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Introduction
We apply a combinatorial identity (Proposition 1) to obtain two results.

First we characterize the class of finite groups such that similar permutation
representations contain the regular representation the same number of times
(Proposition 2), thus answering a question of S. Golomb [9]. Secondly we
obtain a relatively short and direct proof of the Brauer-Tate and Witt-
Berman theorems (Proposition 3).
The proof of these results uses the MSbius function of the lattice of sub-

groups of a group. P..Hall [4] and L. Weisner [8] have extended the MSbius
inversion formula from functions of integers to functions defined on locally
finite partially ordered sets, and their work has been generalized by G.-C.
Rota [7]. (A partially ordered set is locally finite if each interval [a, b]
cla <_ c <_ b} is finite.) The original MSbius function is multiplicative
on relatively prime numbers, and Proposition 1 is an extension of multi-
plicativity to a relation for the MSbius function of locally finite lattices.

Proposition 1 has also been obtained by Curtis Greene [10].

A combinatorial identity
The M6bius function of a locally finite partially ordered set is the unique

solution of
ca,blU(c,b) 1 ira b

(1)
=0 ifab.

See [7] for a complete exposition. By [7, 3 Proposition 3], g also satisfies

Zce[a,b] u(a, c) 1 if a b

=0 ifab.

PROPOSiTiON 1. Let L be a locally finite lattice with MSbius function #.

Suppose c [a, b]. Then

(2) (a, b) ,=,= f(a, g)(d, b)

where f is the MSbius function of
[a, d]* {e[e e [a, d], (e k/c) /% d e}.

An empty sum is zero.
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Proof. If c a, the sum in (2) equals f(a, b)t(b, b) t(a, b), and
similarly if c b. We may thus assume that a < c < b and that (2)
holds with a replaced by e for a < e <_ b. By a result of L. Weisner [8,
Theorem 10] [7, page 351],

(3) e[kc=a,ee[a,b] (e, b) O.

We complete the proof by solving (3) for (a, b), substituting the right hand
side of (2) with e in place of a and e /c in place of c for t(e, b) if e a,
reversing summation, and applying (3) for to show that the inner sum is
-f(a, d).
Now if L’ is L with the order inverted, L’ has the MSbius function u’(a, b)

t(b, a) [7, 3 Prop. 3]. Thus applying (2) to L’ gives a dual formula. Also
for d/c b, d/c a we may define

p" [c, b]-- [a, g], q" [a, d]-- [c, b]

by p(f) f/k d and q(e) e / c. Then p and q induce isomorphisms
between q(p([c, b])) and p(q([a, d])) [a, d]*. Thus (2) may be rewritten
with the MSbius function of q(p([c, b])) in place of

COROLLARY 1. Let L be as in Proposition 1. If tt(a, b) O, then for any
c e [a, b] there exists d such that c /d b, c/ d a, and t(d, b) 0,
and (by duality) there exists e such that c / e b, c/ e a and tt(a, e) 0.

COROLLARY 2. Let L be the lattice of subgroups of finite index in a group
G. Let N(H) be the normalizer of a subgroup H and define (N(H)"H) to
be the highest power of a prime p dividing the index (N(H)’H). Either
(N(H) :H) divides t(H, G) for all H e L or G has a factor group of order p.

Proof. Choose H of minimal index so that (N(H):H) does not divide
(H, G) and pick K satisfying H <_ K <_ N(H), (K’H) (N(H)’H).
Clearly H G. By (2), (H, G) equals the sum of t(H, R)t(R, G) over
allRsuchthatR/K G,R/K H. IfR Hoccurs, thenK G
and G has a factor group of order p. If not, K acts on {R} by conjugation.
Conjugation induces isomorphisms of intervals, and so by the uniqueness
of the MSbius function

p(H, R)t(R, G) f(H, R)t(R, G) for x e K.

Suppose T is the stabilizer of R;

(T:H) (TR:R)i (N(R)’R) It(R, G)

because R has smaller index than H. Summing over K orbits we obtain
(K’H) t(H, G).

DEFINITION. Let n be a positive integer, p a prime and G a group of
order g. G is n elementary with respect to p if G has a cyclic normal sub-
group M of order prime to p such that G/M is a p group and all nh roots of
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unity in M are in Z(G), the center of G. G is n elementary if it is n elemen-
tary w.r.t, p for some prime p. A 1 elementary group is called hyperelemen-
tary.

Remark. If F is a subfield of the complex numbers and n is the largest
divisor of g such that F contains all nth roots of unity, then n elementary is
the same as F elementary [1, page 71].

COROLLAaY 3. Let L be the partially ordered set consisting of a finite group
G and all subgroups hyperelementary with respect to a prime p. If G is not
hyperelementary w.r.t, p, then

(N(H) "H) p(H, G) for all H e L.

Proof. L is a lattice with the usual definition of / and / except that
H /K G if the subgroup generated by H and K is not in L. The pre-
ceding proof works; one need only notice that K and TR are in L, and that
the case R H cannot occur.

A question of S. Golomb
The question is which finite groups satisfy Proposition 2(a). Let

be the usual inner product of complex-valued class functions of a group H,
and recall that a generalized character is an integral linear combination of
characters of complex representations of a group.

LEMMA 1. Let L be a set of subgroups of a noncyclic finite group G, and
suppose L contains G and all cyclic subgroups of G. We have

(4) (R, G)rl 0
Gwhere r is the order of R, 1 is the principal character of R induced to G, and

is the MSbius function of L (partially ordered by inclusion).

Proof. Let 0 be the sum in (4). 0(x) is the sum over all y in Gof

’ (R, G); ’ means that the sum is over all R in L which contain x.
By (1), O(x) O.

PtOOSITON 2. G is a group of order g; is the M6bius function of the
lattice of subgroups of G. The following are equivalent"

(a) The character of each permutation representation of G determines the
number of orbits of length g.

(b) t(1, H) 0 for all noncyclic subgroups H.
(c) G has a complex-valued class function 0 such that (0, 1) 0 if

and only if H 1.
(d) Every subgroup of order the product of two primes is cyclic.

Proof. Suppose (a) is valid. By Lemma 1, (R, H)rl 0 with
R running over all subgroups of a noncyc]ic H <_ G. Thus (R, H)rl
0, and putting all negative terms on the right gives two permutation, repre-
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sentations with equal characters. Since only one of the representations can
have orbits of length g, (corresponding to the term t(1, H)I), we must
have (1, H) 0, and (a) implies (b).
Assume (b). (1, Hy) (1, H) for y e G because conjugation by y

includes an isomorphism between [1, Hy] and [1, HI, and t is uniquely deter-
mined by (1). Thus setting 0(x) equal to (1, (x}) divided by the number
of generators of the cyclic group (x} defines a rational-valued class function
on G. By (1)’ and (b), 0 satisfies (c). Further, if 0 is any choice for (c),
then the number of orbits of length g in a permutation with character x

aH 1 is al, which equals (x, 0)a divided by 0(1). Now we have that
(a), (b), (c), are equivalent.

(b) implies (d) because it is easy to show by computing t using (1) that a
group H of order pq, p and q two primes, is cyclic if (1, H) 0.

Finally suppose G satisfies (d). It suffices to show that G satisfies (b).
Because (d) is inherited by subgroups, we may assume (b) holds for
proper subgroups of G. Suppose G is solvable and let M be a normal sub-
group of prime order. By Corollary 1, (1, G) 0 and (b) holds unless
M has a complement H with t(1, H) 0. By assumption H must be cyclic,
and by a result of P. Hall [4] [7, page 349] H is generated by its subgroups
of prime order. Now (d) implies G is cyclic and (b) is valid. If G is not
solvable, then since all Sylow subgroups of G are cyclic or quaternion, G
must have a quaternion Sylow 2 subgroup Q. Any two distinct involutions
generate a dihedral group, which has a noncyclic subgroup of order pq. Hence
G has a normal subgroup N of order 2. N cannot have a complement in G
because it does not have one in Q. Thus (1, G) 0 and we are done.

For solvable groups (d) is equivalent to saying that G is a Frobenius com-
plement [6, page 228]. The only nonsolvable Frobenius complement is essen-
tially SL (2, 5) [6, Theorem 18.6], and it can be shown that the nonsolvable
groups satisfying (a) are essentially {SL(2, q) q is a Fermat prime}. By
[3], G is essentially SL (2, q), and by [5, II, 8], (d) forces q to be a Fer-
mat prime.

The Witt-Berman induction theorem
We give a short proof of the main step in the proof of the above theorem

(see [1, 15.5]).

PROPOSITION 3. Let Q(n) be the rationals with an nth root of unity adjoined.
The principal character, la, of a group G of order g is an integral linear com-
bination of characters induced by characters of degree one which are defined on
n elementary subgroups and afforded by Q(n).

Proof. It suffices to show that for each prime p dividing g the conclusion
holds for mla where g pare, p X m. The proposition follows because la
is a linear combination of {mla}. We may assume G is not n elementary with
respect to p. If n 1, pick L as in Corollary 3. Combining terms for
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conjugate subgroups in (4) and applying Corollary 3 yield ’ an 1a 0
with H e L, plan, and aa g. Thus we can solve for mla with integer
coefficients. Now we may assume n > 1 and G hyperelementary w.r.t.p.
We argue by induction on g; g 1 is trivial. If G is n elementary w.r.t, p,
there is nothing to prove. If not, there is an nth root of unity x e M, x Z(G)
(see the definition). Because p is prime to the order of M, we can find a
factor group P.N a semidirect product with P a p group, N of prime
order q n, and P acting faithfully on N [2, page 174]. Let x be a sum of P
orbit representatives of the nonprincipal one dimensional characters of N.
We have 1 1P xN. Thus lo 1 x for some proper subgroups
R, S of G. We complete the proof by applying the proposition to 1R and
ls and multiplying the equation for
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