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1. Introduction

Let u be a random walk or, equivalently, a probability measure on a count-
able Abelian group G. The random walk u is said to be recurrent (transient)
iff D mey u"(0) = o (< ) where u" denotes the n-fold convolution of .
Probabilistically, recurrence means that the walk starting from the origin 0
revisits the origin infinitely often with probability one while transience means
that the origin is visited at most finitely often with probability one. It is
desirable to obtain criteria which enable us to decide whether a given walk u
is recurrent or transient. The following criterion is proved in [5].

TrEOREM 1.1. Let G be a countable Abelian group endowed with the discrete
topology. Let u be a random walk on G, fi(v) the Fourier transform of u defined
on the compact character group T'. p 18 recurrent iff

(L) [Re11/(1 = sr)1aP@) = =

where P 1s the normalized Haar measure on T'.

The recurrence criterion (1.1) is thus stated in terms of the transform f.
It is natural to ask whether one can obtain criteria in terms of y itself, i.e.
can (1.1) be reinterpreted as a condition on u. This seems a rather difficult
problem and has thus far been done only in certain isolated cases. For
instance, if G is the d-dimensional lattice Z°, then recurrence criteria can be
obtained in terms of the first and second moments of the walk [4, P. 83].
More recently, Darling and Erdés have obtained such criteria in case G is the
direct sum Z;® Z, ® ---. The elements of G are the infinite sequences
g=(&1,&, "+, &, ) where each &, = £,(g) € Z, (the additive group of
integers mod 2), only a finite number of &,’s being distinct from 0. Let
g» be the element for which £,(g.) = 1, €;(gn) =0 (j = n), 1 < n < .
We then have the following recurrence criterion [2].

TaEOREM 1.2. Let u(gs) = pn > 0 (1 < 0 < ®) where D ey pa = 1.
Assume, without loss of generality, that {p.}e | and define f, = D i2n pi. u
is recurrent iff D ey 1/2%, = .

In this paper, we obtain recurrence criteria in terms of u for two classes
of countable Abelian groups: (i) the groups G = Zp, @ Zp, ® -+ @
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Zm, ® --- and (ii) the infinite subgroups of the group of rationals mod one.
In (i), {m,} is any infinite sequence of integers >2 and Z ., denotes the addi-
tive group of integers mod m, . The elements of @ are the infinite sequences

g = (&(g), -+, ¢en(g), --+) wheree,(9) €Zm,, 1<n< o,

only a finite number of the &,’s being distinct from 0.

The walks we consider on Z,u, @ Zn, ® - - - are distinguished by the prop-
erty that their individual steps fall in distinct summands of the group. The
measure u we consider will be specified by the pair of sequences

{pnrn= 1,24}, {omj,n=1,2---,j= 1,2 - ,m, — 1},

giving respectively the probability that an individual step lies in the nth
component and that the step has the value jg, (g a specified generator of the
nth summand) given that it lies in the nth summand. The results we obtain
differ in the two cases {m,} bounded, and {m,} unbounded. In either case
we will state our recurrence criteria in terms of the sequences

fn= :-lpi: Mn=H;":11m1'y 2$n<°°7 M1=1

It is assumed, without loss of generality, that (i) {p.} ¢ | and (ii) the walk
u is aperiodic.

In the case {m,} bounded we obtain a criterion (subject to a mild restric-
tion) which is essentially necessary and sufficient for recurrence. Specifi-
cally, we show:

TuEOREM 2.1. Let {m,} be bounded; then D wmy 1/Myfn = ® =y is re-
current.

The necessity of this recurrence criterion is restricted by a condition (con-
dition (A), of Section 2) requiring that not too much mass is concentrated
on proper subgroups of the summands, a strong form of aperiodicity. We
then have:

THEOREM 2.2. Let {m.} be bounded and let u satisfy condition (A). Then
1 18 recurrent = D wmi 1/ My fo = .

We show that the conclusion of Theorem 2.2 may be untrue when condition
(A) fails to hold.

When {m,} is unbounded our criteria are less complete. The analogue
of Theorem 2.1 is shown to hold only with the additional hypothesis that u
is symmetric in the sense that an; = an,m,—jforl <n < «,1 <j < m, — 1.
Necessary conditions for recurrence are obtained under a variety of additional
conditions, but these do not generally coincide with our sufficient condition.
An example shows that, in fact, the conclusion of Theorem 2.2 fails in the
case {m,} unbounded, even when condition (A) is satisfied.

The methods developed in Sections 2 and 3 to treat class (i) carry over
with minor modification to treat the class (ii), which we discuss in Section 4.
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A noteworthy feature of the argument is our treatment of i(v) as a random
variable. This is possible in view of the fact that the groups we consider are
discrete. The duals of discrete groups are, of course, compact, their Haar
measures may be normalized, and functions on the duals are indeed ran-
dom variables. The power of this approach is that it allows us to employ
probabilistic tools to study the convergence and divergence of the integrals
in (1.1).

2. Random walksonZ,, ® 2, ® -+ ® Z,, ® ---, {m,} bounded

In this section we consider random walks on the group G = Zn, @ Zn, @
-+ @ Zm, ® -+ where {m,} is assumed to be a bounded sequence. We
let g, be that element of G for which ¢;(gn) = 6jn, 1 < j < w. The ele-
ments jg, , 0 < j < m, — 1, form an additive cyclic subgroup of G of order
m, which we again designate as Z,,, . We consider random walks p with the
property u(Zm,) = pn > 0,1 < n < o, where D vt Pa = 1; ie. the sup-
port of u € Uney Z,,. We assume, without loss of generality, that (i)
{p.} € | and (ii) the walk p is aperiodic, i.e. the support of u generates G.
(That (i) entails no loss of generality follows from the observation that it may
be achieved by a relabeling of indices; as for (ii) we may consider the walk
as a walk on the group generated by the support of u.) Let

anj = p(Ggn)/on (1< n < 0,05 < my — 1)

In the usual graphic terminology we may describe our walk as one whose
steps lie in distinet components of G. A step falls in the nth component sub-
group with probability p,, and given that the step lies in the nth subgroup,
it has the value jg, with probability e,;. We wish to find recurrence cri-
teria in terms of {p.} and {a.;j. Note that Smitom;=11<n< =,
It will be convenient later on to assume that o, = 0, 1 < n < ». This
can always be done in view of the rather obvious statement whose proof we
omit.

TaEOREM 2.0. Let u be a random walk on the countable group G, u(0) < 1.
Define the random walk v as the conditional probability v(A) = u(A |G — {0})
for all subsets A of G. u 1s recurrent iff v is recurrent.

Now x(0) > 0 is equivalent to o,y % 0 for some n. In this case we re-
place u by » where »(0) = 0 and the new ayo’s are equal to 0.

Our basic tool in establishing recurrence criteria is Theorem (1.1). As G
is discrete, its character group I' is compact. The normalized Haar measure
P is a probability measure on the probability space I' and 4(y) is a random
variable defined on T'.

Specifically, if ¥ € ', then by definition

A(Y) = 2o0eo B(0V(9) = 2nmt Pu i1 @i ¥(j0n)-
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We introduce the random variables U,(y) = v(gn). Then
Ua(v) = 7'(ga) = v(jga)
so that
Ay) = 2 pu 275" ans Un(y).
We make the following observations concerning the random variables { Ua}.

(1) For any positive integer = let I, -- -, I, denote arbitrary integers
satisfying0 < I, <m; — 1,1 <j < n Let

Slxu-..l,. = {7l Ul(i’) = 6211'11/1»1’ e, U,.('y) = 21‘!,,/’»,.}.
Then
P(8u,....1) = 1/my - my.

To see this we give a concrete description of the character group I'. For
any character v, we have [y(g.)]™ = v(Magn) = v(0) =1, 1 < n < =,
Hence

’y(g”) —_ e2n'l,./mn, 1 S n< o,

where {l.} is a sequence of integers satisfying 0 < I, < m, — 1,1 < n < o,
Conversely, it is readily checked that for any such sequence {1,}, the sequence
v(ga) = €™/™ 1 < n < w, has a unique extension as a character y(g) on

G. Hence I' may be identified as the set of sequences

(v(g1)s == v(gn)y -+ )5 v(gn) = girin/m (1 <Sn< ®),

where {l,} is any sequence of integers satisfying 0 < I, < m, — 1,1 <n <
. It follows in particular that each Si,,...,;, is non-empty. It is readily
checked that

Siecisin = ¥S0..0 forany vy eSi,.. ...

Since P is translation invariant we obtain P(Si,.....1,) = P(8So..0). Hence
the my - - + m, numbers P(S;,,.....,), 0 < L < m; — 1,1 <7< n, all equal
1/my - - - m, as their sum equals 1.

(2) {U,} is a sequence of independent random variables.
This follows from (1) as

P{ Ul - ezrih/ml’ cee, Un - ezrit,.lm,.} - 1/m1 My
while
P{ U, = e2n‘l,,lm,.} = 1{;1_1 . Z'l':':ll-l P{ U, = ezm'll/ml’ e, U.
= &M = oy e Mgy My = 1/my,
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Hence
P{ U1 - ezrn,/ml’ e, U,, = ezn'l,.lm,.}

= P( U1 = 2ﬂ'lllm1) e P( Un = ezn'z,./m,.)_
(3) E(UL) = [rUi(v)dP(v) =1, j=0

=0, 0<3<m — 1.
For
E(UL) = 27925 [ Ui(y) dP(y) = (1/ma) 22055 7M™ = 1, j =
=0, 0<jJ
<m, — 1.

It will be useful to write
Va ('Y) =1- Zy-ﬂ 7Y U{t(')')°

We have 1 — 4(Y) = D w=1 Pn Va(7) and in view of (1), (2), (3) we have
(1) |Va—1|<1

(2) {Va.} is a sequence of independent random variables.
(8) E(V,) =

Furthermore, we have
4) Va=01U, = 1.

(4) is proven as follows. Let I, denote the set of indicesj, 1 <j < m, — 1,
for which an; > 0. Since Vo =1 — 2w, a; Ui and | Ui | = 1,

Va=0U, =1 forjel,.

Since (support of u) n Z,, generates Z,., , the latter condition is equivalent
toU, =1. ThusV,—-0=U, = 1.
Since £(y) = 2wt Pa(1 — Va(¥)), we conclude from (1') that | A(y) | <

1 for yeT. Furthermore fi(y) =1 Va(y) =0, 1 <n < ». Using
4),

Va(y) =0(1Sn< ®) & () =1(1Sn<®) & y=¢

where e is the identity of I'. The function w = 1(1 — 2) maps |z| < 1
onto Re w > % with w(1) = «. Hence

$ < Re[l/(1 = 4(7))] < o, v #e.
We now obtain a sufficient condition for recurrence. We let

fo=2impi, Ma=IEm@2<n<w), Mi=1
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THEOREM 2.1. Let {m,} be bounded. Then 2 mwil/M,f, = © => uis
recurrent.

Proof. Let
E, = {'Y I Vl('Y) = oo = n-—l('Y) = 0: Vn('Y) = 1}'
From our above remarks, T' — {¢} = Uj_; E, so that ) e P(E,) = 1 and

[ Ret1/(1 = 2m)1aPe) = Tiai [ Re /(1 — )1 aP().

For any complex number z for which Rez > 0, we choose arg z to be that value
of the argument for which | arg z | < n/2. We have

1 _cosarg [l — fi(y)]
Re[l = ﬁ(v)] S T
1 — A(y) = 2nm1 22500 paansl — UL(¥)].

Suppose that 1 — U(y) % 0. Then Ui(y) = ez’""{ " for some integer 7,
1<r < m, — 1. Using the identity arg (1 — €”) = (6 — 7)/2, 0 <
6 < 7 we conclude that

larg [1 — Ua(m)]| £ 7/2 — «/ma.
Hence the numbers p, oy {1 — U%(y)] lie in the angular sector

|0 < 7/2 — o/m

Now

where m = maXj<n<eo Mn . It follows that for v = e,
jarg (1 — 4(v)) | £ /2 — w#/m and cosarg [1 — 4(y)] = sin x/m.

Furthermore for v e B, , 1 — A(y) = X jmn 2; Vi(y) so that |1 — 4(y) | <
2> . p; = 2f,. HenceforyeE,,

vl =l 23 (e 0

fr Re [T‘—JRW] dP(y) > L (sm ) nz_;l - P(E,)

Property (4') implies
En={y|U(y) = =Una(y) =1, Uu(v) #1}
and property (2) that
P(E,) = (1/M)(1 — 1/m,) 2 1/2M, .

so that
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Hence
[ 10/( = 2 1aP@) 2 5 Ginw/m) Tie 1/ Mo,

from which the theorem follows.
We now proceed to show that ey 1/M, fn = « is necessary for recur-
rence. To prove this we impose the following condition on the walk.

Condition (A). There exists ¢, 0 < ¢ < 1, such that )z an; < ¢ where
1 £ n < » and H is any proper subgroup of Z,., = {0, 1, -++, m, — 1}.

Roughly speaking, condition A demands that u is not too concentrated on
proper subgroups of the Z,,’s and may be viewed as a strong form of aperiodic-
ity. Indeed (A) implies that u is aperiodic. It is easily seen that it is equiv-
alent to aperiodicity iff a finite number of the m,’s are composite. We use
(A) to establish the following estimate needed later on.

(2.1) X.(v) = Re (Va(y)) = a/mh, v eE, where a = 8(1 — ¢)
(2.1) is proven as follows.
X, = 2™ ansll — Re (U3)]
so that on E, , X, assumes the values
ma—1

jral a,,,-[l — Co8 21rjl/m,,], 1< l <m, — L

Let H, = {j|jl # 0 (mod m,)},1 <1l < m. — 1. H,;is a proper subgroup
of Zm,. We have
1 — cos 2xjl/m, = 0 forjeH,
while
1 — cos 2mjl/ms, > 1 — cos 2w/m, forje¢H,;.
Using the estimate 1 — cos 6 > 26°/7°, 0 < 6 < m, we have

1 — cos 2mjl/m, > 8/mb.

Thus for given [,
2o anill — cos 2mjl/ma] = (8/m3) 2o jem, anj

and we conclude from (A) that X,(v) > a/m} fory e E, .
We obtain the following result.

TuEOREM 2.2. Let {m,} be bounded and let u satisfy condition (A). Then
1 18 recurrent = D my 1/ Mo fo = .

To prove the above theorem we establish two lemmas, the first one being
of some independent interest.

LemMa 2.1. Let {X,} be a sequence of independent random variables with
E(X,) =0and | X,|<1,1<n< . LetS, = D i Xi,1<n< w,
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Then for each & > 0, D31 P[| Sn | > &n for some n > j] < C. where C, is @
positive constant independent of { X,}.
Proof. We observe that for any choice of a;, +++ , @, = 0 we have
|E(XP - X3 | < 1.
Since E(X3' -+ X7 = E(X7?') --- E(X7), we also have
E(Xy--- XM =0
whenever some a; = 1. Hence
E(8%) = 2agisn B(X3) + 15 Digiiico W(XIXG) + 20 Dscicszn B(XIX))
+ 90 Dicicicusn B(XIX7XR)
<n+15C(n,2) + 20C(n,2) + 90 C(n, 3)
< 50 7.
Using Chebycheff’s inequality, we obtain

P(|8a| = &) < E(83)/6° < (50/€°)(1/n)
so that

P[|8.| > &, forsome n > j] < D i Pl Sa| > &l

< (50/€%) 2n-j 1/n* < 100/€%".
Hence

S 5a P 8| = . for some n > j] < (100/&°) D 5 1/ = 50x°/3¢".
For any sequence of positive constants {¢.} we introduce the sets
A ={y|fa>reaRe (1 — 4(¥))}, 1< n,7r < o,

LemMA 2.2. Suppose that D ey P(An, | E.) < C where C s a positive
constant independent of n. Then S en/Mufn < © = u is transient.

Proof. Since Re [1/(1 — 2)] < 1/Re [1 — f], it suffices to show that
S e/ Mafa < © = E(1/Re[l —f]) < o

(E(f) stands as an abbreviation for [ f(v) dP(y)). We use the elementary
inequality
B(X) < L2aP(X>r1) +1,

valid for any non-negative random variable X. Let ¥ = Re [l — {]. We
have

E> 7 2P(A,,,|E)+1]<(c+1)"".

re=]
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Hence
E¥™) = 2 E(W | E)P(E,) < (C 4 1) 251 ca/Mafa,
proving the lemma.
Proof of Theorem 2.2. We must show that for bounded {m,},
Do M/ Mufo < © = p
is transient, provided (A) is fulfilled. This establishes Theorem 2.2, as
SOl Mufo < © & Do ymi/Muf. < © for bounded {m,}.

In view of Lemma 2.2, it suffices to demonstrate the existence of a constant
C such that ) ey P(A,, | E) < C,1<n < o, for the choice ¢, = m}/a.
On E, we have ¥ = Y . p; X;. Let S,j = Z,..IXH,, 1<nj< ».

Using summation by parts we obtain

Y(y) = pa Xa(v) + Z;‘o-l Sni(Y)[Pnti — Prtinl, veT.
It follows from (2.1) that
(2'2) TCn ‘I’('Y) > TPa + 7Ca Z;’o-l Sni('Y) [pn+j - pn+i+1]) veE,.

Using summation by parts again, fn = pn + 2 et j[Pnsi — Dayiva] from
which we conclude

(2.3) fo S 190 + 2 5mr Pt — Drsinl
It follows from (2.2) and (2.3) that fory ¢ E, ,
fa > rca¥(y) = re, Snj(v) < jfor someyj > r.
Since ¢, = m%/8(1 — ¢) > 4,1 < n < o, we conclude that for » > 3,

(Anr n En) .g (Bn,- n E,.)
where
B.. = {v| Sai(v) < (2/8)j for some j > r}.

Let Xo = X, — 1,1 <0< o, 8h; = 2% Xpyi. Wehave
B., € B, where B, = {v||Sui(v)|>j/3 forsome j > .

The sequence {X,} clearly has the properties (1')—(4") satlsﬁed by {V}
It follows that for given n > 1, the random variables {Xni1, -+, Xnti
deﬁned on E, are 1ndependent and E(Xni; | E,) = B(Xny; — 1) = 0,
|X,.+,| < 1. We may therefore apply Lemma 2.1 to conclude that

:Q—IP(B;rIE»)SClN, 1<n< o,
Hence
Z:—IP(AanEu)S2+CIN’ 1Sn<°°

and we may choose C = 2 4 Cy3.
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The question arises as to whether Theorem 2.2 remains true in case u fails
to satisfy condition (A). The answer is no. Let {m.} be any bounded
sequence of integers > 2 containing an infinite number of composite integers.
We produce an aperiodic recurrent walk yonZ,,, ® Zp, @ +-* @ Zp, @ -+
for which > ewy 1/M,fn < ®. (The walk x will of course violate condition
(A).)

We first require the following:

LemmMa 23. Let 0<a, <b, (1<n< x) and b./a, T . Let
D ROy, Dneiby < . Then there exists {x,} such that x, is a strictly
increasing sequence T ©, D wwi Gn &n < ©, O et by &y = .

Proof. Let An = D jen@j, By = D 3enb;. Then liMp.e Ba/A, = o.

Let un = @ — Zp—a, 1 £ n < «, where z is defined to be 0. Using sum-
mation by parts we obtain

21675 = 25 (Aj — Ans)uj, 2jmbjz; = 2.5 (B; — Bapu;.
Since lim,,. B,/A, = « we can certainly find a sequence {v,} such that
Up > 0, Z:—l Uy < o, Z:-l (Bn/An)vn = o,

Let ©n = vn/An. Thus s > 0, D1 Ay Un < ® D mea Bnttn = .
Since B, u, = O(u,) we must also have i:—l u, = . It follows that
T, = D pyu; is & strictly increasing positive sequence 7 . Since
Dtaai; < 2 Aju,

we conclude D w1y, < . For any positive integer n,

liMpee 225m1 (B; — Buya)u; = 201 Bju; .
Hence lim inf D rw1b; z; > D .j1Bju;. Since n is arbitrary we con-
clude D mmi by 2n = .

We now construct a recurrent random walk p for which D i 1/ My fo <
. We specify the p,’s and a,;’s which define u. For each composite m,
choose d, to be a proper divisor of m,, 1 < d, < m,. For m, prime let
dn =my. Let D, =dy---dpa, 2<n < o, Dy =1 Thus 2" <
D, > M, and lim,., M,/D, = «, as there is an infinite number of com-

posite m, . It follows from Lemma 2.3 that there exists {z.}, where {z.} is
positive and strictly increasing to «, such that

D ea @/ M, < © and D ey @n/D, = .

We may assume that 2y = 1. Letf, = 1/, 00 = fo — foq1,1 < n < .
We then have

Dn > 07 Z::-lpn = 17 Z:—l I/Mnfn < ®, Z:-l I/D"f" = ®.

We now define the a,;’s. Let {&,} denote a decreasing sequence of numbers
in (0, 1) to be specified later. For m, prime choose {a,;} as any sequence
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satisfying
Qpj = Op my—j > 0, 1 S] S my — 1, Z?ﬁfla,,j = 1.
For m, composite choose {c,;} as any sequence satisfying
Qnj = Onmg—j >0, 1 <7< M — 1,
and
an; = (1 — &)/(dn — 1) forj=ke,, 1<k <m,—1,

where e, = m,/d,. p is aperiodic as a,; > 0 for 1 < n < », 1 <5<
m, — 1. Using the requirement an; = an m,—;j, We obtain

Vo = 2750 ani(1 — U) = 277" ani(1 — Un™)
= > ay mei(l = UL =V,

so that V, is real. Thus 1 — 4 is real and fp Re[1/(1 — £)]dP. We
choose the &,’s so that the latter integral diverges, thus obtaining a recurrent
walk u for which Y, 1/M, f, < .

Let V. = Vi + V' where

’

Vo= Zemiani(l = Us), Vi = Zeyiani(l — Ui),
1<j<m,— 1

(For m, prime, ¢, = 1 divides all 7. In this case V. is defined to be 0.)
We have
| Va| < 2Za,,.rj anj < 26, .

U, assumes the values 2wil/m,, 0 <1 < m, — 1. If d, | I, then V, = 0,
i.e. Vi, = 0 whenever U, € Z,, , the symbol Z,, denoting the e, e,* roots of 1.
For m, composite, let

Fnk = En n {‘Y I Un(')’) € Zen 9y Un+lc—1(7) € Ze,.+k—1 ) Un+k(7) 4 Z6n+k})

1<n k< .
Then
1 e, — 1 1 1
P(F.;) = id 1 -
( k) My +oe Mpoy My dpa oo A1 ( dn+k>

1 1 1 1
1-1)(1- 1
< en) ( At ) er ++* nt Duvs

e, > 2 as m, is composite and d,,x = 2 by definition. Hence

11 1
n >__m_-
P(Fn) 2 4¢ -+ ent Dnte

, 1<n<

whenever m, is composite.
On F,. we have V; =0, 1 <j<mn, |V;| <2,, n <j<n-+k
Thus on F,; ,

L—f= 25 Vi < 26 20507 i+ 220704k i < 2(enfa + fart)-
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We conclude that
1 - f 1
>
By 1 _ﬁdP_k;- ’nk]- _ﬁdP
> 1 1 - 1 1
T 8e€1 ¢+ n k=i Enfn + frtk Dutr
Let

— 1 1
gn(x) h l?-:lf”.’l} + fotr B;-l-—k ’

gn() is well defined for z > 0, as
gn(2) < (1/fa2) 22311/Ds < .

Since D =i 1/fa Dn = , lim,.o4 ga(%) = . We may therefore choose
{ea} as any decreasing sequence for which g,(&,) > 1,1 < n < », and ob-
tain

[ va-marza

whenever m, is composite. As there are an infinite number of composite
My, , we obtain

fr1/(1—ﬁ)dp=w

so that the random walk u is recurrent
‘We summarize the above discussion:

TaEOREM 2.3. For {m,} bounded, recurrence of u is equivalent to
°1':--1 1/ Mnfn =
iff only a finite number of the m,’s are composite.

3. Random walkson Z,,, ® Zn, ® -+ ® Zn, ® ---, {m.} unbounded

We now obtain various necessary and sufficient conditions for the recur-
rence of u in case {m,} is unbounded.

TaEOREM 3.1. Let u be symmetric, i.e. onj = opm,—; for 1 < n < o,
1<j<mn—1 Then 3711/Myfo = o =pu ds recurrent.

Proof. f is real valued as p is symmetric. Hence

1 1 ® 1
LRe[———l_ﬁ]dP-frl_ﬁdP—"z_:l =P

OnE,,1—fi=2gnp;Visothat 0 <1 — £ < 2f,.
Hence
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1
En 1 dP Z o, 2f,, P(E.) 2 4M., 1.

It follows that ey 1/M, f,. = o = y is recurrent.
Remarks. For {m,} bounded, the above result holds also when u is asym-

metric (Theorem 2.1). We don’t know whether this is the case for {m,}
unbounded.

TeHEOREM 3.2. (i) Let u satisfy condition (A). Then p vs recurrent =
:—1 mi/Mnfn = oo,

(ii) Letap; =0forl <m < «,j %1, m, — 1. Then p is recurrent =
:-lmn/Mnfn = o,

fa

Proof. In proving Theorem 2.2 we have actually shown that
:—1 mi/Mnfn < o =

is transient, which is part (i) of the above theorem. Part (ii) is proven in a
similar fashion. Let

Eu={Vi=0,---,Vaua=0, V.=1— cos2nl/ma},
1<n< o, 1LI<m,—1.

Since a,; = 0 forj ## 1, m, — 1, X,(y) assumes the values 1 — cos 2xl/m, ,
0<!<my—1. Since 1 — cos 6> 26°/a° for 0 < 6 < =, and cos 0 =
cos (2r — 6) we have

1 — cos 6 > 8 Min [(8/27)%, (1 — 6/27)%], 0< 6 < 2.
Hence
(3.1) X.(v) = 8 Min [(I/ma)%, (1 — l/my)*, v € En.

Let car = (1/8) Max [(mn/1)’, (mn/(ma — 1))*). It follows from (3.1)
that

(8.2)  1en Wn(y) = Pn + ¢ D it Sni(¥) [Pati — Prtintly Y € B

Let Autr = {¥|fa > 1em ¥}, 1< n, r< 0, 1 <1< m — 1. Arguing
as in the proof of Theorem 2.2, we conclude from (3.2) and (2.3) that

St P(Any | Ew) £ C

where C is a positive constant independent of n and I. Hence

BV | Bu) < ?’E( Jo E,.,)

<o [Z P(Aur | Bu) + 1]

Cnl
<(C+1)=F 7




14 LEOPOLD FLATTO AND JOEL PITT

We have
E(¥™) = 20 200 E(Y | En) P(Eu)
S (C + 1) Z:—l I/Mn mnfnz'l”—”;.l Cnl »
Since . . \ .
= 1™ My M
S n e [(F), (52 ]
ms "= 1 ]
S? = l_z-l--('mn"-l)2
me =1 rmi
S7 ; B 22’

we conclude E(¥™) < (C + 1)(#%/24) D_ney ma/Mnf.. Hence
Z:—lmn/Mnfn < o = E(‘I’—l) < o

80 that 2 pet Mm,/M, fn < © = u is recurrent.
We now give an example showing that for {m,} unbounded,

°1:=1 I/Mnfn = ®©

is no longer necessary for recurrence even though condition (A) prevails.
Indeed we give an example of a recurrent walks satisfying the hypothesis of
Theorem 3.2 (ii) (in which case (A) is satisfied) for which Dy 1/M, fo <
® 50 that Y wes1l/M,f.» = « is not necessary for recurrence.

Let p, = C(s)n’/n! where s is to be specified and C(s) so chosen that
Dmmipn=1 Let mi=n and ay = anpy = 3, 1 <n < ». Thus
M, = (n— 1)!. It is easily verified that f, ~ p. (i.e. limyew fu/pn = 1)
so that 1/M, f, ~ 1/C(s)n*™. Hence D wms 1/M,fs < o for s> 2.
Using 1 — cos § < 6°/2 we have

X.(v) =1 — cos 2xl/n < 20°B/n®, ¥ € Eni.

Thus ¥(y) < 20°C(8)n*/n! + 2 fayaon E,;. Since foy ~ C(s)nY/nl,
we conclude that there exists a positive constant Ci(s) independent of =,
1 for which

(3.3) Y(y) < Cu(s) (@ n) (P + n), veEn.
Hence \ .
1 1 n* 1 o
ol > _ al o ) = e
B ¥ b 2 Ci(s) " 2+n P(Ew) Cis) 2+ n
and .
1 1 9 1
it > ——e
R PZEm™ &HF¥a
Since
=1 ~ f " _dw = —1—- arctan n ~ _T_
=P+ n o 24+n  /n 2+/n’
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we conclude that there exists a positive constant C,(s) independent of n for
which

(3.4) f(umdp>@@/ﬂﬁ1gn<w,

so that [r (1/¥) dP = o for s < 5/2. Hence for 2 < s < 5/2, u is
recurrent while D ey 1/Myfo < .

Remark. 1t is also possible to construct transient random walks satisfy-
ing the hypotheses of Theorem 3.2 (ii) for which 2 ei Ma/Mafn =
Thus D et Mn/M,fn = o is not sufficient for recurrence of these random
walks.

The problem of obtaining conditions both necessary and sufficient for
recurrence seems to be rather difficult for unbounded {m,} and is not re-
solved here. Nevertheless, such conditions are easily obtained for the uni-
form walk. u is said to a uniform random walk provided a,; = 1/(m, — 1),
1<n< »,1<j< m — 1. Inthis case we have:

ToEOREM 3.3. Let u be the uniform walk on Zp, @ Zp, ® -+ ® Zp, @
Then p 18 recurrent iff D w1 1/ My fo = o.

Proof. Since u is symmetric, we conclude from Theorem 3.1 that
D m=11/M, fu = o = recurrence.
Conversely we show that D we;1/M,f. < o = transience. We have
= (1/(my — 1)) 275" [1 = U3,
(1/(me — 1)) 277 Us = 1 ifU =1
= —1/(m, — 1) if U, # 1.

and

Hence
X, =0 fU=1
= m,/(m, — 1) U, #1
so that on E,, X, = m,/(m, — 1). It follows that inequality (2.2) holds
with the choice ¢, = 1, 1 < n < «, from which we conclude
a1 P(A4,. |E) <O, 1 <0< o,
for some positive C independent of n. Lemma 2.2 therefore yields

Z:-l I/Mnfn < o0o=u
is transient.

4, Random walks on subgroups of the rationals mod one

We now obtain recurrence criteria for random walks on the subgroups of
infinite order of the rationals mod one. (We denote the latter as @/Z.)
Most of the analysis of Sections 2 and 3 apply here, the essential new feature
being that 1 — # is no longer a sum of independent random variables.
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We give a brief description of these groups and their duals. The group
Q/Z may be identified as the set of complex numbers ¢, r rational. Let @
be an infinite subgroup of Q/Z. G has a denumerable set of generators
{x.}. Let G, be the subgroup of G generated by 21, -+, ,. It is readily
seen that G, is cyclic. Let [Gs :Gua] = My, 1 < n < o, where Go = {1}.
Thus G, consists of my - - - m, numbers /™™ 0 <j < my - my — 1,
while @ = Un=y G, consists of the numbers ¢™*/™ ™ 1 < pn < , 0 <
j<my---m, —1. We denote G, by Z(my, -+, ms) and G by Z(m,,
<<+, Mp,+++). Thus the infinite subgroups of the rationals mod one are
precisely the Z(m”) groups discussed in [3, p. 403].

We now describe the dual of Z(my, -+, My, -+-). Let go = &/mmn
1<n< ». g, generates Z(my, -+, m,) and {g,} is a set of generators
for Z(my, -+, Mmu, ---). Any character v(g) of Z(my, -+, My, ---) is
thus determined by the values {y(g.)}. Since ¢gi* = 1, ga* = gaa, 2 <
n < «, we have the relations

(4.1) (@)™ =1, [¥(ga)]™ = ¥(gna), 2<n < .

Conversely, it is easily verified that any sequence {y(g.)} satisfying (4.1)
can be uniquely extended as a character ¥(g) on G. Thus the dual of Z(m, ,
-, My, ---) may be identified as the set of sequences {y(g1), - -, v(gn),
- - -} satisfying the relations (4.1).

Let ube arandom walk on G. 'Without loss of generality, let u be aperiodic.
We may therefore choose a set of generators {x.} of @ satisfying u(2,) > 0,
1 <n< «w. Let G, denote the subgroup of G' generated by «;, -« , @ ;
we may assume that G, is a proper subgroup of G,41 (1 £ n < »). Denote,
as above, G, by Z(my , --- , m,) and G by Z(my, -+, Mp, +++). Thus,
without loss of generality, we assume that (support of u) n Z(my, -+, my,)
generates Z(my, -+ ,my), 1 < n < .

Let

Z,(mly”"mn) =Z(m1)"’7'mn) _Z(m11""mn—l)72.<_n< ©,
Z'(m) = Z(m) — {1}.

Thus Z'(my, -+ , m,) consists of the numbers &**/™ ™ ;¢ 8, where S,

denotes the set of positive integers which are not multiples of m,. We
define {pa}, 1 < n < o,and {on}, 1 < n < «©,j€8,, as
Dn = M[Z,(')’)h, Y mﬂ)]’ Qpj = “(ezrijlml...m”)/p” .

We may assume u(1l) = 0 (in view of Theorem 2.0). Thus p, > 0, 1 <
n < o, Z:-l P =1, Zj.s,, an; =1, 1 <n< ». Let i(y) denote
the Fourier transform of 4. We then have

A(y) = 2oeaw(@)v(g) = ot Dosesn ans¥(gh), veT.
We seek recurrence criteria for u in terms of {p.} and {a,;}. Let
Ua(v) = %(gn), Valr) = Ziesyonsll — Ua(1)], Xaly) = Re (Valv)).
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We establish:

Lemma 3.1. {V.} satisfies the following properties:

(2) E(anUl,"',Un_1)=1, 1<n< »,

B) Mi=o=Vy=0Uy=:=U,=1.
A similar statement applies to the sequence { X},

Proof. (1) 1 — Va = D jes, an; Ui so that
[1—-=V.| <1, |1-X.|<1,

(2) Let t1,--+, ¢n be any set of numbers satisfying (7' = 1, {f*=
$ki-12 < k < n. It is easily verified that

P{U(Y) =ty o, Un(y) = Ea} = 1/my -+ m,.
It follows that

E(Ua|Ur=1t1,, Ut = $acd) = (I/my -+ M) 2opmmp_, £
The sum
men"f»-—l g-’
extends over the m, m,* roots of 1 and equals 0 for m, { j. We conclude
that )
E(UJ” ‘ U1, Tty U,._l) = 0, jés,..
Hence
E(an Ul: Tty Un—-l) = E(l - Zie&.am‘ U{t l Ul’ Tt Un—l)
=1— s, o E(UL | Uy, -+, Unsa) = 0.
A similar proof works for the X,’s.

(3) We make use of the assumption that (supportof ) N Z(my, - -+, m,)
generates Z(my, -+, my), 1 < n < « which may be restated as follows.
Let H, denote the positive integers < my - - - m, which are multiples of m, .
Let I, C S, consist of those integers j for which a,; > 0,7 ¢ S,. Then I, U S,

enerates the additive group of integers mod my :--m,. Since V, =
%j,s” anill — Us’], wehave V, = 0 U,? = 1,7 e I,. Since I generates the
integers mod m; and Ut* = 1, wehave Ui = 1 (jel,) & Uy = 1. Thus
V1 =0 < U; = 0. Suppose, by hypothesis for induction, that V; = --- =
Vo1 =0U; =--- = U, =1. Thus

Vi=oo=Vo=00U; =+ =U,y=1 and Ui =1 (Gel,).

Now Up* = U,_, = 1 so that we also have U% = 1 (jeH,). Since H, U
I, generate the integers mod m; - - - m, , we conclude

V1="’=Vn=0<=>U1=°"=U”=1-
As X, = 1 & V, = 1, we obtain a similar result for {X,}.
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Let B, = {v|Vi=0,:--,Vau=0,Vo.#0},1<n < . We conclude
from property (3) that

P(E,) = )1/my -+ mpa)(1 — 1/my)

exactly as in Section 2.
We now state several recurrence criteria. We again let

M,=m - M2 n< o, M =1

THEOREM 4.1. Let D wey 1/Mufn = ®. u 8 recurrent provided (i) {m,)}
s bounded or (ii) p 78 symmetric, i.e. an; = Qn,my...mp—i, 1 S 1 < 0,1 <L
< my e m, — 1.

(1), (i) are the respective analogs of Theorems 2.1, 3.1. The proofs are
omitted as they are identical with the proofs of these former theorems. We
just observe that on E,, U, = 1, as this fact is essential for the proof of
part (i).

In order to state our next result, we stipulate the following condition on u
which is just the analog of condition (A) in Section 2.

Condition (A’). There exists ¢, 0 < ¢ < 1, such that u(H)/p. < c for all
proper subgroups H of Z(my, --- ,m,), 1 < n < o,

Reasoning as in Section 2, condition (A’) yields the inequality (2.1).

TuEOREM 4.2. Let {p,} ¢ | and {m,} bounded. Let u satisfy condition (A").
Then u 18 recurrent = %:_1 1/M,f, = =.

Proof. We try to mimic the proof of Theorem 2.2. Let a = 8(1 — ¢)
be the constant appearing in inequality (2.1) andlet m = MaXicnco Ma < .
Define Sp; = D jm1 Xnpifor 1 < m,j < w. Arguing exactly asin the proof
of Theorem 2.2 it suffices to demonstrate the existence of a constant C such
that

21 P(Bu |E) <C, 1 <0< w,

where By, = {v | Saj(y) < j/2m for some j > r}. The latter inequality no
longer follows from Lemma 2.1 as the sequences of random variables {X,}
fail to be independent. To prove the inequality we compare the X,’s with
another sequence of independent random variables {¥,} defined as follows.

Let &1, -+, {» be any set of numbers satisfying {17! = 1, {%* = i,
2 <k < n,and let

Strvtn = (Y Ur(v) = §1, -+, Un(y) = &}

For given t1, -+, {n1 we have E(X, | Uy = &1, -+, Una = faa}
so that we may choose one value of {,, callit £ , such that X,
on 8;,,...00-1,8. - FOT given {1, - -+, {u_y We define

vV
[

Yn(7) = 1’ 7 € Sfln--»fn-l'fn
=0, veS,..t, Where {n» # &,
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It is readily checked that {¥,} is a sequence of independent random vari-
ableson I'with0< Y, < 1, E(Y,) = 1/m,forl <n < ». Let

Zyn =Y, —1/m,, 1 <n< o,

The Z,’s form a sequence of independent random variables with E(Z,) = 0,
|Z,] < 1lforl < n< . SinceY, < X, we conclude that

Bar = {v| 2ici Xnyi(v) < j/2m for some j > r}
C {y| i Yogi(y) < j/2m for some j > ry
C {v || 2%t Zass (v) | > §/2m  for some j > r}.

For n > 1, the sequence {Z,41, *** , Zn+j, *++} satisfies the hypotheses of
Lemma 2.1. Hence

> 2 P(Bu) < 2wt P{| 23 Zuii(y) | > §/2m  for some

J=r <C/2m
for 1 < n < «, thus proving Theorem 4.2.

We remark that Theorem 4.2 permits us to construct a random walk on
the additive group of rationals @ which is topologically recurrent under the
usual topology but not pointwise recurrent, i.e., for any ¢ > 0, the walk
visits the interval (—e, &) infinitely often with probability one and yet the
walk visits the origin at most finitely often with probability one. Let {m,}
be a bounded sequence of integers >2. Let u(k 1/my--- m,) = p,/2
where {pa} € | and D a1 pn = 1. Suppose that D ey 1/my - - - my o< .
Considered as a walk on @/Z, u is pointwise transient according to Theorem
4.2. Hence u is certainly pointwise transient as a walk on Q. Now

ffmlxldp(x) = Er—lpn/ml"'mn < Z::—l l/ml "'mnfn < .,

Since [, z du(z) = 0, we conclude from a result of Chung and Fuchs [1]
that u is topologically recurrent.
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