$, it follows that $P_{W} x \in cl$ sp $(\Gamma(G)x)$.

Assume now that $\Gamma(g)x = x$ for all $g \in G^{W}$. Then $\Gamma(g_j)x = x$ for all j so that y = x. Then $||x - P_W x|| < M\varepsilon$ for arbitrary $\varepsilon < 0$, so that $x = P_W x$.

LEMMA 5. Assume now that x is a minimally cofinite vector for Γ , $X \in S_n$, $x \in B_x$, and cl sp $(\Gamma(G)x) = B$. Then $B_x = \text{sp}(\Gamma(G_x)x)$.

Proof. Let $y \in B_x$. Since x is a cyclic vector for Γ , if $\varepsilon > 0$ is given we can find a finite subset $\{g_i : 1 \leq i \leq k\}$ of G such that

$$\| y - \sum_{1 \leq i \leq k} \Gamma(g_i) x \| < \varepsilon$$

If $Q \in S_n$, let

 $k(Q) = \{i : 1 \leq i \leq k \text{ and } g_i(X) = Q\} \text{ and } x_Q = \sum_{i \in k(Q)} \Gamma(g_i) x.$

Note that $x_Q \in B_Q$, $x_Q = 0$ a.a., and $\sum_{Q \in S_n} x_Q = \sum_{1 \le i \le k} \Gamma(g_i) x$. Apply

Lemma 2 with W = X to obtain

 $M^{-1} \parallel y - x_{\mathbf{X}} \parallel \leq \parallel y - \sum_{\mathbf{Q} \in S_n} x_{\mathbf{Q}} \parallel < \varepsilon.$

Since $x_x \epsilon \operatorname{sp}(\Gamma(G_x)x)$, $y \epsilon \operatorname{cl} \operatorname{sp}(\Gamma(G_x)x)$. Since G_x is a finite group, sp $(\Gamma(G_x)x)$ is a finite-dimensional subspace of B and is therefore closed, so that $y \epsilon \operatorname{sp}(\Gamma(G_x)x) = \operatorname{cl} \operatorname{sp}(\Gamma(G_x)x)$.

LEMMA 6. Assume the hypotheses of Lemma 5. Assume further that $\Gamma(G_x)$ acts irreducibly on B_x . Then Γ is an irreducible representation of G.

Proof. Let $w \in B$ be any non-zero vector. By Lemma 3, there exists $Q \in S_n$ such that $P_Q w \neq 0$. By Lemma 4, $P_Q w \in \text{cl sp}(\Gamma(G)w)$. Pick $g \in G$ such that g(Q) = X. Then

 $\Gamma(g)P_{Q} w \epsilon B_{X}$ and $\Gamma(g)P_{Q} w \epsilon \operatorname{cl} \operatorname{sp}(\Gamma(G)w).$

Then

$$\operatorname{cl} \operatorname{sp}\left(\Gamma\left(G\right)w\right) \supseteq \operatorname{cl} \operatorname{sp}\left(\Gamma\left(G\right)\Gamma\left(g\right)P_{q}w\right) = \operatorname{cl} \operatorname{sp}\left(\Gamma\left(G\right)\Gamma\left(G_{x}\right)\Gamma\left(g\right)P_{q}w\right)$$
$$= \operatorname{cl} \operatorname{sp}\left(\Gamma\left(G\right)B_{x}\right) = B.$$

Since any non-zero vector in B is a cyclic vector for the representation Γ , Γ is irreducible.

Proof of Theorem 3. By Theorem 1 and the well-ordering of the non-negative integers, there is a non-zero $v \in B$ such that v is minimally cofinite for Γ . The subspace cl sp $(\Gamma(G)v)$ is invariant under $\Gamma(G)$ and by Theorem 2, the subrepresentation of Γ on cl sp $(\Gamma(G)v)$ contains an irreducible subrepresentation.

Proof of Theorem 4. Assume $x \in B$, $x \neq 0$, and x is a minimally cofinite vector for Γ . Assume x is cofinite of type n, $T \in S_n$, and $x \in B_T$.

It follows from Lemma 5 that $\Gamma(G_T)$ acts irreducibly on B_T . Since G_T is a finite group, there is a finite-dimensional Hilbert space H_T , an irreducible unitary representation Λ of G_T on H_T , and a 1-1 linear operator U_T from B_T onto H_T such that $U_T \Gamma(g)v = \Lambda(g)U_T v$ if $g \in G_T$ and $v \in B_T$.

By part Ib of Theorem 2 of [1], there is a Hilbert space H and an irreducible weakly continuous unitary representation Ω of G on H such that

(1) $H_T \subseteq H$ and $H_T = \{v \in H : \Omega(g)v = v \text{ for all } g \in G^T\}.$

- (2) x is a minimally cofinite vector for Ω .
- (3) $\Lambda(g) = \Omega(g) | H_T \text{ if } g \epsilon G_T.$

By Lemma 4 and Lemma 5, $B_{\Gamma} = \text{sp}(\Gamma(G)B_{T})$ and $H_{\Omega} = \text{sp}(\Omega(G)H_{T})$. Let $y \in B_{\Gamma}$. Then there is a finite subset \mathcal{Y} of S_{n} such that

$$y = \sum_{Q \in \mathcal{Y}} a_Q \Gamma(g_Q) x_Q,$$

where a_Q is a scalar, $g_Q \epsilon G$ and g(T) = Q, and $x_Q \epsilon B_T$, for each $Q \epsilon \mathcal{Y}$. Let $Uy = \sum_{Q \epsilon \mathcal{Y}} a_Q \Omega(g_Q) U_T x_Q$. The function U is well defined and satisfies the conclusions of the theorem; this may be shown by direct computation.

INFINITE SYMMETRIC GROUPS

References

- 1. A. L. LIEBERMAN, The structure of certain unitary representations of infinite symmetric groups, Trans. Amer. Math. Soc., vol. 164 (1972), pp.
- 2. J. T. MARTI, Introduction to the theory of bases, Springer-Verlag, Berlin, 1969.
- 3. I. E. SEGAL, The structure of a class of representations of the unitary group on a Hilbert space, Proc. Amer. Math. Soc., vol. 8 (1957), pp. 197-203.
- 4. K. SHIGA, Representations of a compact group on a Banach space, J. Math. Soc. Japan, vol. 7 (1955), pp. 224–248.

UNIVERSITY OF SOUTH FLORIDA TAMPA, FLORIDA