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Here we initiate the study of the homotopy groups in all dimenions of the
space of H-structures on a given CW-complex Y. Calculations are offered
for some of these groups in case Y is a finite Postnikov system or a sphere, and
a representation of these groups is introduced into

Horn (r, Y (R) ’, Y --* r, Y)
which in several senses generslizes the Ssmelson product.

In 1, we exsmine three sets of functions which sre esndidstes for "the" set
of H-structures on s complex Y, eseh of which rosy be endowed with the e-o
or the k topology; it is shown thst these six function spsees sre sll weskly
homotopy equivslent. Four of these spsees sre nonempty even when Y is
not sn H-spsee, yet wesk equivslenees persist smong these four in thst esse.

In 2, s lemms is estsblished which describes the set of components of tho
mpping spsee {X/ Y --, Z} for eertsin complexes X, Y, Z. This lemms is
immedistely usedto count the number of H-structures on Y when r Y 0
unless 1 _< n _< { _< 2n for some interger n" there is sn isomorphism

r0{Y A Y-- Y} I-Iota (r Y (R) r Y-- rs Y).
In 3 we argue that this function @ may be considered as a homomorphism

@ ,r{ Y A Y --* Y} --* Horn (,r, Y (R) r, Y --* ,r+,+, Y),

defined for sll spsees Y snd sll integers /, r snd s, which includes Smelson
products. A generslizstion of Jsmes’ seprstion element is defined in order
to express @ in terms of the spsee of functions

{Y Y Y’$1 YV Y I V 1};

in this setting @ includes s homotopy precursor of the binsry homology opers-
rions over H-spsees of W. Browder. Csleulstions sre msde for @ when Y is
s sphere; if Y hss finite Postnikov system then Y/ Y -- Y} is shown slso
to hsve bounded homotopy snd its highest-dimensionsl nontrivil homotopy
group is given. We conclude with s comment on the sdditionsl structure
esrried by @.

It is s plessure to eknowledge my fruitful eonversstions with R. F. Brown
and I-I. B. I-Isslm during the course of this work.

|. The function spces
We shsll work in the estegory of pointed CW-eomplexes, with the obvious

exceptions of functions sprees. All direct products snd function sprees will
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be given the "convenient" k topology of R. Brown and Steenrod; this means
that, in forming X )< Y or {X --, Y} ( YX), the direct product or compact-
open topology is enlarged to its compactly-generated topology [4], [11]. This
change of topology does not change the class of compact subsets of a space,
and therefore does not affect its weak homotopy type. However, with the
compactly-generated topology,

X Y and X/ Y XX Y/X/ Y

are always CW-complexes, without further assumptions about X or Y. Simi-
larly, the k topology on a function space always renders the evaluation map
continuous, and the exponential law always holds; for our purposes this is
merely an expository convenience, since our constructions can be shown to
result in continuous functions even if the c-o topology is used.

Let Y be a space (i.e., CW-complex) the "folding" map Y / Y --. Y is
defined by (z, .) z (., z), where is the distinguished point of Y; let
K denote the constant map Y /Y -. Y. We shall interrelate three function
spaces:

if(Y) or ff {Y/ Y Y},

(Y) or {Y Y -% Y" gl Y / Y K},

3C(Y) orJC {Y )< Y-. Y" hi Y/Y=};
here the base points for ff and are constant maps; the base point for is
arbitrary. Thus is the space of H-structures on Y (which have an exact
identity); C may be empty, of course, but ff and can hold interest even when
Y is not an H-space (e.g., r if( S)

__
r4+(S) ).

The quotient map q ( Y X Y, Y /Y) --* ( Y, .) induces a map q --,

which is a 1-1 correspondence. Conveniently, q# is a homeomorphism be-
tween the k-topologicalized spaces ff and [11, Lemma 5.10]. (This implies,
of course, that q is a weak homotopy equivalence between those spaces en-
dowed with their c-o-topologies; in fact, it is not difficult to show that q is a
homotopy equivalence in this case.)

Suppose that Y is an H-space with multiplication m which we take as base
point for . Then there is a map m --,,

m(g) (y, z) m(m[y, z], g[y, z]).

If (Y, m) were a topological group, with m-1 Y --. Y the exact inversion for
m, then an inverse map m to m would be given by

m(h)(y, z) m(m[m-(z), m-l(y)], h[y, z)l,

and m would be a homeomorphism. It is still possible to define a map
m# --* when m is merely an H-structure" James [7] has shown that m has
a left homotopy inverse rn-, and in the above definition of m, its values
m(h) are, when restricted to Y /Y, all equal and homotopic, via H, to the
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constant map. The AHEP of Y X/Y in Y X Y is equivalent to the existence
of a retraction

r" Y X Y X I--- Y X Y X O LJ Y X/ Y) X I

and we have a map on the range of r; let

m#(h) ([mr(h) X 0] U H) o r o (lrx, X 1).

We conjecture that is a homotopy inverse to m; an attack on this problem
might proceed by strengthening James’ theorem, that two maps g, g’ K -- Yinto an H-space, Y, which are homotopic and which agree on a retractile
subcomplex L are homotopic rel L [7], to assert that the homotopies rel L
may be chosen continuously as g varies in {K --, Y}. However, we content
ourselves with a weaker result (compare [1], [2], [9]); our proof uses a weak
trick with the theorem of James which is quoted above.

PROPOSITION 1. If (Y, m) is an H-space then m ---, g is a weak homo-
topy equivalence.

Proof. Let L be a retractile subcomplex of K and let L - K _Z, (K, L) be
the inclusions; then the induced sequence of loops

0 --, [g, L -, Y, .] --. [K --, Y] --, [L --* Y]

is exact (our bracket notation [K --* Y] means r0{K --* Y} as usual)"
at [K, L -* Y, .], exactness is just the property which motivated James’
definition of retractile subcomplexes; at [K --* Y], exactness is the homotopy
extension property. Furthermore, it is a standard fact about loops that if
@ K --, Y then left multiplication by in [K Y] defines a bijection between
Im (j.) Ker (i*) and i*-1( L); hence i*-l(lL) is in bijective corre-
spondence with [K, L --* Y, .].

Now notice that the inclusion

k [g -, Y" 01L IL] --, i*-(blL)
is 1-1 since L is retractile in K, and is onto by the AHEP. Our proposition fol-
lows, then, if we take K to be S" X Y X Y, let

L= ,X YX YUS"X ,X YUS’X YX ,,
and define b K -, Y by b(x, y, z) m (y, z). El
We remark that (in either the k or the c-o topology) the homotopy type of

ff and 9 is a homotopy invariant of Y for standard reasons; thus the weak type
of is an invariant of the type of Y.

2. Multiplications on short Postnikov systems
D. W. Kahn [8] has given necessary and sufficient conditions that Y be an

H-space, at least for countable and 1-connected complexes, in terms of H-struc-
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tures on the stages in a Postnikov decomposition of Y and its k-invariants.
And it is a folk theorem that the multiplication on an Eilenberg-MacLane
space is unique, 0 (K[, n]) 0. Copeland [5] has extended this to show,
for associative and inversive H-spaces Y which have two nontrivial homotopy
groups in dimensions n and m, 1 < n <: m, that r0Y is in 1-1 correspondence
with H(Y/ Y, rmY). This latter group is, in general, difficult to calculate,
although Curjel [6] computes o C(S K[Z, 2]) to be the integers Z; our next
theorem agrees with his result.

THEOREM 2. Let Y be a space with rY 0 unless 1 <_ n <_ i <_ 2n for some
integer n; then there exists a bijection

r0 Y - Hom (v Y .(R) Y --. Y).

This correspondence is homomorphic if Y is an H-space.

(Here and throughout this note, rl refers to the fundamental group made
abelian.) The proof of this theorem is immediate to the following lemma.

LEMMA 3. Let X be (p-1)-connected and Y be (q-1)-connected, and let Z be a
space such that rZ 0for i > p - q. Then there ezists a bijection

[X/ Y --* Z] Hom (X (R) Y --. + Z)

which is a homomorphism if its domain has the natural group structure deftned
by a suspension structure for X or by an H-structure on Z.

Proof. We shall define a function taking each map

a X / Y---. Z

to an appropriate homomorphism; our notation will confuse a map with its
homotopy class" if b S --* X and c S --* Y, we define (a)(b @ c) to be
a o (b / c). Clearly Ca is bilinear since the smash product is bilinear and
composition is linear on the right; its domain is S+, via a fixed homeomor-
phism from S+to S/ S. Furthermore, ifZ hasan H-structurethenpoint-
wise operations in the domain of correspond to the group operation among its
values. Thus is also linear in a when X SX’ is a suspension because

[SX’ / Y ---. Z] IX’/ Y ---. Z]

and 2Z has an H-structure.

Let a Hom (X (R) Y --*+ Z) we wish to construct a function ,
an inverse to , so that a a [X/ Y --. Z]. For each of the spaces
X, Y and Z we choose a cell structure using E. Brown’s representation of the
functors , r and z, so that, for example, the (p-1)-skeleton X-1 =.,
X is the wedge of p-spheres e corresponding to generators b v X, the
(p -t- 1)-cells are either spheres e’+ corresponding to generators d +X
or else cells of the form e+, attached by maps on their boundaries which
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realize generating relationships r in the kernd of/, r[X()] --, r X, where
i X() c X, and so on (see [10, pp. 406-410] for details). These cell struc-
tures on X and Y in turn visit a cell structure on X X Y, X V Y, and so
X A Y; the cells of least positive dimension in X A Y are those of X X Y
which are not in X V Y. That is, a cell of smallest positive dimension in
X A Y must be of the form e’ A eg, where b X and c rq Y; its dimen-
sion is p -F q. We define Oa a inductively" eachcell e’ A e of (X A Y)
is attached by a constant map, and so is a (p -F q) sphere; our map a is chosen
to be a map of degree I from e’ A eq. to v(b(R),), wherea(b (R) c) +q Z (here
we may assume that a(b (R) c) is in the generating set for +q Z which was
used to build Z).
The map a is now extended to the (p -F q -F 1) cells ofX A Y: let a be con-

stant on each such cell of the form e’+1 A e, d v+l X, or the form e A e
d vq+l Y (these cells have constant attaching maps). The map a may now
be extended to a (p -F q -F 1) cell of the form e+ A eg iff the previously de.-
fined map a on the (p -F q) skeleton has a composition with the attaching map

0(e+ A e) -, (X A Y)

which is nul-homotopic. Express r as r5, a linear combination in the
kernel of

i, [X()] X;

since [X()] --_ H[X(’)] is a free group on the generating set for /:, we may
assume that each 5 is in that generating set (of course, additional argument is
needed if p 1), and so r 5 is an element of X, namely zero. Now

0(e+ A e) (0e+) A e (J e+ A * (0e+) A e,
and the smash product is bilinear.
thus

The attaching map, composed with a, is

a ([ r, b,] A c) a o ( r,[b, A c]) r a (b A c)

r,a(b (R) c) a([rb,] (R) c) 0,

and a has an extension to e+ A e. An identical argument extends a to cells
of the form e’ A e,q+, where s is a relation in .xq[Y(q)]; hence a may be extended
to the (p 4- q 4- 1) skeleton of X A Y. An extension to all of X A Y is now
guaranteed, since cells of higher dimension have attaching maps which com-
pose inessentially with an inductively defined map a for dimensional reasons"

rZ O if i > p q.
It is clear from the construction of a that a a; that is, is onto. But if

Ca Ca’ then the restrictions of a and a’ to (X A Y)(+q) must be homotopic,
say via H, since they are homotopic on each (p q) cell. This defines a map

a X OUHUa’ X 1
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on (X A Y) 0 IJ (X A Y)(+ I IJ (X A Y) 1 into Z, and this map
has an extension to all of (X/ Y) I for dimensional reasons. Therefore,

is 1-1; the proof of the lemma is complete. Kl
We remark that the above proof is a thinly disguised computation of the

eohomology group H+(X A Y, r+ Z) to see this, replace Z in Lemma 3 by
the penultimate stage Z+_ in a Postnikov system for Z each of our maps
a X/ Y --, Z has an inessential composition with r+_ Z --* Z,+_, so
each map a is homotopic to a map into the fiber K(+ Z, p -t- q) of +-.
This suggests a common generalization of our Theorem 2 and Copeland’s re-
sult, cited above; we omit details.

J. F. Adams has pointed out to us a proof that

Hp+q(X/ Y, r+q Z) Hom (H X (R) H Y --, r+ X)

based on the universal coefficient theorem and the Kiinneth formula. When
used in the proof of Lemma 3, this isomorphism becomes the function for
which we have given an explicit construction.

COROLLARY 4 For each abelian group G there exists an abelian topologica1
group Y for which ro $Y - roY --- G.

Proof. Apply Theorem 2 to Y S* K(G, 2). yl

3. The homomorphim
The values of the homomorphism of Theorem 2 may look somewhat

familiar. If Y is, for example, a topological group with product m (which we
indicate by juxtaposition, etc.), is the converse of m (so (y, z) re(z, y) ),
and m C --, 9 is the map defined above Proposition 1 let f (q)-*r(m).
This defines f o q(y, z) yzy-z-, a commutator map which carries to a ho-
momorphism whose value at b (R) c r, Y (R) r, Y is the Samelson product
(b, c). Our definition of f, (f) (b (R) c) f o (b/ c), readily extends to ele-
ments b, c of every dimension in v, Y, and with this extension, the values of
include all Samelson products. Likewise, our definition of need not be re-

stricted to finite Posnikov systems Y; if it is applied to Y S" it is easy to see
that

(s s A s -. s
and thus the domain of is ro$(S") m(S) Z ;if i is a generator of
r(S) anda r(S) thenO(a) (i @ i) a, so.is onto

However, James has shown [7] that the Samelson products given by the set of
H-structures on S (or S7) have values at/ @ i, (or/ @/) which are the odd
members only of Z2 or (Z,0). Hence the values of q give a proper generaliza-
tion of the Samelson products as geometrically defined homomorphisms
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Phrased in terms of elements h of C, the picture is that of nul-homotopies
defined by h for the Whitehead products [b, c] over Y the Samelson product
compares these nul-homotopies for a given h and its converse, ] while offers
a comparison of these nul-homotopies for any two elements h and h
Furthermore, v0 fi; may have a (pointwise) group structure which respects, a
concept impossible to phrase in terms of Samelson products.
To continue, we recall that the space Y of Theorem 2 was not required to be

an H-space; obviously our function works just as well if is empty. If, for
instance, Y is the n-sphere S", the argument sketched above for S shows that
r0 fi(S) (S), and that is faithful, since(a) (i (R) i) a. Thusto
each element of [Y/ Y --* Y] we associate a bilinear multiplication on v, Y,
just as the Samelson product does for H-spaces Y. There are more of these
products even for S and S, and they are nontrivial for other spheres.
We now point out that our definition of, (f) (b (R) c) f (b/ c), can be

restated as

(/)(b (R) c) oo(f/b/c),

yr^ rwhere 0 / Y Y --* Y is the evaluation map. But, in this form, the
definition of is seen to extend to all of ,{ Y/ Y --, Y}" if

a" S --- Y / Y -- Y}

then (a) (b (R) c) o (a/ b/c). This yields a function which is linear
in a and whose values are bilinear in b and c, since this smash product is tri-
linear. If b (Y) and c ,(Y) then

(a) (b (R) c) r++(Y)"

we shall say that (a) is a product on ,(Y) of degree q. To formally de-
scribe the range of , let us define the graded group I(G) of products on a
graded group G by

I ,, Hom (G (R) G, --* G++,).

Then is a homomorphism from ,Y to Iv,Y. It is nontrivial" ourprevious
argument generalizes to show that if

a +q(S) {S/ S-,S}

then (a) (i (R) i) a, so is monic if Y S’. It is not difficult to prove,
more generally, that (a)(b (R) c) (-1)q(r+’)a o Sq(b/ c) when Y
and S denotes the suspension functor. We can also calculate partially for
finite Postnikov systems.

THEOREM 5. Let Y have only a finite number of nonzero homotopy groups,

sa Y 0 unless 1 <_ n <_ i <_ 2n kfor some integers n, ]. Then
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for every integer j >_ k. That is,

and r flY 0 if j > k

Proof. Apply Lemma 3 to X SYand Z Y.

These products of positive degree on . Y remind one of the binary opera-
tions of degree n which Browder described [3] for the homology graded groups
of the H.-spaces of Araki-Kudo" it can be shown that the Hurewicz homo-
morphism Carries our homotopy product defined by an H.-structure (by use
of our Proposition 1) to Browder’s homology product via a commutative dia-
gram, giving them a relationship like that of the Samelson and Pontrjagin
products in degree zero. In fact, our homomorphism can easily be seen to
work for cubical homology as well as for homotopy; it may thus be used to
generalize Browder’s binary operations to non-H.-spaces (although we have
failed to obtain the Araki-Kudo operations of one variable for such spaces).

Let Y be an H-space and consider to be defined on 7q C as in the preceding
paragraph; it is natural to ask for a geometric picture relating to James’
definition of the Samelson product in terms of his separation elements [7].
We view the separation element of two maps f, g I", " -- X which agree on
i as a construction applied to a 0-sphere of nul-homotopies of f l]" g l
means the boundary of the n-cube I". (In the case of the Samelson product,
f ]" is the Whitehead product, with f and g the .extensions to I" given by an
H-structure m and its converse on X.) In general, let 0 " --, X be given
along with

a" iq+x --, {I" f .; X "/li" 0};

our q-dimensional separation element is the element of q+. X given by

here the first two maps are the usual (relative) homeomorphisms of degree one
and the third map is d (J 0 o p., where d is the associate of a and p is projec-
tion on the second factor. Clearly this specializes to the separation element if
q 0, and it describes the translation of to 3C in higher degrees; it may be
useful elsewhere.
The function ff is a functor on an appropriate category, and it has a rich

structure" a covering map p IY -- Y induces a map flY -- ifIY, and there are
homomorphisms rY -- +1 Y, 7r+Y --) rSY, and Y --, Y
with good algebraic properties.
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