ON GROUPS WITH A QUATERNION SYLOW 2-SUBGROUP

BY
George Glauberman

A theorem of Brauer and Suzuki states:
Let G be a group with a generalized quaternion Sylow 2-subgroup S. Then the center of $G / O_{2^{\prime}}(G)$ is of order 2.

The case in which $|S|>8$ has been proved by the theory of ordinary characters (e.g., in Chapter 12 of [2]). The published proofs of the case in which $|S|=8$ require the theory of blocks of characters (e.g. [1, pages 321324]). In this paper, we prove the latter case without using blocks.

This paper was written during a year's visit to the University of Oxford on a National Science Foundation Senior Postdoctoral Fellowship and a grant from the Science Research Council. We are very grateful to these institutions for making this visit possible. We also thank P. Martineau and J. McLaughlin for correcting a number of errors in the original manuscript.

We shall adapt the proof for the case in which $|S|>8$, as given in Chapter 12 of [2]. Hence we adopt some of the notation of [2] and add some further notation.

Assume that G is a counterexample to the theorem of minimal order. Since we assume the case in which $|S|>8$, we will suppose that $|S|=8$. Let x be an element of order four in S. Let $X=\langle x\rangle, T=\left\langle x^{2}\right\rangle, C^{*}=C_{G}(X)$, $N^{*}=N_{G}(X)$, and $H^{*}=O_{2^{\prime}}\left(C^{*}\right)$.

Let A^{*} be the subset $C^{*}-T H^{*}$ of C^{*}. Let B be the set of all conjugates of elements of A^{*} in G.

Denote the principal characters of C^{*} and G by $1_{C *}$ and 1_{G}.
(a) $N^{*}=S H^{*}$ and $C^{*}=X H^{*}=X \times H^{*}$;
(b) A^{*} is disjoint from its conjugates in G and $N^{*}=N_{G}\left(A^{*}\right)$.

Proof. These results are analogues of Lemmas 12.1.2 and 12.1.3 of [2]. Note that $X H^{*}=X \times H^{*}$ because H^{*} centralizes X and intersects it in the identity group.

By (1a), $T H^{*} \triangleleft C^{*}$ and $\left|C^{*} / T H^{*}\right|=2$.
Let λ be the unique linear character of C^{*} with kernel $T H^{*}$. Let $\tilde{I}_{C^{*}}$ and $\tilde{\lambda}$ be the characters of N^{*} induced by $1_{C *}$ and λ, and let $\zeta=\tilde{1}_{c^{*}}-\tilde{\lambda}$. Let η be the generalized character of G induced by ζ.
(2) (a) $(\zeta, \zeta)_{N}=4 ;$
(b) $\zeta(1)=0$ and $\zeta(y)=0$ for every $y \in N^{*}-A^{*}$;
(c) there exist distinct nonprincipal irreducible characters $\chi_{1}, \chi_{2}, \chi_{3}$
of G and signs $\varepsilon_{i}= \pm 1(i=1,2,3)$ such that

$$
\eta=1_{G}+\sum_{1 \leq i \leq 3} \varepsilon_{i} \chi_{i}
$$

Proof. These results are analogues of Lemmas 12.1.4 and 12.1.5 of [2]. Note that $\tilde{\lambda}$ is not an irreducible character of N^{*}, but is the sum of two distinct linear characters of N^{*}.
(a) $\eta(y)=1+\sum \varepsilon_{i} x_{i}(y)=0 \quad$ if $y \in G-B ;$
(b) $\zeta(y)=4$,
(c) $\eta(y)=1+\sum \varepsilon_{i} \chi_{i}(y)=4 \quad$ if $y \in B$;
(d) for every involution u of G,

$$
1+\sum \varepsilon_{i}\left(\chi_{i}(u)\right)^{2} / \chi_{i}(1)=0
$$

Note. Here and in later results, in a summation involving an index i, we will take i to run over the values $1,2,3$.

Proof. (a) This is obvious from (2b), since η is induced by ζ.
(b) By the definition of an induced character,

$$
\zeta(y)=\tilde{1}_{c^{*}}(y)-\tilde{\lambda}(y)=2\left(1_{c *}(y)-\lambda(y)\right)=4
$$

(c) We can assume that $y \epsilon A^{*} . \mathrm{By}(\mathrm{b})$ and (1b), $\eta(y)=\zeta(y)=4$.
(d) By the definitions of A^{*} and B, every element of B is of even order. Hence no element of B is the product of two involutions of G. (This is Lemma 12.1.7 of [2], and its proof does not require any restriction on the order of S.) This yields (d), which is the analogue of Lemma 12.1.8 of [2].
(4) (a) For $i=1,2,3, x^{2}$ does not lie in the kernel of χ_{i};
(b) all the elements of order four in G are conjugate.

Proof. Let $K=O_{2^{\prime}}(G)$. Since G is a minimal counterexample to the theorem for the case in which $|S|=8,|Z(G / K)| \neq 2$.

Now, $O_{2^{\prime}}(G / K)=K / K=1$, and S is isomorphic to a Sylow 2-subgroup of G / K. If $K \neq 1$, then $|G / K|<|G|$ and, consequently,

$$
2=\left|Z(G / K) / O_{2^{\prime}}(G / K)\right|=|Z(G / K)|
$$

Hence $K=1$, that is, G is "core-free" in the sense of Brauer [1]. So, $|Z(G)|=|Z(G / K)| \neq 2$. Therefore, G satisfies the hypothesis for Brauer's proof, and, as Brauer shows (pages 321-322 of [1]), (a) and (b) are easy to obtain. (If (b) fails, then $N_{G}(P) / C_{G}(P)$ is a 2 -group for every P of S. So then G has a normal 2-complement and $|Z(G)|=|Z(G / K)|=|Z(S)|=$ 2, by a theorem of Frobenius [2, page 253]. If (a) fails, for some i, let G^{*} be the kernel of χ_{i}. Then

$$
G^{*} \subset G \quad \text { and } \quad O_{2^{\prime}}\left(G^{*}\right) \subseteq O_{2^{\prime}}(G)=1
$$

By (b), either $\left\langle x^{2}\right\rangle$ or S is a Sylow 2 -subgroup of G^{*}. In either case, we find that $\left\langle x^{2}\right\rangle=Z\left(G^{*}\right)$ and then that $\left.\left\langle x^{2}\right\rangle=Z(G)\right)$.

We introduce some further notation. Let

$$
x_{i}=\chi_{i}(1), \quad y_{i}=\chi_{i}\left(x^{2}\right), \quad z_{i}=x_{i}-y_{i}, \quad \text { for } i=1,2,3 .
$$

Since x^{2} has order two, the numbers x_{i}, y_{i}, z_{i} are rational integers.
(a) $z_{i}>0$ for $i=1,2,3$;
(b) $1+\sum \varepsilon_{i} x_{i}=\sum \varepsilon_{i} z_{i}=\sum \varepsilon_{i}\left(z_{i}^{2} / x_{i}\right)=0$.

Proof. (a) This follows from (4a).
(b) From the definitions of A^{*} and B, we note that neither of them contains the identity element or an involution. Hence, by (3a), $1+\sum \varepsilon_{i} x_{i}=1+\sum \varepsilon_{i} \chi_{i}(1)=0=1+\sum \varepsilon_{i} \chi_{i}\left(x^{2}\right)=1+\sum \varepsilon_{i} y_{i}$.

Therefore, $\sum \varepsilon_{i} z_{i}=0$.
For each i,

$$
y_{i}^{2} / x_{i}=\left(z_{i}-x_{i}\right)^{2} / x_{i}=\left(z_{i}^{2} / x_{i}\right)-2 z_{i}+x_{i}
$$

Thus (3d) yields

$$
\begin{aligned}
0=1+\sum \varepsilon_{i}\left(y_{i}^{2} / x_{i}\right)=1+\sum \varepsilon_{i}\left(z_{i}^{2} / x_{i}\right)-2 \sum \varepsilon_{i} z_{i}+ & \sum \varepsilon_{i} x_{i} \\
= & \sum \varepsilon_{i}\left(z_{i}^{2} / x_{i}\right)
\end{aligned}
$$

(6) For every generalized character χ of G,

$$
(\chi, \eta)_{G}=\left(1 /\left|H^{*}\right|\right) \sum_{u \in I^{*}} \chi(x u)
$$

Proof. By (3b), $\zeta(y)=4$ for every $y \in A^{*}$. Since η is induced from ζ, the Frobenius Reciprocity Theorem and (2b) yield

$$
\begin{aligned}
(\chi, \eta)_{G} & =\left(\left.\chi\right|_{N *^{\prime}} \zeta\right)_{N *} \\
& =\left(1 /\left|N^{*}\right|\right) \sum_{y \in A^{*}} 4 \chi(y) \\
& =\left(1 /\left|N^{*}\right|\right) \sum_{u \in H *}\left(4 \chi(x u)+4 \chi\left(x^{-1} u\right)\right)
\end{aligned}
$$

Now, $\left|N^{*}\right|=8\left|H^{*}\right|$. Take $y \in S-\langle x\rangle$. Then y normalizes H^{*} and $x^{y}=x^{-1}$. Hence y maps the set $x H^{*}$ onto the set $x^{-1} H^{*}$ by conjugation. Thus

$$
\begin{gathered}
\sum_{u \in H *} \chi\left(x^{-1} u\right)=\sum_{u \in H *} \chi\left(\left(x^{-1} u\right)^{y}\right)=\sum_{u \in H *} \chi(x u) \\
(\chi, \eta)_{G}=\left(1 / 8\left|H^{*}\right|\right) \sum_{u \in H *} 8 \chi(x u)=\left(1 /\left|H^{*}\right|\right) \sum_{u \in H *} \chi(x u)
\end{gathered}
$$

(7) For $i=1,2,3$,
(a) the values of χ_{i} are rational integers;
(b) $\chi_{i}(x u)=\chi_{i}\left(x u^{-1}\right)$ for every $u \in H^{*}$.

Proof. Recall that the values of the characters of G are algebraic integers in the cyclotomic field, K, of the $|G|-$ th roots of unity.
(a) Suppose that $1 \leq i \leq 3$ and the values of χ_{i} are not rational integers. We may assume that $i=1$. Then some value of χ_{1} is irrational. Since K
is a normal extension of the rational field, there exists an automorphism α of K that moves some value of χ_{1}. Since α permutes the irreducible characters of G by the definition

$$
\chi^{\alpha}(y)=(\chi(y))^{\alpha}, \quad y \in G
$$

χ_{1}^{α} is an irreducible character of G distinct from χ_{1}. As η is rational-valued,

$$
\left(\chi_{1}^{\alpha}, \eta\right)_{G}=\left(\chi_{1}, \eta\right)_{G}=\varepsilon_{1}
$$

By (2c), χ_{1}^{α} is χ_{j} for some j such that $\varepsilon_{j}=\varepsilon_{1}$. We may and will assume that $j=2$.

Since $\chi_{1}\left(x^{2}\right)$ is rational,

$$
y_{2}=\chi_{2}\left(x^{2}\right)=\left(\chi_{1}\left(x^{2}\right)\right)^{\alpha}=\chi_{1}\left(x^{2}\right)=y_{1} .
$$

Similarly, $x_{2}=x_{1} . \quad$ Thus $z_{2}=z_{1} . \quad$ By (5b),

$$
0=2 \varepsilon_{1} z_{1}+\varepsilon_{3} z_{3}=2 \varepsilon_{1}\left(z_{1}^{2} / x_{1}\right)+\varepsilon_{3}\left(z_{3}^{2} / x_{3}\right)
$$

Hence $z_{3}=-2 \varepsilon_{1} \varepsilon_{3} z_{1}$ and so

$$
0=2 \varepsilon_{1}\left(z_{1}^{2} / x_{1}\right)+4 \varepsilon_{3}\left(z_{1}^{2} / x_{3}\right)
$$

By (5a), $\quad z_{1} \neq 0$, so $0=\left(2 \varepsilon_{1} / x_{1}\right)+\left(4 \varepsilon_{3} / x_{3}\right)$ and

$$
\varepsilon_{3} x_{3}=-2 \varepsilon_{1} x_{1}
$$

But, by (5b), $1+2 \varepsilon_{1} x_{1}+\varepsilon_{3} x_{3}=0$, a contradiction.
(b) By (1a), $x u=u x$ for every $u \in H^{*}$. Let β be an automorphism of K that fixes a primitive fourth root of unity and takes every root of unity of odd order into its inverse. Then, by (a),

$$
\chi_{i}(x u)=\left(\chi_{i}(x u)\right)^{\beta}=\chi_{i}\left(x u^{-1}\right)
$$

(8) Suppose $1 \leq i \leq 3$. Then $\chi_{i}(x)$ and $\left(\chi_{i}^{2}, \eta\right)_{G}$ are odd.

Proof. Let $\chi=\chi_{i}$. By (6),

$$
\varepsilon_{i}=(\chi, \eta)_{G}=\left(1 /\left|H^{*}\right|\right) \sum_{u e H *} \chi(x u)
$$

Let I be a subset of $H^{*}-\{1\}$ that contains precisely one element from each pair $\left\{u, u^{-1}\right\}$ of elements of $H^{*}-\{1\}$. By (7), χ is integer-valued and $\chi(x)+2 \sum_{u \in I} \chi(x u)=\chi(x)+\sum_{u \in I}\left(\chi(x u)+\chi\left(x u^{-1}\right)\right)$

$$
=\sum_{u \in H *} \chi(x u)=\left|H^{*}\right| \varepsilon_{i} .
$$

Since $\left|H^{*}\right|$ and ε_{i} are odd, $\chi(x)$ is odd.
Applying (6) and (7) again, we have
$\left|H^{*}\right|\left(\chi^{2}, \eta\right)_{G} \equiv \sum_{u \in H *} \chi^{2}(x u) \equiv \sum_{u \in H *} \chi(x u) \equiv \varepsilon_{i}\left|H^{*}\right| \equiv 1$
(modulo 2).
So $\left(\chi^{2}, \eta\right)_{G}$ is odd.
(9) Suppose $1 \leq i \leq 3$. Then $\chi_{i}(x)=\varepsilon_{i}$.

Proof. Suppose $\chi_{i}(x) \neq \varepsilon_{i}$. Let $\chi=\chi_{i}$. By (7a), the values of χ are rational integers. By (8), $\chi(x)$ is odd. Hence $|\chi(x)|>1$ or $\chi(x)=-\varepsilon_{i}$ In either case, $\chi(x)^{2}>\varepsilon_{i} \chi(x)$. Similarly, $\chi(y)^{2} \geq \varepsilon_{i} \chi(y)$ for all $y \epsilon G$. Hence, by (6),

$$
\begin{aligned}
\left(\chi^{2}, \eta\right)_{G} & =\left(1 /\left|H^{*}\right|\right) \sum_{u \in H *} \chi(x u)^{2} \\
& >\left(1 /\left|H^{*}\right| \sum_{u \in H *} \varepsilon_{i} \chi(x u)\right. \\
& =\varepsilon_{i}(\chi, \eta)_{G}=1
\end{aligned}
$$

By (8), $\left(\chi^{2}, \eta\right)_{G} \geq 3$.
Now by (4a), x^{2} is not in the kernel of χ; since x^{2} is in the derived group of $S, \chi(1)>1$. By (3), $\eta(y)=4$ if $y \in B$ and $\eta(y)=0$ if $y \epsilon G-B$. As $\left(\chi, 1_{G}\right)_{G}=0$, an argument like that of the previous paragraph yields

$$
\begin{aligned}
\sum_{y \in G-B} \chi(y)^{2}> & \sum_{y \in G-B}\left(-\varepsilon_{i}\right) \chi(y)=\sum_{y \in B} \varepsilon_{i} \chi(y) \\
& =\left(\frac{1}{4}\right) \sum_{y \in G} \varepsilon_{i} \chi(y) \eta\left(y^{-1}\right)=(|G| / 4)\left(\varepsilon_{i} \chi, \eta\right)_{G}=(|G| / 4)
\end{aligned}
$$

Hence

$$
\begin{aligned}
|G|=\sum_{y \in G-B} \chi(y)^{2}+\sum_{y \in B} \chi(y)^{2} & >(|G| / 4)+\left(\frac{1}{4}\right) \sum_{v \in G} \chi(y)^{2} \eta\left(y^{-1}\right) \\
& =(|G| / 4)+(|G| / 4)\left(\chi^{2}, \eta\right)_{G} \geq|G|
\end{aligned}
$$

a contradiction.
(10) \quad Suppose $1 \leq i \leq 3$. Then
(a) z_{i} is divisible by 4 ;
(b) x_{i} is odd;
(c) if z_{i} is divisible by 8 , then $x_{i}-\varepsilon_{i}$ is divisible by 4 .

Proof. Let $\chi=\chi_{i}$. Let 1_{s} be the principal character of S and let ψ be the unique irreducible character of S of degree two. Then

$$
\psi(1)=2, \quad \psi\left(x^{2}\right)=-2, \quad \text { and } \quad \psi(y)=0 \quad \text { for all } y \in S-\left\langle x^{2}\right\rangle
$$

By (4b) and (9), $\chi(y)=\varepsilon_{i}$ for all $y \in S-\left\langle x^{2}\right\rangle$. Since $\left(\left.\chi\right|_{s}, \psi\right)_{s}$ is an integer,

$$
\begin{aligned}
0 \equiv 8\left(\left.\chi\right|_{s, \psi}\right)_{s} \equiv \sum_{y \in s} \chi(y) \psi\left(y^{-1}\right) \equiv 2 \chi(1) & -2 \chi\left(x^{2}\right) \\
& \equiv 2 x_{i}-2 y_{i} \equiv 2 z_{i} \quad(\text { modulo } 8)
\end{aligned}
$$

This proves (a). Similarly,

$$
\begin{aligned}
0 \equiv 8\left(\left.\chi\right|_{s,} 1_{s}\right)_{s} \equiv \sum_{y \epsilon s} \chi(y) & \equiv x_{i}+y_{i}+6 \varepsilon_{i} \\
& \equiv 2 x_{i}-z_{i}-2 \varepsilon_{i} \equiv 2\left(x_{i}-\varepsilon_{i}\right)-z_{i} \quad(\text { modulo } 8)
\end{aligned}
$$

By (a), 4 divides z_{i} and therefore divides $2\left(x_{i}-\varepsilon_{i}\right)$. So $x_{i}-\varepsilon_{i}$ is even, and x_{i} is odd. Finally, suppose 8 divides z_{i}. Then 8 divides $2\left(x_{i}-\varepsilon_{i}\right)$, which yields (c).
(11) There exists i such that $1 \leq i \leq 3, z_{i}$ is divisible by 8 , and $x_{i}+\varepsilon_{i}$ is divisible by 4 .

Proof. Let 2^{k} be the highest power of 2 that divides every z_{i}. By (10), $k \geq 2$. Let $w_{i}=z_{i} / 2^{k}$ for $i=1,2,3$. Then some w_{i} is odd, say, w_{3}. By (5b),

$$
\sum \varepsilon_{i}\left(z_{i}^{2} / x_{i}\right)=0=\sum \varepsilon_{i}\left(w_{i}^{2} / x_{i}\right)
$$

so

$$
0=\varepsilon_{1} x_{2} x_{3} w_{1}^{2}+\varepsilon_{2} x_{1} x_{3} w_{2}^{2}+\varepsilon_{3} x_{1} x_{2} w_{3}^{2}
$$

By (10), each x_{i} is odd. As 0 is not a sum of three odd numbers, w_{i} is even for some i, say, for $i=1$. It follows that w_{2} is odd. Since $z_{1}=2^{k} w_{1}$ and $k \geq 2, z_{1}$ is divisible by 8 .

From the above equation,
$0 \equiv-\varepsilon_{1} x_{2} x_{3} w_{1}^{2} \equiv \varepsilon_{2} x_{1} x_{3} w_{2}^{2}+\varepsilon_{3} x_{1} x_{2} w_{3}^{2} \equiv \varepsilon_{2} x_{1} x_{3}+\varepsilon_{3} x_{1} x_{2}$

$$
\equiv \varepsilon_{2} \varepsilon_{8} x_{1}\left(\varepsilon_{3} x_{3}+\varepsilon_{2} x_{2}\right) \quad(\text { modulo } 4)
$$

Therefore 4 divides $\varepsilon_{3} x_{3}+\varepsilon_{2} x_{2}$. By (5), $1+\sum \varepsilon_{i} x_{i}=0$. Hence

$$
0 \equiv \varepsilon_{3} x_{3}+\varepsilon_{2} x_{2} \equiv-\left(1+\varepsilon_{1} x_{1}\right) \equiv-\varepsilon_{1}\left(x_{1}+\varepsilon_{1}\right) \quad(\operatorname{modulo} 4)
$$

which yields that 4 divides $x_{1}+\varepsilon_{1}$.
Since (10) and (11) contradict one another, this completes the proof of the theorem for the case in which $|S|=8$.

References

1. R. Brauer, Some applications of the theory of blocks of characters of finite groups II, J.

Algebra, vol. 1 (1964), pp. 307-334.
2. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.

University of Oxford
Oxford, England
University of Chicago
Chicago, Illinois

