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1. Introduction

The purpose of this paper is to classify all finite fusion-simple groups whose
Sylow 2-subgroups are the direct product of two semi-dihedral groups. We
prove the following"

THEOREM. If G is a finite fusion-simple group (02(G) G and
O(G) Z(G) 1) whose Sylow 2-subgroups are a direct product of two semi-
dihedral groups, then G possesses a normal, subgroup of odd index of the form
F1 X F2 where F

__
MI, La(qO q -1 (mod 4), or U3(qO, q 1 (mod 4),

i= 1,2.

In an unpublished paper John Thompson proved the following:

If T is a Sylow 2-subgroup of a nonabelian simple group G, T contains no
normal elementary subgroups of order greater than 4, No(T) TCa( T), and
Z( T) is noncyclic, then T T1 X T2 where T is a dihedral or a semi-dihedral
group, i 1, 2.

Our theorem, combined with the main results of [5] and [6], shows that
there is no simple group whose Sylow 2-subgroups satisfy the conditions of
Thompson’s result.

Since many of the arguments of this paper are quite similar to corresponding
ones in [6], we have omitted the proofs of some lemmas. It is thus necessary
that the reader is familiar with [6] and the notation and definitions in that
pgper.

2. Centralizers of involutions

Henceforth, G denotes a minimal counter-example to our theorem and S is
a Sylow 2-subgroup of G.
As in Section 3 of [6], we can find semi-dihedral subgroups $1 and S in S

such that S S X S and all the involutions and elements of order 4 in
are conjugate in G. Let (xl} Z(S1) and (y} Z(S.). Then the involu-
tions xl, y, and xy are mutually nonconjugate in G. It is easy to see that all
involutions and elements of order 4 in S: are conjugate in C Ce(x). An
analogous statement holds for Ce(yl). Let (xl, x2) be a four-group in
Then x2 is not conjugate in C to any invoIution in T T, X S where T1 is
a generalized quaternion group of index 2 in $1. It follows that C has a nor-
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mal subgroup E of index 2 and that T is a Sylow 2-subgroup of E. We now
apply the main result of [6] to El(xl)O(E), a fusion-simple group whose Sylow
2-subgroups are the direct product of a dihedral and a semi-dihedral group.
We conclude that C/O(C) has a normal subgroup of odd index of the
form (71 X (? where
rl --= 1 (mod 4) (using the results in Chapter 2 of [1], and C. Mm L(q),
or U3(q). A similar structure is possessed by Co(y1). We thus obtain

LEMMA 2.1. If C Co(x1) and C/O(C) then tas a normal subgroup
o 1 X 2 where 1 and have the following structures:

(i) 1 1 and 1 - SL-+(2,
(ii) . . and 2 Mn and q. 3, L3(q), q --1 (mod4), or

U,(q), q 1 (mod 4).
If D Co(y1) and D D/O(D), then D has a normal subgroup

Do D1 D where D1 and D have the following structures:
(i) 1 fgl and D Mn and ql 3, Ls(q), ql -1 (mod 4), or

U(q), q 1 (mod 4).
(ii) D. and D.._ SL+(2, q2) or SU+/-(2, q).
If B Co(x1 yl), then B (B n C n D)O(B).

Let C be the preimage in C of and define D similarly, i 0, 1, 2. We
use this notation for the remainder of the paper.
As a consequence of Lemma 2.1, we have

LEMMA 2.2. If X and Y are four-groups in SI and S respectively and
M Co(X), N Co(Y), 21 M/O(M), and 2 N/O(M), then

(i) ifI X f/I where . 21 and fI1 has a normal subgroup rio of
odd index isomorphic to C/O(C) and

(ii) 2 l? . where

_
21 and 21 has a normal subgroup 2o of odd

index isomorphic to D1/O(D).

In the remainder of the paper M denotes the preimage in M of 2t and N
is defined similarly in N, i 0, 1.

3. Subgroup structure of G
In this section H always denotes a proper subgroup of G, S n H is a Sylow

2-subgroup of H, and S n H contains an elementary abelian subgroup A of
order 16. We set X A n S, Y A n S., and denote the involutions in
X and Y by x and y respectively, i 1, 2, 3. As above x Z(S) and
yl Z(S).

LEMMA 3.1. If H has an isolated involution, then C(z) covers H/O(H)
for z x or y.

Proof. As Lemma 4.1 in 6.
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LEMMA 3.2. If H has no isolated involutions and J is a subgroup of H con-
taining 02(H)A such that J n $1 X J n S. is a Sylow 2-subgroup of J, then
,] J/O(J) has a normal subgroup of odd index of the form 21 X 22 where
(Si J)- is a Sylow 2-subgroup of 2 and 2 Mn, L3(ri), U3(r), AT, L2(ri),
PGL(2, ri), PGL*(2, ri) (described in chapter 2 of [1]), r odd, or a four-group,
i= 1,2.

Proof. As in Lemmas 4.2 and 4.3.

Next, we require results on the transitivity of maximal A-invariant p-sub-
groups of G, p an odd prime, under conjugation by No(A). If L is a simple
SD-group and Z is a four-group in L, then NL(Z) does not act transitively on
the set of maximal Z-invariant p-subgroups of L when p divides ICL(Z)I,
however if D is a Sylow 2-subgroup of NL(Z), then NL(D) does act transi-
tively on the set of maximal D-invariant p-subgroups of L for such a prime p.
Furthermore, every maximal Z-invariant p-subgroup is a maximal D-invariant
p-subgroup for some Sylow 2-subgroup D in NL(Z) when p divides C(Z) I.
As a consequence, it is necessary to make the following subdivisions.

Let be the set of all odd primes dividing the order of G. Let p and p2

be the set of odd primes dividing the orders of Co/O()(X) and Co/o(,)(Y
respectively. Now set

If T T n S X T n S is a 2-group in No(A) containing A and T T n Si,
i 1,2, then

Tev if T A, Ter2 if T X and T2 Y,

Ter if TX and T Y, Ter if T X and T. Y.

LEMMA 3.3. Suppose that T - and p e r for i 1, 2, 3, or 4. If T H,
then N,( T) acts transitively on the maximal T-invariant p-subgroups of H.

Proof. As in Lemma 4.4 of 6.

LEMMA 3.4. If p ’ and T e ri, 1

_
i

_
4 and if P and P are maximal

T-invariant p-subgroups of G, then one of the following holds:

(i) P1 P in No(T),
(ii) PloP2 1.

Proof. This lemma follows from the preceding and a standard argument.

LEMMA 3.5. Suppose that p e - and T r, 1 <_ i <__ 4. If P is a maximal
T-invariant p-subgroup of G such that

C( (x, y}) 1 for some x e X o Z( T), y e Ya o Z( T), j 1,2,

then P P in No(T).
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Proof. Let V be a maximal T-invariant p-subgroup of G containing a
maximal T-invariant p-subgroup of H Co( (x, y)) as well as Pjn H,j 1, 2.
Then V D__ P2 n H for some h e N(T) and we have P1 V1 V V. P2
in No(T).

LEMMA 3.6. Suppose Q 1 is an A-invariant p-subgroup, p an odd prime,
such that Q covers a maximal X-invariant p-subgroup of NolO(N) and a maximal
Y-invariant p-subgroup of Mo/O(M). If P is a maximal A-invariant p-sub-
group of G containing Q, i 1, 2, then P1 P. in No(A).

Proof. Assume that the lemma is false and choose P1 and P. so that
R P1 n P2 has maximal order. If J 02(No(R))A, we can assume that

J n S J n S:
is a Sylow 2-subgroup of J. Let U be a maximal A-invariant p-subgroup of
J containing P n J, i 1, 2. Then U1 U. in Nj(A) by our choice of R.
If J has an isolated involution z, the structure of Co(z) gives a contradiction.
Otherwise J/O(J) has normal subgroups 071 and ]2 as given in Lemma
3.2. Since 071 (J1 n No)-, 07. (J2 n M0)-, and Q R

___
O(J), we con-

elude that n 071 ]. 1, i 1, 2. It follows that

_
(Cj(A))- and thus,

that U1 U2 in Nj(A), a contradiction.

d. An A-si9n]izer funcfor
Our main goal in this section is to show that if for a e A, we set

O(Co(a)) (Co(a) n O(Co(x)) n O(Co(y)) Ix e Z, y Ya},
then 0 is an A-signalizer functor on G.

If K is an A-invariant subgroup of odd order in G and

K. K n O(Co(x) nO(Co(y)), x e X, y e Y,
then we say that K is XY-generated if

K (K.lxeX,yeY).

As an immediate consequence of this definition and the structures of involu-
tions we have

LEMMA 4.1. If R is an XY-generated p-subgroups of G and R

_
Co(a) for

some a e A, then R

_
O(C(a) ).

IEMMA 4.2. If R 1 is an XY-generated p-subgroup of G, p e r, 1 <_ i <_ 4,
and R Co(a) where a xl, yl, or xl yl, then for some T e r we can find a
T-invariant p-subgroup R1 of Co(a) such that

R

_
R, (x, y}

_
Z(T), and C,((x, y}) 1

for some x e X n Z( T), y Y n Z( T).
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Proof. By the preceding lemma, R

_
O(Co(a) ). Set

E O(Ca(a))O(C((xj, yl)))O(Y n Mo)O(M n No).

Let R1 be an A-invariant Sylow p-subgroup of E which contains R. Let Q
be a Tl-invariant Sylow p-subgroup of E where T1 is chosen in r such that
Z(T1)

_
(x, y). Since A

_
T1, we have Q R1 for some e e C(A). Then

T Ter and Z(T) (xj, y).

If p e p, then R n O(M n No) 1 and if p e p, then RI O(N Mo) 1.
It follows that

CR,((x,y)) 1 for some xeZ(T) X, yeZ(T) n Y.
We find it convenient to single out the following two primes. If NolO(N)

_
L3(ql), let p be the prime divisor of ql, if Mo/O(M)

__
L3(q), let p be the

prime divisor of q.

LEMMA 4.3. Let p e r and T e r, 1

_
i

_
4 and assune that p divides the

orders of both O(C) and O(D). If R is a T-invariant p-subgroup such that

CR( (x, y)) 1 for some x e X n Z( T), y e Y n Z( T),

then one of the following holds:
(i) X and Y centralize Sylow p-subgroups of 0(D) and 0(C) respectively.
(ii) There exist p-local subgroups H and K of G which cover NolO(N) and

Mo/O(M) respectively such that H K

_
PA where P is a maximal A-invariant

p-subgroup of G containing R.

Proof. We assume that (i) is false and that X does not centralize a Sylow
p-subgroup of O(D) (the argument being symmetrical). For definiteness set
x xandy y. Set T TnN0and T TnM0sothatXT,
Y T.,andT T T:.

Let R0 be a T-invariant p-subgroup of D containing both C,((xl, y)) and
a Sylow p-subgroup of O(D). Then D contains a p-local subgroup which
covers NolO(N) and contains RoT. Among all such p-local subgroups in G
choose H such that a T-invariant p-subgroup Po of H containing R0 has maxi-
mal order. Without loss we can assume that H FPoT, TO(H) F, and
in/ H/O(H) we have (F No)- --- No(/O(N) and/ -0 X .
If Q O(H) P0, then X does not centralize Q

_
Ro O(D), and we can

assume Q <:l H.
We consider first the case that P0 is not a maximal T-invariant p-subgroup

of G and let P denote a T-invariant p-subgroup of G properly containing and
normalizing P0. If p p, we apply Lemma 2.6 of [6] and contradict our
choice of H and P0. Thus p p pl.

Suppose that p p. and so T. Y. Now for some y e Y, U PoCe(y)
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P0. Since [U, y] [Q, y] is normal in F n No and is UT-invariant, we must
have [U, y] 1 by our choice of H. But then we can find a p-local subgroup
in Ca(y) containing UT and covering No/O(N), a contradiction. Thus
p e p2, Z(T2) (yl}, and T X X T2.

Let R1 be a T-invariant p-subgroup of C containing a Sylow p-subgroup of
O(C) as well as CR( (xl, y}). In C we can find a p-local subgroup which covers
Mo/O(M) and contains R1T. Among all such subgroups in G choose K such
that a T-invariant p-subgroup of K containing R1, P2, has maximal order.
Since T X, we can argue as above to show that P2 is a maximal T-invariant
p-subgroup of G.

Since P0 n P 1 and P. a R 1, we can assume that R P. and P0 P
by Lemma 3.4. The argument above also shows that Cp2(y) Po. Since
p p, Cp2(y covers a maximal Y-invariant p-subgroup of Mo/O(M). Since
H covers NolO(N), Po covers a maximal X-invariant p-subgroup of NolO(N).
If U and U are maximal A-invariant p-subgroups of G such that P0

___
U a U,

then U U in Na(A) by Lemma 3.6.
Among all p-local subgroups of G containing P0 A and covering No/O(N)

choose one with an A-invariant p-subgroup U containing P0 of maximal order.
The arguments above show that U is a maximal A-invariant p-subgroup of G.
Among all p-local subgroups of G containing P.A and covering Mo/O(M)
choose one with an A-invariant p-subgroup U of maximal order containing
P. Again U must be a maximal A-invariant p-subgroup of G. Since
U a U P0, U U for some g Na(A). This proves the lemma in the
case that P0 is not a maximal T-invariant p-subgroup.
We consider the case that P0 is maximal. Since P0 R 1, we can assume

that R P0. Let P. and K be as above. We can assume that K LP. T,
TO(K) L, and in/ K/O(K), L (L Mo)- Mo/O(M), and

LP. X . Since P a P0 1, we can assume that P2 Po. We
claim that P covers a maximal X-invariant p-subgroup of NolO(N) and a
maximal Y-invariant p-subgroup of Mo/O(M). This is clear if P P0.
If P P0, then p e p and Z(T) (x}. However in this case as above
Ceo(X) P and Ceo(x) covers a maximal X-invariant p-subgroup of
No/O(N). The argument in the preceding two paragraphs completes the
proof of the lemma.

LEMM 4.4 Let E be an A-invariant subgroup of odd order and assume that
AE H K where H and K are proper subgroups of G covering NolO(N) and
Mo/O(M) respectively. Then E is XY-generated if and only if E O(H)
o(g).

Proof. As Lemma 5.2 in [6].

Set K O(Ca(a)) for some a e A. Assume R 1 is an XY-generated
p-subgroup of K and for definiteness assume a e (x, y}. If X and Y cen-
tralize Sylow p-subgroups of O(D) and O(C) respectively, then R O(M)
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O(N) and every-subgroup of R is XY-generated by the preceding lemma. In
the contrary case, every A-invariant subgroup of R is XY-generated by Lem-
mas 4.2-4.4. Thus K satisfies condition (d) of Proposition 2.1 of [5]. Con-
ditions (a)-(c) follow as in Lemmas 5.3-5.5 in [6]. The arguments in
Proposition 5.7 and lemma 6.2 of [6] provide the following result"

LEMMA 4.5. The functor 0 is an A-signalizer functor on G and the group

W (O(C(a) a e A}
is of odd order. Moreover, every A-invariant subgroup of W is XY-generated.

5. Proof of the main theorem
Set I N(W). We shall show that I is a strongly imbedded subgroup of G.

Since G has no proper normal subgroup of odd index, being a minimal counter-
example, we need only show that Co(z) I for all involutions z in I.

LEMMA 5.1. The group I contains No(A), O(M), O(N), O(C(x)), a e X,
and O(C(y)), y e Y.

Proof. As in Lemma 6.1 of [6].

LEMMA 5.2. If R is an A-invariant Sylow p-subgroup of W, then N(R)
covers both Mo/O(M) and NolO(N).

Proof. We can assume R 1. By Lemma 4.5, R is XY-generated. Let
p e i, 1 <: i _< 4. If X and Y centralize Sylow p-subgroups of O(D) and 0(C)
respectively, then R O(C) n O(D), if Q is an A-invariant Sylow p-subgroup
of O(D) containing R, then C(Q) covers NolO(N). Similarly, No(R) covers
Mo/O(M). Thus we can assume this is not the case.
SinceR 1, we have C((x,y}) 1 for some x X, y e Y. Since

Nz(A) I, we can find T e ri such that Z(T) @, y} and such that R is
T-invariant.
By Lemma 4.3 we can find p-locM subgroups H and K of G such that H

covers NolO(N) and K covers Mo/O(M) and such that PA H K where
P is a maximal A-invariant p-subgroup of G containing R. We can assume that
H FPA, XO(H)

_
F, in I:I H/O(H), (F n No)- No/O(N), and

I (FP) and that K LPA, YO(K) Lin K/O(K), L
(L Mo)- Mo/O(M), and K (LP) ) X. We can also assume that
Q PO(H) <3 Handthat V P0(K) <3 K. By Lemma 4.4, R
Q n V <3,P.
Assume, by way of contradiction, that No(R) does not cover Mo/O(M).

The following results are proved under this assumption.

(a) We have p p (where p is defined immediately preceding Lemma 4.3.

Proof. If p p, then U P M0 covers a maximal Y-invariant p-subgroup
of rio Mo/O(M). Since R is a Sylow p-subgroup of W, No(R) N(Y)
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contains a subgroup Z such that 2 $4. By Lemma 2.3 of [6], 0 (, )
and (NMo(R))- o, contrary to our assumption.

b We have Y does not centralize V.

Proof. Else C,.(V) covers Mo/O(M) and since R

_
V, this is a contradic-

tion.

(c) Either X centralizes Q or p p (defined before Lema 4.3). In both
cases N(R) covers NolO(N).

Proof. If p p, we argue as in (a) to see that N(R) covers NolO(N).
Suppose that p pl and X does not centralize Q. By Lemma 2.6 of [6], we
conclude that J No(Z(J(P))) covers both Mo/O(M) a.nd NolO(N).
SinceR is a Sylow p-subgroup of O(J) by Lemma 4.4, Nj(R) covers Mo/O(M)
a contradiction. This proves (c).

Set

Ri=Rn0(Co(x)), Vi= Yn0(Ca(xi)) andV0= (Viii= 1,2,3}.

Since R is XY-generated, R V0.

(d) We have [R, L Mo] Vo.
Proof. Since Vi is normalized by L Mo, i 1, 2, 3, this is clear.

(e) We have Vo RC,(A).

Proof. If/-t H/O(C), we see that 1? O(C(i)), i 1, 2, 3. Thus
we have

o C,o() (Cvo(A)
since 0(Ca) (4)

___
0(C() ), x e X. It follows that

Yo Cvo(A)Q n V (Q V)Cv(A) RCv(A).

This proves (e).
(.) in C() correspond to C. in C,We now set C(i) Co(x) and we let
_

i 1, 2, 3;j 0,1,2.

(f) We have [(’o R] WC,(A)O(C(i)), [C), R] is of odd order, and

[Co() R] <3 [Co(i) R]R fori 1 2 3.

Proof. Since No(R) covers NolO(N) by (c), we have that if c e -0 then
c c c2 c where c e C (i) P()aNo(R),c., LaMo, andcO(C(). We
then have

R R (RC,(A))’
_

WC,(A)O(C()).
This is sufficient to prove (f).
We are now in a position to contradict our assumption that No(R) does

not cover Mo/O(M). If M (L a M0 C))[C1), R]R, then M is A-in-
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variant and covers Mo/O(M). If E1 M n L and U1 E n ([Co(1) R]R)
then R

_
U which is normal and of odd order in E and E covers Mo/O(M).

Let R1 be an A-invariant Sylow p-subgroup of U1 containing R and set
G1 NI(R1). Then G1 also covers Mo/O(M). Next, set

M= (GnMonC))[C) R]R, E=MnG and U=En([C) R]R)

Then R G U2 which is of odd order and normal in E. and since E D__ G1 n
M0 n C), E. covers Mo/O(M) Let R. be an A-invariant Sylow p-subgroup
of U2 containing R and set G2 N(R2). We then have G covers Mo/O(M)
andG GE2 G G1 GEl. Next, we set

M (GnMonC))[Ca),R]R, E MnG and U En([C),R]R).
Then R U which is of odd order and normal in E and since E D_ G2 n

C() E covers Mo/O(M). Let R be an A-invariant Sylow p-subgroup
of U containing R and set G N(Ra). Then G covers Mo/O(M) and
we have Ga

_
Ea

_
G:

_
E2

___
G

_
E
_

L. It follows that

[G, R] R n R n R n V.

Since R WC,(A) O(C()) and R R n W, we have R RC(x),
i 1, 2, 3. Since

[C), C.(x)] C0() n ([C), R]R)

which is of odd order, we conclude that C,(x) O(C (i)) and so

R R(Rn O(C()) ), i 1, 2, 3.

Set R0 R1 n R. n R n V. We claim that Ro

_
O(H). If FI H/O(H),

then
R c_ 0((,))

and so /0 d(Ca()), x e X. By Lemma 2.4 of [6], we conclude that
/0 1, as asserted. SinceR R0___ Vn O(H) Vn Q R, we see
that [G, R] R and since G covers Mo/O(M), we have a contradiction. It
follows that No(R) covers Mo/O(M) and a symmetrical argument then shows
that No(R) covers No/O(N). This proves our lemma.

LEMMA 5.3. If W 1, then I is a strongly imbedded subgroup of G.

Proof. Since I has even order and is a proper subgroup of G if W 1,
we need only show that Co(i) I for every involution i e I. By the pre-
ceding lemma we conclude that I covers both Mo/O(M) and NolO(N).
This and Lemma 5.1 imply that Ca(a)

_
I for all a e A. Since every in-

volution in S is conjugate in I to an involution in A, our lemma is proved.

PROPOSITION 5.4. We have O(Co(x)) n O(Co(y)) 1 for all x e X,
yeY.
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Proof. Clearly, it is sufficient to show that W 1. Since G has three
conjugacy classes of involutions, G does not possess a strongly imbedded
subgroup. By the preceding lemma, we conclude that W 1.
The proof of our theorem now follows exactly as in Section 7 of [6].
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