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Abstract. Two curves (boundaries of 2-dimensional disks) of constant
width in the plane, whose interiors intersect, must meet in an even or infinite
number of components. Some new constant width curves are constructed.
Corollaries and partial converses suggest several open questions.

1. Introduction

For the purposes of this paper, a convex curve is the boundary of a compact
convex disk with interior in the plane. Curves will be denoted by C, C etc.
and thedisks they bound byD ,D etc. respectively. If S is any set, cony (S),
the convex hull of S, is the minimal convex set containing S. A line m sup-
ports the convex set D (or the curve C) if it has a point in common with D
and D is contained in one of the two closed halfplanes determined by m. Any
convex set possesses two distinct support lines perpendicular to each direc-
tion; the distance between these support lines is the width of the set in the
perpendicular direction. If its width is the same in every direction, a curve C
(or. the disk D ) issaid to have constant width. Two convex sets share a support
line m if m supports both sets at a common point and both sets lie in the same
halfplane determined by m. Points p and p correspond on a convex curve C if
they are on parallel support lines. The diameter of a convex curve C is the
maximum distance between pairs of points on C. We also speak of a chord of
maximal length of C as a diameter. Two convex sets intersect properly if their
interiors intersect and neither is contained in the other.
A curve of constant width (we will take them all to have width w) is com-

plete in the sense that the addition of any point increases its diameter. Hence,
if C and C are curves of constant width w, and D D, it follows that
D =D. For, ifpeD-D,wehave

diameter [conv (D u P}] > w,

but, any subset of D can have diameter at most w. Each support line to a
curve of constant width meets it in a unique point and the chord joining cor-
responding points is always perpendicular to the support lines in question.
The distance between corresponding points is always w and the chord joining
them is always a diameter. Moreover, any two points at distance w are the
ends of a diameter and must correspond. Two diameters of a constant width
curve intersect inside or on the curve, and the latter occurs only at a corner
(a point at which there is more than one support line). All the points corre-
sponding to a corner of a curve of constant width w lie on a circle of radius w
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centered at the corner, and, if C contains an arc of a circle of radius w, all
points of that arc correspond to the same corner of C. A set D of constant
width w is the intersection of all circular disks of radius w centered in D. From
this it follows that any arc of a curve of constant width which contains a pair
of corresponding points determines the set completely.
Our main purpose is to establish the following curious property of curves

of constant width.

THEOREM 1. If C1 and C are eurves of constant width w and D1 and D
intersect properly, then the number of components of CI n C is even or infinite.

2. Proof of the theorem

If C and C are curves of constant width, a component I of C n C (neces-
sarily a single point or an interval) is a crossing component if for every 0
the neighborhood N (I, ) contains points of both D. D1 and D D.
Otherwise I is non-crossing component. If C and C intersect properly, we
will denote the number of components of C1 n C. by a (C, C). To show that,
if finite, a (C, C.) is even, we begin with a simple lemma.

LEMA. If p e I, a non-crossing component of C n C., C and C share a
support line at p.

Proof. Pick v > 0, so that the neighborhood N (I, e) misses
and let x e int (D1) nint (D:). The segment px contains a point

y e N (p, ) nint (D) n int (D.).

Clearly N (p, ) n DI D2. If m is a support line to D: at p which fails to
support D, there must be a point q e D on the opposite side of ra from x.
But then the segment yq meets N(p, ) in a point ofD D..
The converse of this lemma is not true, for two Reuleaux triangles may

cross at a pair of corners and share support lines at each corner.

Proof of the theorem. That the number of crossing components is even,
if it is finite, is obvious even for arbitrary convex curves. We need only show
that the number of non-crossing components is also even. This we will do
by showing that to each non-crossing component I, there corresponds a
unique different non-crossing component.

If p e I [x, y], where the closed interval I may degenerate to a single
point, we let m be a shared support line at p and p’ the corresponding point
on C1. Since the distance d (p, p’) w, p’ is also a corresponding point on
C. Hence p’ is on a component I’ of C n C., and I’ Ix, y], where x and
y’ correspond to x and y respectively. Since all diameters intersect in or on the
curve and some neighborhood N (x, ’) contains points of D D but not of
D. D, it follows that there is a neighborhood N (x’, ’) containing points
of D D but no points of D D. (If C1 is "outside" C at x, C is "out-
side" C at x. Moreover, if I I’, it is an arc of both C1 and C2 containing
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a pair of corresponding points. But then I determines each curve completely,
and C1 C in contradiction to our proper intersection. Hence the com-
ponent I’ is crossing if and only if I is crossing, and I I’. The non-crossing
components can thus be counted in pairs and the number of all components
is even.

It is worth noting that, although the result requires it, the pairing of non-
crossing components is not dependent upon finiteness of a.

3. Corollaries and converses

COROLLARY 1. If C is a curve of constant width and C’ a congruent copy of
C, then a (C, C’) is even or infinite.

COROLLnlY 2. If C is a curve of constant width w and S a circle of diameter
w, a (C, S) is even or infinite.

Each of these obvious statements offers a way of generalizing various prop-
erties of circles which appear to be shared by few other curves. No curves,
other than those of constant width, are known to enjoy either of these prop-
erties.
The direction of generalization to higher dimension is most unclear both

because the intersection of round spheres is connected in every dimension
but 2 and because the necessary properties of diameters do not generalize
in any obviously useful way.
We do know, however, that every even number 2]c can occur as a (C, C’)

and a (C, S) for a proper choice of C. In the case where k is odd, C can be
taken as a Reuleaux k-gon (we will consider the circle a Reuleaux 1-gon).
The position of C’ is determined by a 180 rotation about a point on an axis
of symmetry and close to but different from the center of the set. The same
point may be taken as the center o1 S. The situations for k 3 are exhibited
in Figure 1. For ] even, C may be taken as a Reuleaux (k - 1)-gon, C’ a

FGURE 1.



414 BRUCE B. PETERSON

FGURE 2.

FIGURE 3.

rotation through 180 about the center, and S concentric with C. The situa-
tions for ] 2 are exhibited in Figure 2.

It is worth noting here that a curve of constant width may have any
number of corners, and those for which the number of corners is even provide
another class of examples to achieve the results above. To construct these
curves, it is necessary only to repeat judiciously the following construction of
Sallee [6].

Pick two points xl and x2 on S, a circle centered at 0 of diameter w (The
circle is not crucial here. Any constant width curve would work, but we need
here only the simplest situation.) and such that the angle xOx <_ -/3.
Construct a circular arc of radius w centered at x, passing through the cor-
responding point x and lying on the opposite side of the hne xx from x.
Perform the corresponding construction with x: and let the arcs determined
this way intersect at y. With y as center, construct a circular arc of radius w
joining Xl and x and lying inside the circle S. The new curve $1 is formed by
replacing the smaller arc xx on S by this new arc and the smaller arc x x2 on
S by the small arcs xy and yx. (see Figure 3.) It is easy to see that S has
constant width and corners at each of the xi’s.
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Choosing small intervals xx and x x, the construction of S will not dis-
turb x. xa, so that we may, using it again, construct a new curve S with pre-
cisely 5 corners (see Figure 3). Clearly any odd number is possible, Now if
2k >_ 6, we may take small disjoint intervals on S and reiterate the construc-
tion so that one interval contributes 3 corners and the other 2] 3 to the
final curve.
To construct curves with 1 or 2 corners is somewhat more difficult, but can

be accomplished by the addition of curves with more corners, since the
sum curve has a corner on a support line in the direction if and only if each
of the summands has a corner on the support line in the corresponding direc-
tion and on the corresponding side. Clearly a Reuleaux triangle and an
"isosceles triangle" with a very small base (the curve S is one) can be arranged
(let the axes of symmetry coincide) so that precisely two corners corre-
spond. The sum curve will have one and only one corner. The same trick
can be used to construct a curve with precisely two corners. A much simpler
construction for curves with precisely four corners will follow immediately
from Theorem 2.

Clearly, the fundamental construction could be applied on a sequence of
disjoint intervals converging to a point x0 on S to produce a curve of constant
width S with infinitely many corners and such that each of a (S, S’) and
a(S, S) can be made infinite. See Figure 4.

Since the number of corners of any convex curve is always countable, and
since each corner corresponds to an arc of a circle, the worst possible set of
corners of a constant width curve C would be dense in an arc on C whose
endpoints correspond. It has apparentlynot been noted that this situation can
indeed occur. To construct the set we begin with a circle S centered at the

FIGURE 4.
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origin and an interval x0 xl on S so that x0 is the point with polar coordinates
(w/2, 0) and the angle xoOxl _< r/3. We will construct a curve C with
a corner on each of the lines 0 m, 0 _< m _< 1, m a dyadic fraction. This
curve C has corners at a dense subset of its arc [x0x], and, if r/3, x0
and x correspond.

In step 1, we construct a new curve St, replacing the arc XoX on S by a
new arc A lying inside S, using of course the same fundamental construction.
A third circular arc is constructed between A1 and S and also lying on x0

and xl. Halfway between this arc and A on the line 0 1/2, we pick the
point x/2. With x/. as center we construct a circle of radius w which cuts the
arcs xo y and yxt, added in the construction of S, in points y0 and yl respec-
tively.

In step 2, we modify S by the fundamental construction, adding the new
arc y0 yt and arcs of circles centered at y0 (and y) and passing through x0
and x/+ (and x/+ and xl). Clearly the new curve S has corners at x0, Xl/2,
and Xl. See Figure 5.
There is a circle on these three points. Between it and the arc xoxt/2 we

construct a circular arc on xo and xt/+. Halfway between this arc and $2
we pick the point x/4 on the line 0 +. Similarly, we find the point x/,

and, applying the fundamental construction twice more, produce a new
curve Sa with corners at Xo Xl/4, Xl/. x/4 x
The limit curve of the sequence {S} has the desired property since there

FmR 5.
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are distinct support lines to each corner of each curve in the sequence which
remain support lines to each succeeding curve.

Given two intersecting curves of constant width, another construction leads
to the following:

THEOREM 2. If C1 and C. are curves of constant width w and o (C1, C.)
n

_
4, there is a curve Ca of constant width w such that

D1 N D2 c Da, o(C1, Ca) n 2 and o(C2, Ca) 2.

Proof. First fix an endpoint xl of a component 11 of C1 fl C2 and, in
the obvious fashion, order the points of C1 by arc length measured in the
counterclockwise direction. We order the points of C2 similarly; the order-
ings coincide on C1 n C.. We choose xl so that 11 is a closed (possibly de-
generate) interval [xl, yl], xi _< yl. Proceeding around C1 in the counter-
clockwise direction, we let I. Ix2, y] be the component adjacent to I, so
that x y < x y.
Each of the intervals I and I contains no pair of corresponding points,

but, more importantly, we can choose them so that the entire interval [x, y]
contains no such pair from either curve. For, if I and I contain a pair of
corresponding points, we take the next component L and consider it with I.
If these two contain a pair of corresponding points, there is a point of I to
which correspond points of both I and I. This is impossible since these
two components are disjoint. Hence, if I and I contain such a pair of points,
I and I do not, and we can choose them to start our construction. We assume
now that I and I do not contain a pair of corresponding points.

If p e C C, we will denote a point corresponding to p on C by p’ and
write p p’. Similarly a point corresponding to p on C is p" and we write
p p". We assume without loss of generality, that C lies outside of C
between y and x (i.e. if z e C, y < z < x, there is a neighborhood of z
contained in D.) Since there may be more than one point y y, we pick

y max y [y y}, y min {y ]y y},

x max{xxx}, x min{x x x}.

With y as center we construct a circular arc A on y* and y. With x
as center we construct a circular arc A on x and x The curve Ca consists
of the arcs

*** A x y on Cyx on C, xy* on Ce, A, yx on C,

(Note that if, say, y e C n C, we may have yt < y* on C. To avoid
any difficulty here we will simply adopt the convention that arcs swept out
twice i. opposite directions are disregarded. See Figure 6.) From this
construction it is clear that Ca is a curve of constant width w and that
D D

Since I and I are adjacent and C lies inside C between them, and since
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FIGURE

Ca and C1 coincide between yl and x2, Ca lies inside C2 on that interval. By
construction Ca lies outside C between y** and x Since C8 coincides with
C elsewhere, the only components of C. n Ca are the intervals [x., y*] and
[x*, yl]. Hence a (C2, Ca) 2.
We have left only the computation of a (C1, Ca). To do this note that Ca

differs from C. only on the intervals [y 1, x2] and [y’*, x. Noting first that
two components Ii and I have become one in C1 n C by the addition of
[yl, x.], we distinguish three cases.

Case 1. y* y; x. x2 In this case, the angles y*yly* and
xx2 x. each contain one component of C1 n C. These are lost in the con-
struction, but [y’, x*] is added so that CI n Ca has precisely two fewer com-
ponents than CI C.

Case 2. y* y x2 x (or vice versa). Now only one component,
that in the angle y*yly, is lost, but, since x e CI a C., the component
[y, x*] is not new. Again the number of components is reduced by precisely
two.

Case 3. y* y[;x x2 In this instance, the addition of [y*, x*] to
construct C connects two existing components of C1 l C, reducing the num-
ber of components by one and making the total reduction precisely two.

Thus in any case a (C1, Ca) n 2. This completes the proof.
Figure 7 illustrates the construction in the case where C1 is a circle, C a

Reuleaux triangle, and n 6. In this case the intervals I1 and I2 are de-
generate. It is interesting to note this method incidentally produces an
easy ruler and compass (actually compass alone) construction of a curve of
constant width with precisely four corners.

Finally, we wish to note that converses to the two corollaries are available
for two special classes of curves.
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FIGURE 7.

THEOREM 3. If C is a curve with two unequal chords of lateral symmetry
(i.e. the reflection of C in the chord is C), then there is a congruent copy C’ of C
for which o (C, C’) is odd.

Proof. We need only place the smaller chord on the larger one so that a
pair of end points coincide. Except for this point, the other components of
C n C’ are paired by the double symmetry, so that the total number is odd.

THEOREM 4. If P is a convex polygon there is a congruent copy P’ of P such
that a (P, P’) is odd.

Proof. Place a vertex v of Q, a congruent copy of P, at the midpoint of a
side m of P so that the two sides of Q adjacent to v lie on the same side of m.
The polygon Q may be rotated about v to a position Q’ such that no side of
Q is parallel to a side of P and the sides of Q adjacent to v are still on the
same side of m. A slight translation of Q’ parallel to m, will move Q to a
position P’ such that no vertex of P’, other than v, is on P. Hence the only
components of P n P’ are crossing components, the number of which is neces-
sarily even, and {v}. Note that if P is an infinite convex polygon the theorem
still holds in the sense that, although possibly infinite, P a P’ consists of one
vertex plus a set of points which can be counted in pairs. This completes
the proof.

Whether the curves of constant width are the only curves with the properties
of Corollaries 1 and 2 is an open question. An affirmative answer would
generalize results of I ujwara [1] Kojima [3], Kubota [4], and Hombu [2],
to the effect that the circle is the only convex curve which coincides with itself
as soon as three points coincide.
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The referee has kindly pointed out that material related especially to the
properties in Section 1 and to Theorem 1 appears in a paper of E. Meissner,
Vierteljahrsschrift Naturforsch. Ges. Zurich 56, 1911.
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