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Abstract
Bing has proved that each 2-sphere in E can almost be mapped free of

itself in the following very nice sense" Suppose that is a 2-sphere inE and
> 0; then there is an -map

f S--, S u Int S

such that f (S) n S ndf- (if (S) n S) re 0-dimensional nd

f F n

is a homeomorphism. This paper illustrates how Bing’s theorem can be used
advantageously as a substitute for Bing’s original side approximation theorem.
The following are the principal results.

(1) A 2-sphere S is tame if it is (singularly) spanned or capped on tame
sets.

(2) A 2-sphere S is tame if each of its points is an inaccessible point of a
Sierpifiski curve in S which can be pushed by a homotopy into each comple-
mentary domain of S.

O. Notation and definitions

We use p for the Euclidean metric, Diam for diameter, C1 for closure, Bd
for boundary (point set or combinatorial), Int and Ext for interior and ex-
terior, N (X, e) for the (open) e-neighborhood of a set X in Euclidean 3-
dimensional space E. An e-set has diameter less than e;an e-map or homeo-
morphism moves no point as far as e. A loop is a map " S --, E of the
1-sphere or circle S into E. A singular disk is a map g B --* E of the
circular disk B into E. We consider S as the boundary of B and say that
the singular disk g B --, E is bounded by the loop g S. Iff (respectively,
g) is an embedding, then f(S) (respectively, g (B) is called a simple closed
curve (disk). A set A in E is 1-ULC if for each e > 0 there is a > 0 such
that each -loop in A bounds a singular e-disk in A.

1. The singular side approximation theorem
THEOREM 1. Suppose S is a 2-sphere in E and U is a component of E S.

Then for each > 0 there exist an e-map g S S u U and disjoint
e-disks D D,, in S such that

(i) g (S) n S and g- (g (S) n S) are O-dimensional subsets of U.-_ Int D,
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28 J.w. CXNNON

(ii) g(D,) n g(Di) O for i j,
(iii) g(S) n S U. [Int D n g(Int D)], and
(iv) g IS g-1 (g (S) n S)] is a homeomorphism onto a locally polyhedral

set in U.

Addendum. Let X1, X,., be a sequence of closed subsets of S. Then
g (S) n S can be required to lie in S (J=-i X for each e > 0 if and only if
(8 u U) Xi is 1-ULC for each i. This latter condition on Xi is satisfied,
for example, if X lies on some tame 2-sphere in E and X has no degenerate
components.

Proof. Theorem 1 and its addendum are proved piecemeal in [9, Lemma
2.5] (called the "Singular Side Approximation Lemma" in [12]) and [12; Ad-
denda I and II to the Singular Side Approximation Lemma, proof of Case 1 of
the Cellularity Lemma].

I discovered Theorem 1 and a form of the addendum during Christmas
vacation of 1967 as I read [5]. Theorem 1 has played an important but hidden
role in the development of each of the papers [9], [10] and [12]. Only in [12] and
in the applications of the present paper have I been unable to avoid its full use
But it has proved conceptually important (at least in my work) and seems to
deserve explicit statement and examination.

DEFINITION. The map g of Theorem 1 is called an e-singular side approxi-
mation to S from U.

2. Singularities in singular side approximations
result of Eaton [16, Theorem 17] implies that if a 2-sphere S in E* is wild

from Int S at more than one point and Int S is an open 3-cell, then, for all
sufficiently small e > 0, any -singular side approximation to S from Int S
must indeed have singularities. We note in this section that Eaton’s argu-
ment taken in conjunction with Theorem I also establishes the following result.

TH.OR.M 2. Suppose that is a 2-sphere in E satisfying:

(i) For each e 0 there is an e-homeomorphism g S --. S u Int S such that
(S) S s O-dimensional; and
(ii) if C is a closed and O-dimensional subset of S, then (S t Int S) C is

1-ULC.
Then S J Int S is a 3-ell.

Proof. The proof is exactly like that of Eaton’s Theorem 13 [16, pp. 713-
715] except that one must find a substitute for Eaton’s Lemma 12.

Eaton’s idea as translated into our setting would be the following: take
a nonsingular e-singular-side-approximation g S --, S u Int S to S from Int S
with associated disks D, D in S as outlined in Theorem 1 (the existence
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is ensured by condition (i) of Theorem 2 and by a disk collecting argument
like that in [20]); (2) use, for each i, a singular disk

$ D--, Su IntS

supplied by the following lemma to cut the disk g (D) off inside S (in the ap-
plication of the lemma, one takes very small and C g(S) n Int D). For
(2), follow a procedure similar to the argument given by Eaton in Cases 1 and
2 on page 714 of [16]. The argument establishes that S can be homeomorphi-
cally e-approximated in Int S for each c > 0; thus S b Int S is a 3-cell by [2]
(or [14]).

LEM (corresponding to [16, Lemma 12] ). If is a 2-sphere, D is a disk
in , and C is a closed O-dimenswnal suSset of Int D such that

(u Int) C
is 1-ULC, and O, then there is a singular disk f D u Int S such that

(1) f(D) S and jT[f(D) ] are O-dimensional suSsets of Int D
C and

(2) fI {D f-([f(D) S]} is a -homeomorphism onto a locally poly-
hedral subset of Int S.

Proof. This is n immediate corollary to Theorem 1 nd its ddendum.

Remark. The need for condition (i) in Theorem 2 is obvious from examples;
indeed, condition (ii) is stisfied from the wild side of the examples in [3],
[17], nd [1]. The precise point where hypothesis (i) is used in the proof of
Theorem 2 or the corresponding hypothesis is used in [16, Theorem 13] cn
esily escape notice nd lead to one of the most standard errors in the subject.
The difficulty is t the root of mny of the flse proofs of the "Free Sphere
Conjecture" [7. p. 302] that I hve seen or constructed myself.

3. Spheres which are singularly capped or spanned
Let S denote a 2-sphere in Ea, and choose some homeomorphism h S

S, where
S= {x E{p(x,O)= 11

is the standard 2-sphere. If X c S, define a (X) h-’ (-h (x)) x X to
be the antipodal set of X. This somewhat arbitrary assignment of antipodal
sets of S will prove a technical convenience. It will also be convenient to
assign to each pair {x, a(x)} of antipodal points in S a simple closed
curve J (x) J (a (x)) such that J (x) n S x, a (x)
and a (x ).

Recall that the standard 1-sphere S and disk B in the plane E are defined
by

S {x Elp(x,O) 1} and B-- {x Elp(x,O)

_
1}.
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More generally, if is a positive real number, then

DEFINITIOZ# 1. A map $ Int B Int S is said to cap at p from
Int S if the following conditions are satisfied.

(1) p(f(),S) --, 0 as p(, S) --, 0.
(2) Clff(Int B)) f(Int B) S {p, a(p)}.
(3) For all positive numbers sufficiently close to but less than 1, the loop

f tS1 and the simple closed curve J (p) link (cf. [14, 1] ).
If, in addition,
(4) cl (f(nt ) (, ),

then f is called an e-cap at p.
The set C1 (f(Int B2) ) f(Int B2) is called the boundary ofand is denoted

by Bd f. If Bd f lies on a tame 2-sphere in Es, then f is said to have tame
boundary. Similarly, we define Int f(Int BS).

DEFINITION 2. The 2-sphere is said to be (singularly) csppe8Sro Int S
if, for each p S and each e > 0, there is a map which e-caps S at from Int .
If, for each p S and each e > 0, the corresponding e-cap can be chosen to
have tame boundary, then S is said to be tardy cappefrom Int S.

I).FIZqTION 1. Suppose K is a finite dimensional compact metric con-
tinuum. A map f K X I --* S u Int S is said to pa S at p S from Int
if the following conditions are satisfied.

(1) f(KX (0,1]) :IntS.
(2) f IK X {1} is s constsnt rasp.
(3) fl K X {0} is an essential map into S {p, a(p)}.
If, in addition,
(4) f(KX I) : N(p, e),

then f is called an e-span at p.
The set f(K X {0} ) is called the boundary of f and is denoted by Bd f. If

Bdf lies on a tame 2-sphere in Es, thenf is said to have tame boundary. Simi-
larly, we define Int f f (K (0, 1]).

D,Fmror 2’. The 2-sphere S is said to be (singularly) spanned from Int
S if, for each p S and each e > 0, there is a map which e-spans S at p from
Int S. Tamely spanned is defined in the obvious way.

Remark. Although Definitions 1 and 1’ reflect the arbitrary choices made
in assigning antipodal sets and curves J (p), it is easy to see that Definitions 2
and 2 are independent of those choices and are properties of S itself.
The following theorem generalizes results of White [24] and is related to re-

sults in [6], [13, 5], [21], and [22].

THEOREM 3. If S is a 2-sphere in and S is either tamely capped or tamely
spanned from Int S, then S u Int S is a 3-cell.
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Remark. Theorem 3 is almost surely true with the word "tamely"
omitted.

Proof. By a compactness argument, there is a sequencef,f, of maps,
each of which either caps or spans S at some point of S from Int S and each of
which has tame boundary, such that for each p S and each > 0 there s an
integer i such that f is a -cap or -span at p.

For each i, Bd$ is a nondegenerate continuum in S (by conditions (1), (2),
and (3) of Definition 1 or by condition (3) of Definition 1’) and lies on a tame
2-sphere in E (since Bdf is tame).
Suppose e > 0 given. By Theorem 1 and its addendum, there exist an

e-map
g S -+ (S u Int S) U- Bd f

and disjoint e-disks D, D in S such that g and the disks satisfy con-
ditions (i)-(iv) of Theorem 1 and such that

Diam (Dug(D)) < e (i 1,...,n).

Let M, M be disjoint e-neighborhoods of

Int D u g (Int D), Int D u g (Int D),

respectively, in

E [(S U_ Int D,) u g (S U_ Int D,)].

Let N Mi n Int S.
In order to show that S u Int S is a 3-cell, it suffices to show that, for each i,

g (Bd D) bounds a polyhedral disk E inNu g (Bd D). For then,

g(S U,L D,) u (U"-i E)

will be a polyhedral 2-sphere in Int S which is homeomorphically within of
S; and will give the desired result.
We work with each singular disk g (D) separately, hence, for notational sim-

plicity, set N N, M M, and D D. We may clearly assume that
the antipodal set a (D) of D is disjoint from D and that there is an arc a in

(a(D) u Int S) N

that is irreducible from g (Bd D) to a (D).
Consider the compact 0-dimensional subset C g (D) n D of Int D. By

our choice of the maps$, ft., and the compactness of C, there are finitely
many points x, x+ in C and corresponding integers n, n. such that
f is a span or cap for S at x (i 1, j),

Int/,,u Bd$., M (i 1,... ,j),

nd for each x C there is n x such that x nd x re in the sme component
of S Bd f.
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Since each Bdf, misses C (by our choice of g) and since each Int f, lies in
(J--1 Int f, )] are disjoint compact subsetsN, the sets g-1 (C) and g-l[g (D) n

of Int D. Since g-1 (C) is 0-dimensional, there are finitely many disjoint disks
F, F in Int D g-[g (D) c ((J-_ Int f, )] such that each contains a
point of g- (C) and such that g-1 (C) c (J_- Int F.

(J-i Int F) (which liesLet Do denote the polyhedral disk-with-holes g (D
in Int S). Let No N [J1 g (F). The Loop Theorem [23] implies (by
an argument that is by now standard; e.g. [13; Proof of (3.4), 7th paragraph]
or, in more detail, [26, Proof of Theorem 1]) that g (Bd D) bounds, together
with some other finite number of the curves from Bd Do, a polyhedraldisk-
with-holes Eo in No u Bd Do such that the homomorphism (Int E0) --*

(No) induced by the inclusion Int E0 No is 1-1; for otherwise, since Int Do
separates No, the Loop Theorem applies directly to Int Do together with one
component of No In Do and supplies disks which cap over holes in Do. We
claim that Eo is actually a disk, in fact, precisely the disk E needed to complete
the proof of Theorem 3 since E0 c N (J g (Bd D).

Suppose E0 is not a disk and that g (Bd F) Bd Do is a boundary curve of
E0 distinct from g (Bd D). Let B denote an arc in E0 u g (F) irreducible from
a n g (Bd D) to S. Let be an arc from a a (D) to D such that Int
Ext S. Then au fu forms a loop L in a natural way. We shall complete the
proof of Theorem 3 by showing that there is a loop near one of the sets Int f,,
which links L and yet does not link L, a contradiction arising from the false
assumption that Eo has more than one boundary component.
By the choice of x, x and n, .., n, there is an integer r such that

t n D andx lie in the same component of S Bdf,. We consider separately
the case where f, is a cap and a span.

Case 1. The mapf is a cap. Since the sets

(SuIntS)--BdA, and (SuExtS)-Bdf,

have trival first homology, (cf. [25, Chapter 10, 3]) it follows that L and
J (x,) are homologous in E Bdf,,. This, together with condition (3) of
Definition 1, implies that, for all positive numbers sufficiently close to but less
than 1, f,, ItS links L (d. [14, 1]).

Let be a positive number chosen so as o satisfy the requirements of the
preceding paragraph and also so that f (tS) Eo . we may put the
singular disk f,,, (tB) (which lies in N0) and the open disk-with-holes Int Eo
in general position by a slight adjustment off, Int (tB). If J is any com-
ponent off- (f,, (tB) Eo), thenf, J must be a loop that is nullhomotopic
in IntE since v (Int Eo) -- vl (N0) is 1-1. Bu this implies that f,, tB may
be adjusted inN in such a manner that f,, tS is kept fixed but the adjusted
f,, (tB) misses E0. Since L No E0, this implies that f,, tS and L do
not link, our desired contradiction. This completes the proof of Theorem 3 in
Case 1.

Case 2. The mapf is a span defined on a product K X , where K is
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ite dimensional compact metric continuum. Since n D and x lie in the
same component of Bd r as do n a (D) and a(x), it follows that
$r 101 is an essential map into (cf. condition (3) of Definition
1). e shall complete the proof by showing that /01 is inessential
in , a contradiction which aain arises from the false assumption that
has more than one boundary component.
By a classical result, we may assume that K lies in a high dimensional

Euclidean space . e shall extend to a neighborhood of K I in
(U,= g(F,) u ").A- X I as follows. Consider the open set M0 M

Note that Mo n Int S No. The set M0, Mo n S, andf, (K X 1 ) are all
absolute neighborhood retracts. Thus there is a neighborhood K0 of K in
E and an extension $* of f. to Ko X I such that

(1) $* :Ko X I---.Mo
(2) ]* (Ko X 1} ) f. (g X 1} ) single point
(3) $*(KoX {0}) MonS.
There are a polyhedral neighborhood K of K in K0 and a positive number t,

0 < < 1, such that

(4) I*(KX [0, t]) Ea- (Lu
(5) 3’* (K X [t, 1]) No.

Let J be any loop in K. Then f* J X {t} is a loop in No Eo which
bounds a singular disk in 3’* (K X It, 1]) No (by conditions (2) and (5)of
this proof). By the argument employed in the second paragraph of Case 1
above, f* J X {t} is nullhomotopic in No E0, hence in E L. But
f*lJ X {t} andf*lJ {0} are homotopic in E L; hence neither finks L.
This implies that f* J 0} is .nullhomotopie in S L. Thus the 1-skeleton
of any triangulation ofK X {0} is mapped trivially into S L byf*. Since
S L has trivial higher homotopy groups (r, a, ), it follows that
f*lKx X {0} and therefore f,, K {0} are nullhomotopic in S L, our
desired contradiction.

4. Collared $ierpifiski curves

Let S denote a 2-sphere in E. A Sierpiki curve in S is the continuum
which remains in S after one removes from S the interiors of a null sequence
of disjoint disks whose union is everywhere dense in S. The points of a
Sierpifiski curve which do not belong to any of these disks are called in-
accesible points.

DFTXON. Let S denote a 2-sphere in E and K a subset of S. We say
that K can be singularly collared from Int S or that K can be pushed into Int
with a homotopy if there exists a map f of K I into S u Int S such that
f K X {0} is the identity homeomorphism on K andf(K (0, 1]) us a subset
of Int S.
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The following theorem answers in the affirmative a question raised by Bing
in [5] and by Burgess in [6]. A partial result in this direction was obtained by
White [24].

THEOREM 4.1. A lospere n s tame from Int J each point of is an
inaccessible point of a Sierpii curve on S that can be pushed into Int S with a
homotopy.

Proof. By the Hosay-Lininger Theorem [15], [18], [19], we may assume
that S is tame from Ext S. We shall show that, under this additional as-
sumption, S is tamely spanned from Int S. The desired result will then follow
from Theorem 3.
In order to show that S is tamely spanned from Int S, let p S and e > 0.

By hypothesis, there exist a SierpiSski curve X in S and a map

f X I-S U Int S

such that p is an inaccessible point of X, f X [01 is the identity homeo-
morphism on X, and f(X (0, 1]) Int . Burgess [6, proof of Theorem
14] has shown under these conditions that there exist a simple closed curve
J in X and a map f* J I -- S U Int S which -spans S at p such that
f* J X {01 is the identity homeomorphism. It is easy to see from Burgess’
proof and from the structure of a SierpiSski curve that we may take J to lie
in the inaccessible, part of X; hence J is tame by Theorem 4.2, This completes
the proof.
THOa 4.2. Suppose that S is a 2-sphere in E, that S is tamefrom Ext S,

that X is a ierpiski curve in , that K is a compact suSset of the inaccessible
part of X, and that there is a map

f X X i---,SuIntS

such that f] X X {0} is the identity homeomorphism on X and

f(XX (0,1]) (SuIntS) g.

Then K is tame.

Proof. We first show that we may assume that S is locally tame at each
point of S K and thatf(X X (0, 1] ) Int S. Since S is tame from Ext S,
there is an embedding g S X [0, 1] --. S u Ext S such that g S X {0} is the
identity homeomorphism on S. Since K is closed in S, there is a continuous
function h S --* [0, 1 ) such that K h- (0). Let

k S-g(S X [0, 1))

be the embedding defined by k(x) g(x, h(x)). Let S’ g(S) and
X’ k (X). It is obvious that S is tame from Ext S’ and is locally tame at
each point of S K; and it is an easy matter to use the mapf and the collar g
to construct a map f’ X’ X I ---. S’ t Int S’ such that j X’ {0} is the
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identity homeomorphism of X’ and such that 9V (X’ (0, 1]) c Int S’.
Having established the existence of S’, X’, and f. we assume that S, X, and $
themselves orginally satisfied the additional desired properties.
We next show that S, with the additional properties of the preceding para-

graph assumed for S, X, and f, is tamely spanned from Int S. By Theorem 3,
the proof will be complete.

In order to show that S is tamely spanned from Int S, let p S and e > 0.
If p S K, then the desired result is clear since S is locally tame at each
point of S K. Assume therefore that p K. The same argument of
Burgess referred to in the proof of Theorem 4.1 shows that if L is any suf-
ficiently small loop in X, then there is a map

g B--,SulntS

such that g Bd B L, g (Int B) Int S, and Diam g (B) < e. Hence it
suffices to find an arbitrarily small tame loop L in X {p} such that L links
J (p) (cf. 3). The existence of such a tame loop is, however, established by
Theorem 4.3; and so the proof of Theorem 4.2 is complete.

THEOREM 4.3. Suppose that S is a 2-sphere in E, that X is a Sierpiciski
curve in S, that each component of S X has tame boundary, and that p is an
inact essible point of X. Then, for each e > O, there is a. tame loop L in
X n N (p, ) such that L links J (p). (Recall that J (p) is dened in the first
paragraph of 3. )

Proof. By [4], there is a tame simple closed curve J in S J (p) such that
J links J (p) and J lies in an s/3-neighborhood of p. Since p is an inaccessible
point of X, we may require that J intersects no component of S X which has
diameter as large as e/3. Let U, U., be the components of S X
which J intersects. ThenM J u Bd U1 u Bd U. u is a closed subset of S
which is the union of countably many nondegenerate tame continua, hence is
tame by [8, Theorem 4.2]. We may certainly require that a(p) not lie in
C1 U C1 U u .... There is a homotopy of J in

JuC1UuC1Uu..- S-J(p)

which takes J into M n X. The image loop is the desired tame loop L.

Remark. There exists a 2-sphere S in E and a Sierpifiski curve X in S such
that no nondegenerate subcontinuum of X is tame [11, Example 2]. There-
fore, the hypothesis that each component of S X has tame boundary in
Theorem 4.3 is an important one.
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