SEQUENCE MIXING AND α-MIXING

BY
J. R. Blum, ${ }^{1}$ S. L. M. Christiansen and D. Quiring
\section*{1. Introduction}

Let (Ω, a, m) be a probability space and let τ be a bimeasurable, invertible transformation mapping Ω onto Ω. All sets discussed throughout will be assumed to be elements of $Q . \quad \tau$ is measure-preserving if $m(\tau A)=m(A)$ for all A, it is ergodic if

$$
\lim (1 / n) \sum_{j=0}^{n-1} m\left(\tau^{j} A \cap B\right)=m(A) m(B) \quad \text { for all } A \text { and } B
$$

it is weak mixing if

$$
\lim (1 / n) \sum_{j=0}^{n-1}\left|m\left(\tau^{j} A \cap B\right)-m(A) m(B)\right|=0 \quad \text { for all } A \text { and } B
$$

and strong mixing if

$$
\lim m\left(\tau^{n} A \cap B\right)=m(A) m(B) \quad \text { for all } A \text { and } B
$$

Since weak mixing already implies that $\lim m\left(\tau^{n} A \cap B\right)=m(A) m(B)$, except possibly along a sequence of asymptotic density zero (which may depend on A and B), it might be supposed that there is no room between weak mixing and strong mixing. At a symposium on ergodic theory held at Tulane University in October 1961, one of the authors proposed the notion of sequence mixing. $\quad \tau$ is sequence mixing if for every A with $m(A)>0$ and every infinite sequence of integers $\left\{k_{n}\right\}$ we have $m\left(U \tau^{k_{n}} A\right)=1$. It is trivial to verify that strong mixing implies sequence mixing but for a number of years it remained an open question whether the converse holds. Recently Friedman and Ornstein, [2] showed that this is not the case. They define a transformation τ to be α-mixing for $\alpha \in(0,1)$ if

$$
\liminf _{n} m\left(\tau^{n} A \cap B\right) \geq \alpha m(A) m(B) \quad \text { for all } A \text { and } B
$$

and show that for every $\alpha \in(0,1)$ there exist transformations which are α-mixing but not ($\alpha+\varepsilon$)-mixing for any $\varepsilon>0$. Thus we may suppose that for every $\alpha \in(0,1)$ there exists an α-mixing transformation and sets A and B with $m(A)>0, m(B)>0$ and $\liminf _{n} m\left(\tau^{n} A \cap B\right)=\alpha m(A) m(B)$.

In this paper we construct a transformation which is sequence mixing but not α-mixing for any $\alpha \in(0,1)$. It follows from the lemma below that α-mixing implies sequence mixing and it follows from [1] that sequence mixing implies weak mixing. Therefore α-mixing is strictly between weak and strong mixing. Also Friedman [3] gives an example of a weak mixing transformation T such that for some set A with $0<m(A)<1$ we have

[^0]$\limsup _{n} m\left(T^{n} A \cap A\right)=m(A)$. It is easy to see that such a transformation cannot be sequence mixing. Thus sequence mixing is strictly between weak mixing and α-mixing.

2. A sequence mixing transformation

We begin with a
Lemma. τ is sequence mixing if and only if for $m(A)>0, m(B)>0$ we have

$$
\liminf _{n} m\left(\tau^{n} A \cap B\right)>0 .
$$

Note that the lemma shows at once that α-mixing implies sequence mixing. To prove the lemma, suppose there exists A with $m(A)>0$, and an infinite sequence of integers k_{1}, k_{2}, \cdots such that $m\left(\cup_{n} \tau^{k_{n}} A\right)<1$. Let $B=\left(\mathrm{U}^{k_{n}} A\right)^{c}$ to obtain

$$
\liminf _{n} m\left\{\tau^{n} A \cap B\right\}=0
$$

Conversely pick a sequence $\left\{k_{n}\right\}$ so that $\sum_{n=1}^{\infty} m\left\{\tau^{k_{n}} A \cap B\right\}<m(B)$. Then clearly $m\left\{\mathrm{U}^{k_{n}} A\right\}<1$. This proves the lemma.
Now let I be the unit interval, B the Borel sets of I, and let m be the Lebesgue measure. Let (Ω, \propto, μ) be the measure space obtained by taking infinitely many copies of I and endowing it with the usual product field and product measure. We shall call $A \in \mathbb{Q}$ a cylinder of dimension N if

$$
A=A_{1} \times A_{2} \times \cdots \times A_{N} \times I \times I \times \cdots
$$

for some integer $N>0$, where $A_{i} \in \mathbb{B}$ for $i=1, \cdots, N$. Let a_{0} be the algebra of sets consisting of finite unions of cylinders, so that \mathbb{Q} is the smallest σ-algebra of sets containing \mathbb{Q}_{0}. Then for $A \in \mathbb{Q}$ and $\varepsilon>0$ it is possible to find $A_{0} \in Q_{0}$ with $\mu\left(A \Delta A_{0}\right)<\varepsilon$, where $A \Delta A_{0}$ is the symmetric difference of A and A_{0}.
To define our transformation we begin by choosing $\alpha \in(0,1)$ and τ to be α-mixing on I, with the property that there exist $A \subset I, B \subset I$ with $m(A)>0$, $m(B)>0$ and

$$
\liminf _{n} m\left(\tau^{n} A \cap B\right)=\alpha m(A) m(B)
$$

Now if $x=\left(x_{1}, x_{2}, \cdots\right) \in \Omega$ we define $T(x)=\left(\tau\left(x_{1}\right), \tau\left(x_{2}\right), \cdots\right)$. Clearly T maps cylinders onto cylinder and since τ preserves m it follows that T preserves μ on cylinders, and from this it follows easily that T is measure preserving for μ.
Now let A and B be subsets of I with the above property that

$$
\liminf _{n} m\left\{\tau^{n} A \cap B\right\}=\alpha m(A) m(B)
$$

For integers $k \geq 1$ define $A^{(k)}$ (similarly $B^{(k)}$) by

$$
A^{(k)}=A \times \cdots \times A \times I \times \cdots \quad(k \text { factors of } A)
$$

Then
$T^{n} A^{(k)} \cap B^{(k)}=\left(\tau^{n} A \cap B\right) \times \cdots \times\left(\tau^{n} A \cap B\right) \times I \times \cdots$
(k factors of $\tau^{n} A \cap B$)
and it is easily verified that

$$
\mu\left(T^{n} A^{(k)} \cap B^{(k)}\right)=\left[m\left(\tau^{n} A \cap B\right)\right]^{k}
$$

Hence

$$
\liminf _{n} \mu\left(T^{n} A^{(k)} \cap B^{(k)}\right)=[\alpha m(A) m(B)]^{k}
$$

Thus we see that T cannot be α-mixing for any $\alpha \in(0,1)$.
Next we show that T is sequence mixing. Choose A and B with $\mu(A)$ and $\mu(B)$ positive. From the lemma it will be sufficient to show that

$$
\liminf _{n} \mu\left(T^{n} A \cap B\right)>0
$$

Let $\left\{\beta_{i}, i=1,2, \cdots\right\}$ be a sequence such that $0<\beta_{i}<1$, all i and such that

$$
\prod_{i=1}^{n} \beta_{i}=\gamma>\frac{3}{4}
$$

Let $C_{1} \in Q_{0}$ be such $\mu\left(C_{1} \Delta A\right) \leq\left(1-\beta_{1}\right) \mu(A)$, and suppose that C_{1} is a cylinder set of dimension N_{1}. Then $\mu\left(C_{1} \cap A\right) \geq \beta_{1} \mu(A)$. Let $A_{1}=C_{1} \cap A$ and find $C_{2} \in \mathbb{Q}_{0}$ with

$$
\mu\left(C_{2} \Delta A_{1}\right) \leq\left(1-\beta_{2}\right) \mu\left(A_{1}\right)
$$

and so that $C_{2} \subset C_{1}$. Again note that $\mu\left(C_{2} \cap A_{1}\right) \geq \beta_{2} \mu\left(A_{1}\right) \geq \beta_{1} \beta_{2} \mu(A)$.
Proceeding inductively we define C_{k} and A_{k-1} so that $C_{k} \subset C_{k-1}$, with C_{k} a cylinder set of dimension N_{k}, and such that $\mu\left(C_{k} \Delta A_{k-1}\right) \leq$ $\left(1-\beta_{k}\right) \mu\left(A_{k-1}\right)$, which in turn implies that

$$
\mu\left(C_{k} \cap A_{k-1}\right) \geq \prod_{i=0}^{k} \beta_{i} \mu(A)
$$

Then define

$$
A_{k}=C_{k} \cap A_{k-1}
$$

Let

$$
C_{\infty}=\bigcap_{k=1}^{\infty} C_{k} \quad \text { and } \quad A_{\infty}=\bigcap_{k=1}^{\infty} A_{k}
$$

Now

$$
\liminf _{n} \mu\left(C_{k}\right)=\liminf _{n} \mu\left(A_{k-1}\right) \geq \gamma \mu(A)
$$

Hence $\mu\left(C_{\infty}\right)=\mu\left(A_{\infty}\right) \geq \gamma \mu(A)$. Clearly $C_{\infty} \subset A$ except for a null set.
We shall now describe a specific possible construction of the C_{k} which we shall use. For each k, let $C_{k}=\bigcup_{i} C_{k, i}$ where i is in a finite index set and such that

$$
C_{k, i}=E_{1}^{(k, i)} \times E_{2}^{(k, i)} \times \cdots \times E_{N_{k}}^{(k, i)} \times I \times I \times \cdots
$$

Then $C_{k, i}=G_{k, i} \cap H_{k, i}$ where

$$
G_{, l i}=E_{1}^{(k, i)} \times \cdots \times E_{N_{1}}^{(k, i)} \times I \times I \times \cdots
$$

and
$H_{k, i}=I \times \cdots \times I \times E_{N_{1}+1}^{(k, i)} \times \cdots \times E_{N_{k}}^{(k, i)} \times I \times I \times \cdots$
(N_{1} initial factors of I).

In this construction we can choose the $G_{k, i}$ so that for fixed k and arbitrary i and j we have $G_{k, i}=G_{k, j}$ or $G_{k, i} \cap G_{k, i}=\emptyset$. This can always be accomplished by breaking up each $C_{k, i}$ into several pieces when necessary. Since $C_{k} \subset C_{1}$ for all k we have $U_{i} G_{k, i} \subset C_{1}$. Now define

$$
J_{k}=\left[i \mid \mu\left\{\cup_{G_{k, j}-G_{k, i}} H_{k, j}\right\} \geq 2 \gamma-1\right]
$$

Then

$$
\begin{aligned}
\gamma \mu\left(C_{1}\right) \leq \mu\left(C_{k}\right) & =\mu\left(\bigcup_{i} C_{k, i}\right)=\mu\left(\cup_{i} G_{k, i} \cap H_{k, i}\right) \\
& \left.=\mu\left(\bigcup_{i \in J_{k}} H_{k, i}\right)\right)+\mu\left(\bigcup_{i \in J_{k}}\left(G_{k, i} \cap H_{k, i}\right)\right) \\
& \leq \mu\left(\bigcup_{i \in J_{k}} G_{k, i}\right)+(2 \gamma-1) \mu\left(\bigcup_{i \in J_{k}} G_{k, i}\right) .
\end{aligned}
$$

$$
\gamma \mu\left(C_{1}\right) \leq \mu\left(\cup_{i \in J_{k}} G_{k, i}\right)+(2 \gamma-1)\left(\mu\left(C_{1}\right)-\mu\left(U_{i \in J_{k}} G_{k, i}\right)\right)
$$

By a simple rearrangement we have

$$
\frac{1}{2} \mu\left(C_{1}\right) \leq \mu\left(\cup_{i \in J_{k}} G_{k, i}\right)
$$

Now we can make precisely the same constructions for the set B as we have done for A and we shall denote all sets constructed by superscripts A and B respectively. Moreover we can arrange matters so that the cylinders comprising C_{k}^{A} and C_{k}^{B} have the same dimensions for each k.

Now

$$
\left(\cup_{i \in J_{k}^{A}} T^{n} C_{k, i}^{A}\right) \cap\left(\cup_{j \in J_{k}^{B}} C_{k, j}^{B}\right) \subset T^{n} C_{k}^{A} \cap C_{k}^{B}
$$

Fix $i \in J_{k}^{A}$ and $j \in J_{k}^{B}$. Then

$$
\begin{aligned}
\mu\left[(\bigcup _ { G _ { k , s } ^ { A } - G _ { k , i } ^ { A } } ^ { A } T ^ { n } C _ { k , s } ^ { A }) \cap \left(\cup_{G_{k, 8}-G_{k, j}^{B}}^{B}\right.\right. & \left.\left.C_{k, 8}^{B}\right)\right] \\
& =\mu\left[U_{s} T^{k}\left(G_{k, 8}^{A} \cap H_{k, 8}^{A}\right) \cap U_{s}\left(G_{k, s}^{B} \cap H_{k, 8}^{B}\right)\right] \\
& =\mu\left[T^{n} G_{k, i}^{A} \cap G_{k, j}^{B}\right] \mu\left[\left(U_{s} T^{n} H_{k, 8}^{A}\right) \cap\left(U_{s} H_{k, s}^{B}\right)\right] .
\end{aligned}
$$

Since $i \in J_{k}^{A}$ and $j \in J_{k}^{B}$ we have

$$
\begin{aligned}
\left.\mu\left[U_{s} T^{n} H_{k, s}^{A}\right) \cap\left(U H_{k, s}^{B}\right)\right] & \geq \mu\left[\left(U_{s} T^{n} H_{k, s}^{A}\right)\right]+\mu\left[\left(U_{s} H_{k, s}^{B}\right)\right]-1 \\
& \geq(2 \gamma-1)+(2 \gamma-1)-1=4 \gamma-3>0 .
\end{aligned}
$$

Hence
$\liminf _{n} \mu\left[\left(U_{s} T^{n} C_{k, s}^{A}\right) \cap\left(U_{s} C_{k, 8}^{B}\right)\right] \geq(4 \gamma-3) \liminf _{n} \mu\left(T^{n} G_{k, i}^{A} \cap G_{k, j}^{B}\right]$

$$
=(4 \gamma-3) \liminf _{n} \prod_{r=1}^{N_{1}} m\left[\tau^{n} E_{r}^{(4, k, i)} \cap E_{r}^{(B, k, j)}\right]
$$

Recalling that m is α-mixing with respect to τ we have that the last expression exceeds

$$
\alpha^{N_{1}}(4 \gamma-3) \prod_{r=1}^{N_{1}} m\left(E_{r}^{(A, k, i)}\right) m\left(E_{r}^{(B, k, j)}\right)=\alpha^{N_{1}}(4 \gamma-3) \mu\left[G_{k, j}^{B}\right] .
$$

Now recall that for distinct $i \in J_{h}^{A}$ the $G_{k, i}^{A}$ are disjoint. Similarly for distinct j in J_{k}^{B}. Hence we obtain
$\liminf _{n} \mu\left[\left(U_{i \in J_{k}^{A}} T^{n} C_{k, i}^{A}\right) \cap\left(U_{j \in J_{k}^{B}}^{B} C_{k, j}^{B}\right)\right]$

$$
\geq \alpha^{N_{1}}(4 \gamma-3) \frac{1}{4} \mu\left(C_{1}^{A}\right) \mu\left(C_{1}^{B}\right)=p>0
$$

or

$$
\liminf _{n} \mu\left[\left(T^{n} C_{k}^{A}\right) \cap C_{k}^{B}\right] \geq p
$$

Now C_{k}^{A} and C_{k}^{B} decreases in k to C_{∞}^{A} and C_{∞}^{B} respectively so that

$$
\liminf _{n} \mu\left[T^{n} C_{\infty}^{A} \cap C_{\infty}^{B}\right] \geq p>0 .
$$

As noted above $C_{\infty}^{A} \subset A$ and $C_{\infty}^{B} \subset B$ except for null sets, so that

$$
\liminf _{n} \mu\left(T^{n} A \cap B\right)>0 .
$$

Since A and B were arbitrary sets of positive measure, we have that T is sequence mixing.

References

1. J. R. Blum, A note on mixing transformations, Israel J. Math., vol. 9 (1971) pp. 464-465.
2. N. Friedman and D. Ornstein, On mixing and partial mixing, Illinois J. Math., vol. 16 (1972), pp. 61-68.
3. N. Friedman, Introduction to ergodic theory, Van Nostrand, New York, 1970.

The University of New Mexico
Albuquerque, New Mexico

[^0]: Received April 20, 1972.
 ${ }^{1}$ Research supported by a National Science Foundation grant.

