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A convex function on a riemannian manifold is a real-valued function whose
restriction o every geodesic is convex. They occur in abundance and have
many structural implications on manifolds with nonpositive curvature [3].
There is an extensive theory of convex functions on linear spaces [4], [9].
Convex functions form an important link in the analysis of open manifolds
having nonnegative curvature [7] or nonnegatve rcci curvature [8]. W.B.
Gordon has found two applications to mechanics surprisingly opposite in con-
sequence" a trajectory cannot stay in a compact domain supporting a function
which is strictly convex with respect to the jacobi metric [5]; and (much
deeper) if a potential function is convex and is strictly convex on a geodesic
through a minimum point, then every neighborhood of that point has non-
trivial closed trajectories ([6], see also [1]).
A sublevel set of a convex function is totally convex, that is, contains every

geodesic arc whose ends are in the set. In Section 2, a theorem is formulated
which gives necessary and sufficient conditions for a smooth filtration by
totally convex sets to be the sublevel filtration of some smooth convex or
strictly convex function. Use of the theorem is illustrated in Section 4 by
constructing convex functions on subsets of spheres. In order to show that
certain limitations on our choices of subsets are necessar.v, Section 3 considers
the boundary behavior of convex functions.
Our manifolds will be assumed to be C. This is sufficient to obtain the

usual properties of geodesics, and curvature plays no part in the generalities
of this paper. By a smooth convex function we mean one which is C. In
many contexts mere continuity is more natural. A domain is an open subset
plus a subset of its boundary.

1. Convex functions

If M is a riemannian manifold, the function f:M ---, R is convex if for every
geodesic ,:[0, 1] -* M, f satisfies

f’r(s) <_ (1 s)f’r(O) +sly(l), 0_< s_< 1.

It is equivalent to say thatf is continuous and satisfies the midpoint inequality
(s ). Speaking more geometrically, f is convex if the epigraph of f is
totally convex, where the epigraph is defined to be the subset (p, c) c >_ fp}
of MR.

Strict convexzty is defined by requiring the strict convexity inequality. In
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the case that f is smooth, convexity is equivalent to (f o )" > 0 for all geo-
desics , or to positive semidefiniteness of the hessian f at each point.
Strict convexity in this context (] positive definite) is a slightly stronger
condition on a smooth function than the one above. (Consider x on R.)
Note that the convexity inequality still makes sense if + is allowed in the
range off; we will need to consider such extended convex functions in Section 3.

It is well-known that convex functions on R have monotonic one-sided
derivatives everywhere. Thus we may define an action of tangent vectors
on convex functions by taking the one-sided derivative along the correspond-
ing geodesic. That is, if x e My (the tangent space at p) andf is convex, let
be the geodesic having ’ (0) x and define

xf limt-.o+ (f/(t) fp)/t.

A point p is a critical point of f if xf >_ 0 for every x M. The following
properties of a convex function are easy consequences of the definition and
known properties of convex functions on R"

(1) The sublevel sets are totally convex.
(2) xf q- (--x)/ > O.
(3) A local minimum is a critical point.
(4) A critical point is a minimum point of the restriction of the function

to any geodesic through the point. Hence a critical point is an absolute min-
imum of the restriction of the function to a normal coordinate neighborhood
of the point.

(5) The set of critical points is dosed.
(6) The critical set is totally convex. Hence also each of its components;

there is no geodesic from one of these components to another; there is no
geodesic from a critical point to a noncritical point having the same f-value.

(7) Each level set f-lc is decomposed into components, each of which is
either a component of the critical set or a convex topological hypersurface,
disjoint from the critical set, with f increasing on the outside.
By "L is a convex topological hypersurface" we mean that for every p e L

there is an open half-space H of My and a neighborhood U of the origin such
that exp (U n H) does not meet L and the projection of L n exp U onto
exp (OH n U) is a homeomorphism. The projection here is orthogonal pro-
jection with respect to normal coordinates at p. In case L is smooth this
means [10] that the second fundamental form with respect to an "outward-
pointing" unit normal vector field is positive semidefinite. The link with
convexity of f when L is the level hypersurface of a smooth function f is pro-
vided by the expression for the second fundamental form in terms of the
hessian of f. The latter is a symmetric (0, 2) tensor field 2f defined by

V2f(X, Y) XYf (VxY)f

for vector fields X, Y on M. Letting N grad f/ grad f be the normal
field and X a vector field orthogonal to N, the second fundamental form of
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L is given by
<x, v N> <v x,

whereas
f(X, X) (xX)f grad f (xX, N).

Finally, we collect some properties, which will not be needed elsewhere in
this paper, concerning first differentiability of convex functions. The dif-
ferential df, on each tangent space M is the positively homogeneous function
defined by df xf. Then df, is convex on the linear space M. (See, for
example, [7] which shows equivalently that the epigraph of f has convex
tangent cone at each boundary point (p, fp).) The following are conse-
quences of the convexity of df

(1) For x eM in a neighborhood of 0 e M,

(f o exp)x fp df o(llxll ).

(2) If is any C path satisfying ’ (0) x M, then

lim,-.0+ (f’), (t) fp)/t

exists and is equal to xf.
(3) If df,o+ df, (-x) 0 for d independent directions x e M, where

d dimension M, thenf is differentiable at p.
(4) f is differentiable almost everywhere on M. (A proof may be

modelled after [4] or [9]. )

2. Main theorem

We enquire when a family of hypersurfaces can be the level hypersurfaces
of a convex function. The theorem below says, in particular, that a smoothly
parametrized family of strictly convex hypersurfaces Lo is the family of level
hypersurfaces of a smooth strictly convex function if and only if certain in-
formation about the relative positions of the Lc’s is continuously bounded.
Now fix t:M -- R to be a smooth function on a connected riemannian mani-

fold M. We assume these necessary conditions: The only critical points are
local minima. For every c in the range of t, t-lc is a union of subsets K and
L, where Ko is in the critical set, is everywhere noncritical on Lc, and L is
a convex hypersurface with outward-pointing normal grad t/ grad N.
That is, the restriction of t to the tangent spaces of L is positive semi-
definite.
The assumptions on may be equivalently stated" The only critical points

are local minima and the sublevel sets are totally convex. Verifying the
equivalence in one direction total convexity of each sublevel set

Mb {p M: tp <_ b}

follows because if a geodesic arc with ends in Mb were to leave M, then at a
point (necessarily noncritical) were t first took its maximum c, , would be
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tangent to L, contradicting convexity of L. The reverse implication follows
because in a sufficiently small neighborhood of a noncritical point, total con-
vexity ofM implies that a geodesic tangent to L cannot enter the interior of
M. We observe that for any smooth function whose critical points are local
minima, each component of the critical set is also a component of the cor-
responding level set. If in addition the sublevel sets are totally convex, then
the function must be constant on geodesics between critical points, so total
convexity of the critical set is automatic.
A measure of how badly fails to be convex is given by the negativeness of

the following function defined on the values of c having nonvacuous L"
tt(c) inf {r(p), (p) t(x, N)/dt(N,)t(x,x):pL,

x is a unit tangent to Lo at p and is orthogonal to the nullspace
of t on L},

where r(p) t(Nv, Nv)/dt(Nv). (The only time the first, r(p), of the
pair of numbers comes into play is when the set of x’s for the second is vacu-
ous; that is, when t vanishes on Lv.
THEOREM 1. There is a smooth function f: range --, R such that f’ ) 0 and

f is convex if and only if the following conditions are satisfied:
(a) t(x, x) 0 implies t (x, Nv) 0 for x
(b) The function is bounded below by a continuous real-valued function

defined on the range of t.
Moreover, if the L are strictly convex (so (a) is vacuously true) and the critical

points of are nondegenerate, then we may write "f is strictly convex".

Remarks. (1) Since t is semidefinite on Lcv, condition (a) means that
the nullspace oft on L,v lies in the nullspace of t.

(2) The nullspace of t on Lv is the relative nullity space for L in M,
consisting of x Lv satisfying. (N, y) 0 for all y
whose tangents are relative nullity directions are also geodesics in M. L is
strictly convex if its relative nullity spaces are all zero. Since

t (x, N) x gradt I,
condition (a) says that any relative nullity direction x satisfies
x grad 0. In other words, nearby L’s remain at the same distance
when we move in such directions.

(3) Whentvanishes on L,, then L, is totally geodesic. If this happens
on an open subset, then condition (a) implies that N is parallel along its inte-
gral curves in that subset, and hence M is locally a riemannian product of L
and an interval.

(4) In applications it is often possible to verify (b) by showing that is
continuous and finite.

(5) This theorem was discovered independently of the version for linear
spaces [4]. We thank Ralph Alexander for pointing out this reference, as well
as for suggestions concerning Section 3.
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Proof of Theorem 1. Let X be a vector field orthogonal to N. For any
f:R -* R we calculate
(f. t) ([f’ o t]dt) f .t(dt) + f’ . tt on X + uN, ueR"

(I o t) (X + uY, X + uN)
u (dt (N)f" o -t- f’ott (g, N) -t- 2uf’ott (Y, X) + f’ott (X, X).

In order for this to be nonnegative when f’ > 0 and t(X, X) >_ 0, the
polynomial in u must have a nonnegative coefficient of u, that is,

dt(N)(]’o -k- If’or]r) >_ O,

and it must have nonnegative discriminant"
D(X, N)

f" o dt(N)’t(X, X) -t- f’ot[t(N, N)t(X, X) t(X, N)’]
>0.
Now suppose that conditions (a) and (b) are satisfied. If t(X, X) 0,

then condition (a) gives D (X, N) 0. But r >_ u, so both requirements for
the polynomial in u to be nonnegative are satisfied provided thatf" -t- uf’ _> 0.
If t(X, X) > 0, then removing the positive factor dt(N)t(X, X) from
D (X, N) reduces the second requirement to f" + tf’ >_ O. By (b), u has a
smooth lower bound h defined on range t, so choose f to be a solution of the
differential equationf" + hf’ 0 such thatf’ > 0. Then the requirements for
(f o t) to be positive semidefinite are satisfied at all the noncritical points
of t. But the critical points of are local minima, so also the critical points of
f o t. Hence (f t) is positive semidefinite everywhere. The case for
strict convexity follows in the same way by taking h to be a strict lower bound
for u.
Now suppose that 7(f o t) is positive semidefinite. Then if

t(X, X) 0, D(X, N) reduces to -f’ o tt(X, N). Thus condition (a)
follows from D (X, N) >_ 0. The requirements for (f o t) to be positive
semidefinite clearly show tha -f’/f’ is lower bound for u, so (b) also is true.

3. Boundary behavior of convex functions on hemispheres

Let f be a convex function on an open d-dimensional unit hemisphere H
withboundary (d 1 )-sphere OH. Since a convex function on a finite interval
has a limit inR u -t- oo at each end, the convex function f on H determines a
radial limit function Of:OH --. R u + }, which gives the limits of f at OH
along geodesics radiating from the center o e H. A sequence p in H is said to
converge to q H nontangentially if the initial directions of geodesic arcs from
q to p approach no directions tangent to OH. This is the same kind of limit
considered in the theory of harmonic functions, but it seems there can be no
logical implications either way" the intersection of harmonic and convex func-
tions on a domain in the sphere consists of constant functions. Moreover,
the subharmonic functions include the convex functions, but the theory of
non-tangential limits is known not to extend to subharmonic functions.
The following lemma obviously holds in the larger context of convex func-
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tions on the interior of a manifold with boundary. In that context we define
() to be the limit of along any eodesic segment ending in /and lying in

the interior of M except for . The proof of the lemma shows that this limit
is independent of the choice of segment, since neither of two such segments is
tangential.

LEMMA 1. Along any sequence con:ergng no,tangentially to e OH, f has
limit Of(q). The minimum of the limiting values for f a q is Of().

Proof. We suppose that {p} and {p} converge to q and satisfy
limf(p) > limf(p), and show that {p} must converge tangentially. Other-
wise, {p} lies in a geodesic wedge W radiating from q with closure in H u
Now let c be any number satisfying 0 < c < r. By substituting a subse-
quence of {p} for {p’} if necessary, we may arrange that the sequence of open
geodesic arcs / of length c, where : starts at p’ and passes through p, has a
subsequence converging to some arc in the closure of W. The restriction of
f to has slope

(p,) f(p)]/d(p,, p’,)
from p’ to p, and beyondp it remains at least that steep. Since this quotient
approaches o, the value off at a point of approaches as / approaches
Since we have arranged for to lie in H, the contradiction follows by con-
tinuity of f.
LEMMA 2. Of is convex on any minimizing geodesic arc in OH.

Proof. Suppose a OH is an open great semicircle with endpoints q’, q".
We choose in H some open 2-dimensional hemisphere H bounding on a, and
approach a by means of semicircles a in H having endpoints q’, Since
the movement of a point p a to its limit q a is not tangential to OH, the
values f(p) approach Of(q). Thus Of on a is expressed as the limit of a
sequence of convex functions, and is convex itself. Convexity of Of on the
closure of a follows from the fact that Of(q’), O$(q ) give convex extensions
of f to the endpoints of a for each a, and hence give a convex extension
of Of to the endpoints of a.

CORO,.h.RV. If Of is finite on an antipodal pair of points, then Of is constant.

Proof. Suppose Of is finite on antipodal points q’, q" in OH. Then for any
q OH, since Of is convex on the closed semicircle q’qq’, we have

Of(q) (_ max Of(q’ Of(q")}.

Thus Of is a finite convex function on OH, hence is constant.
The following thorem uses the notion of convex subset. Our definition is as

follows" A subset C of a riemannian manifold M is convex if for every pair of
points in C, M contains exactly one minimizing arc between them and that
arc lies in C.
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THEOREM 2. Let f be a real-valued convex function on an open hemisphere H
wih boundary sphere OH. Let C be the subset of OH on which he radial limit
function Of is finite.

(a) If Of is not constant, then C is convex in OH.
(b) Of is convex on he interior of C.
(c) Everywhere in OH except at included boundary points of C, Of is a con-

inuous extension off. At included boundary points of C, Of gives the limits off
along sequences not tangential to OH.

Proof. (a) When Of is not constant, C does not contain antipodal pairs,
so OH contains just one minimizing arc between any pair of points in C. By
Lemma 2, this arc lies in C.

(b) This claim follows immediately from the preceding one and Lemma 2.
(c) First suppose that Of(q) By Lemma 1, is the minimum limit

value forf at q, so all limit values are that is, Of continuously extendsf at q.
Now let q OH be a point to which f does not extend continuously Then q
lies in C. If we apply the technique of the proof of Lemma ! without the re-
quirement that the arcs , lie in a wedge, a subsequence will converge (possibly
tangentially) to some arc in OH. However, we conclude that on every
neighborhood (in S) of q the values of f are unbounded A sequence of
geodesic arcs from o through points on whichf is unbounded will have limiting
arcs on which the radial limit is . Thus Of will take the value in every
neighborhood of q in OH; that is, q is a boundary point of C.

In view of Theorem 2 (a), we include some remarks about convex subsets of
the sphere: If a subset C of the sphere S is convex under our definition, then
its closure is the intersection of closed hemispheres. That is, C locally
possesses supporting great hyperspheres at boundary points; such a local sup-
port element is easily seen to determine a closed hemisphere containing C.
We define a half-closed hemisphere of S inductively to be one that intersects
its boundary sphere in a half-closed (d-1)-hemisphere, where a half-closed
0-hemisphere is a point. Then any convex subset of S lies in a half-closed
hemisphere. This is immediate by induction on d, since we know a convex
subset of S lies in a closed hemisphere and has convex intersection with the
boundary (d 1)-sphere. The half-closed hemispheres are the maximal
convex sets and the complement of a half-closed hemisphere is a half-closed
hemisphere.
Theorem 2 may be interpreted in terms of the graph of f. Part (c) says

that the graph of Of fails to be the boundary of the graph of f in
S X (R u only in its behavior at C n OC. It is an easy consequence of
convexity that at q C OC, f takes all limit values between Of(q) and .
Thus the boundary of the graph off consists of the graph of Of plus the vertical
rays starting at (q, Of(q) ), for all q C. OC.

Examples. If M is a riemannian manifold, the distance r from a point p is
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convex on every ball centered at p for which all of the sublevel sets of r are
convex. The minimum radius of the largest such ball has been estimated as
r/2k, where k is an upper bound on curvature [2, p. 249]. This estimate is
achieved on ordinary spheres. Thus r is convex on the hemisphere with pole
p, but not any larger open set. Furthermore, r and (tan r) arestrictly con-
vex and smooth. This shows that the radial limit for smooth strictly convex
functions can be constant and either finite or infinite.
Another extreme is an example for which the set C of Theorem 2 is a single

point. Choose rectangular coordinates x, y,... for the ambient euclidean
space of the unit sphere S having the origin at the center of the sphere. Then
by direct calculation it can be shown that the restriction of (1 y)/x to the
hemisphere on which x > 0 is strictly convex. The level hypersurfaces are
small (d 1)-spheres tangent to the boundary at (1, 0, and the radial
limit is infinite except at (1, 0, where it has value 0.

In Section 4 we construct examples for which C is the interior to any (d
2)-sphere in OH. In the case of S it is possible to visualize the level curves of
strictly convex functions on a hemisphere H which realize all the possible types
and permissible lengths of intervals in OH for the set C. The formal technique
required is to apply Theorem 1 to families of level curves which are patched
together to satisfy strict convexity and the desired edge behavior. Continuity
of is assured for families which can be continued transversely across the
boundary. In order to obtain an included endpoint q of C, we make the level
curves enter q tangentially, locally congruent to the level curves of (1 y)/x
on one side of its finite point. Since (1 y )Ix is convex we know that is not
forced to - near q.

4. Convex-supporting domains

We define a domain in a riemannian manifold to be convex-supporting if
there is a real-valued function on the domain which is strictly convex along
every geodesic arc lying in the domain. Use of Theorem 1 is illustrated below
(Proposition 2) by the construction of a dense convex-supporting domain in
S. Proposition 3 shows that S with a closed (d 1)-hemisphere removed is
not convex-supporting, even though it is a nested union of open convex-sup-
porting domains. More generally, Proposition 3 shows that convexsupport-
ing domains need not lie in maximal ones.
A different definition of convex-supporting domain is suggested by W. B.

Gordon in [5], namely, that every compact subset be contained in an open
convex-supporting domain (in our sense). Since this property is preserved
under nested unions of open sets, maximal open sets of this type always exist.
S with a closed geodesic arc of length removed is an example.

Letting x, y be as in Section 3, for 0 < e < 1 we obtain an open subset D
be deleting from S the portion of the great (d 1 )-sphere y 0 determined
by the inequality -e _< x. We assume d > 1.

PROPOSITION 2. D supports a strictly convex function.
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Proof. Let 0

_
a < e. For -1 < c < --a the hypersurface L, t-c is

defined to be the intersection of D with the d-plane (if c _< -e) or folded d-
plane (if - < c; the edge here is in the (d 2)-plane y 0, x c) which
has equation

g(c)lyl + c.

The smooth function g is required to satisfy

g(c) 0 for --1_< c_< --e;

g(c) > 0 for -e < c<: --a;
and

lirn._ g (c )
We want to show that Theorem 1 can be applied here to show that there is a

smooth function f such that f is strictly convex on D. Thus we make the
following observations"

(1) has a single minimum point where x -1; since x W 1 in a
neighborhood (x < -e), this minimum point is nondegenerate.

(2) Except at the points Y 1 and x -1, we can take a coordinate
system which includes x, y as two of the coordinate functions. Then the im-
plicit determination of by g (t) Y - x 0 gives

Ot/Ox [g’(t) Y + 1]-’ 0.

At the points y 1 we can still use x as a coordinate, and since y is critical
there, Oy/Ox O, so the same formula prevails for Ot/Ox. Thus has only
x -1 as a critical point.

(3) Locally the Lo’s are small (d 1 )-spheres, so they are strictly convex.
(4) For 1 _< c _< , x cos r where r is the distance in Sa from

the point x -1. But r is convex with strictly convex level hypersurfaces
and -cos r is a strictly convex function of r, so is strictly convex in this range.
By continuity of t, is strictly convex on a neighborhood of L_. Such a
neighborhood will include all L, for - <_ c < - for some < e. Hence
(c) > 0forc< -.

(5) It remains to verify that is smoothly bounded below for c _> --.
We do this by observing that the restriction of to the upper (or lower) hemi-
sphere y > 0 can be extended smoothly in the region in question across the
boundary into the lower hemisphere. We simply use the same formula with-
out the absolute value signs on y namely g (t)y W x 0. By the im-
plicit function theorem this equation defines as a smooth function of x, y as
long as g’ ()y -t- 1 > 0, that is, y > 1/g’ (). Since 1/g’ () is negative
for >_ -fl, this allows the extension across y 0. (See figure.)
Now the (c) on the original L is the restriction of the defining formula to a

compact part (y >_ 0) of the new L, so that the infimum is actually a mini-
mum and it is a continuous function of c.

Remark. The radial limit of the restriction of ] o to a hemisphere must be
infinite exactly on the complement of D.
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PROPOSITION 3. Every convex-supporting domain of S which contains some
D also lies in the image under a rotation of someD and is therefore not maximal.

Proof. Suppose D S supports a nonconstant convex functionf and con-
tains D. We denote the (d 1)-sphere y 0 by OH. Then D contains the
two open d-hemispheres H (y > 0) and H (y < 0) bounded by OH. The
corresponding radial limit functions on OH are denoted by Of and Of. Let C
be the subset of OH on which both Of and Of’ are finite. If C OH, then both
Of and Of’ would be finite everywhere and hence take a constant value c which
is an upper bound for f. But then any interior point of OH n D would be a
maximum point for f, so f would be constant. Thus C is the intersection of
two sets, one of which is convex. Hence there is a half-closed hemisphere in
OH not intersecting C.

Observe that the closure of OH n D is contained in C. Indeed, if p is a limit
point of OH D, then a geodesic arc through p perpendicular to OH may be
approached by geodesic arcs in D, and the limit of convex functions is convex.
Now we show that there is a closed hemisphere outside of K, the closure of

OH D. Suppose that a half-closed hemisphere which does not meet K con-
sists of the point wherex 1, the half-circle on whichx > 0 in the xx-plane,
the 2-hemisphere on which x > 0 in the x x xa-space, etc After a rotation
of the x x axes which puts the new point x 1 at half the distance of the old
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one from K, we find that the new closed half-circle x _> 0 does not meet K.
Then by a rotation of the x x axes we arrange that the new closed 2-hemi-
sphere x >_ 0 does not meet K. At the i-th stage we rotate the x x+ axes so
as to arrange that the new closed/-hemisphere x+ >_ 0 does not meet K.

Finally, if sin- is the distance (in S) from K to such a closed hemisphere
in OH, then D is contained in the image ofD under a rotation.
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