
JOINT CONTINUITY IN SEMITOPOLOGICAL SEMIGROUPS

BY
J. D. Lso

The principal goal of this paper is squeezing out points of joint continuity
from a separately continuous action of a semigroup on a topological space.
The paper itself is a variation on a theme by R. Ellis, who showed that sepa-
rate continuity on a locally compact Hausdofff group implies joint continuity
for the multiplication function [6]. The paper closes with several diverse
applications.

Separately continuous compact semigroups arise naturally in certain settings
in analysis. De Leuuw and Glicksberg obtained them via weakly almost
periodic functions [5]. They also arise as the maximal ideal space of the
measure algebra of a locally compact abelian group; this situation has been
systematically investigated by 5. Taylor and others. Perhaps the most com-
plete treatment of compact semigroups with multiplication separately con-
tinuous appears in the treatise of Berglund and Hofmann [2].

1. Preliminaries

Let X, Y, Z be topological spaces, v:X Y --. Z. The function v is called
left continuous if :X --* Z defined by r(x) r (x, y) is continuous for each
y Y. in terms of nets, r is left continuous if x, --* x, y e Y implies
r (x,, y) --* r (x, y). The function r is right continuous if r: Y -- Z defined
by (y) (x, y) is continuous for each x e X. The function is separately
continuous if it is both right and left continuous.
The function is (jointly) continuous at (x, y) if given any open set W with
(x, y) W there exist open sets U and V with x e U, y e V such that u e U,

v V imply (u, v) e W. If is continuous at every (x, y) e X Y, then
is said to be continuous (or jointly continuous).
A semigroup S on a topological space is a left (right) semitopological semi-

group if the multiplication function is left (right) continuous. If the multi-
plication function is separately continuous, then S is a semitopological semi-
group; if S is Hausdorff and the multiplication function is continuous, then S
is a topological semigroup.
A semigroup S is said to act on (the left of) a set X if there exists a function

r: S X X -* X satisfying

(1) z) )

for all s, S, x e X. Customarily r(s, x) is written sx; in this case (1) be-
comes
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(1)* (st)x s(tx).

The function r is called a (left) action of S on X and S is called a (left) trans-
formation semigroup on X.

2. The underlying principle
A semigroup S admits several natural quasi-orders closely related to the

Green’s relations. The g-order is defined by s

_
if Ss u {s} c St u {t}.

Let S and X be topological spaces, S a semigroup, and r’S X X --+ X an
action of S on X. The basic principle of this paper is that r is continuous at
(s, x) if there exist "enough" e S below s in the .-order such that r is con-
tinuous at (t, x).
For x, y e S, define

(x, y) {s S:sx sy}.

The following lemma and proposition are precise formulations of the basic
principle.

LEMMA 2.1. Let S be a right semitopological semigroup, X a Hausdorff
space, and r’S X X -- X a right separately continuous action. If for s S,
x, y X, sx y, there exists r C (sx, y) such that r is continuous at (rs, x),
then there exist open sets W, U, V such that s W, x U, y V and r(W X U) n
V--o

Proof. Since rsx ry, there exist open sets A and B such that rsx A,
ry B, and A n B 0. Since r is continuous at (rs, x), there exist open sets
P and U such that rs P, x U, and r (P X U) c A. Since left translations
are continuous in S, there exists an open set W, s e W, such that rW c_ P.
Since the action is right separately continuous, there exists an open set
V, y e V, such that r (r X V) c B.
Suppose there exists w e W, u e U, such that wu V. Then r (wu) e r (r X

V) cB. But (rw)uer(PX U)A. HencewucV.
PROPOSITION 2.2. Let S and X be as in 2.1 with the additional assumption

that X is compact. Let (s, x) eS X X. If for each y sx, there exists
r C (sx, y) such that r is continuous at (rs, x), then r is continuous at (s, x).

Proof. Let P be an open set containing sx. Then Xk,P is compact. By
Lemma 2.1 for each y X\P, there exist open sets W, U, V such that
seW, xeU, yeV and r(W X U) n V 0. A finite number of
V: y X\PI cover X\P. Let W bethe intersection of the corresponding W

and U the intersection of the corresponding U. Then W and U are open,
seW, xeU, andr(W U) P.

3. Transformation semigroups on metric spaces
To apply Proposition 2.2, one must have already points of joint continuity.

These points of joint continuity may either be postulated or their existence
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established via topological considerations. In this section we adopt the latter
approach. The topological machinery employed is category theory.
A subspace A of a space X is nowhere dense if (A*) . A subspace A is

of first category if A is the countable union of nowhere dense sets. A subspace
B is residual if X\B is of first category. A space is a Baire space if evel-y re-
sidual subspace is dense. It is well-known that a locally compact Hausdorff
space is a Baire space. The following proposition from Bourbaki [4, Exercise
IX, 5, 23] shows that the set of points at which a separately continuous function
fails to be jointly continuous is "small" under certain topological restrictions.

PROPOSITION 3.1. Let r:X X Y --> Z be separately continuous. Assume
X is a Baire space, yo Y has a countable basis of neighborhoods, and Z is metric.
Then the set of x X such that r fails to be jointly continuous at (x, yo) is offirst
category.

THEOREM 3.2. Let S be a locally compact Hausdorff (or, more generally, a
Baire) right semitopological semigroup, X a compact metric space, and
r: S X X -- X a separately continuous action. If there exists s S such that
Ss S and r (s X X) X, then is continuous at (s, x) for each x X.

Proof. Let x e X. The proof consists of showing that the hypotheses of
Proposition 2.2 are satisfied at (s, x).

Suppose y sx. Pick open sets A and B such that y A, sx B, and
A B 9. By hypothesis there exists z e X such that sz y. Hence
there exists U open, s e U, such that (U X z) c A, (U X x) c B.
By Proposition 3.1 there exists e U such that v is continuous at (t, x). By

hypothesis there exists r e S such that rs t. Then is continuous at (rs, x).
Finallyrsx txr(U x) B and ry rsz tzr(U X z) A.

Hence rsx ry. Thus by 2.2, is continuous at (s, x).

COROLLARY 3.3. Let S be a locally compact Hausdorff right semitopological
semigroup with mght identity 1, X a compact metric space, and r: S X X --, X
a separately continuous action such that lx x for all x X. Then r is con-
tinuous at (1 x) for all x X.

4. Quotients of topological actions

Some elementary properties of quotients of topological actions are developed
in this section. These are needed in generalizing the results of the preceding
section to the non-metric case.

Let (S, X) and (T, Y) be algebraic transformation semigroups where S
acts on X and T acts on Y. A homomorphism of transformation semigroups,
i.e., a morphism in the category of transformation semigroups, is a pair (a, )
where a is a homomorphism from S to T, is a function from X to Y, and
(sx) ( (s) (x) for all s e S, x e X.
A congruence on (S, X) is a pair (p, a) where p is a congruence on S and a

is an equivalence on X so that if spt and xry then sxaty. A quotient trans-
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formation semigroup (S/p, X/) can be defined in a natural manner which is
a homomorphic image of (S, X) with respect to the natural mappings of S
and X to Sip and X/ resp.
The following topological restflt allows the formation of quotients of trans-

formation semigroups in certain topological categories.

PROPOSITION 4.1. Suppose A, B, C, X, Y, Z are topological spaces

f:A -- X, g:B Y, h:C Z
are quotient mappings which are onto, and p :A X B C, :X X Y Z func-
tions such that the following square is commutative:

XX Y r

If p is left (right) separately continuous, then r is left (right) separately continu-
OUS.

Proof.
g(b) y.

Suppose p is left continuous. Fix y e Y.
Then the following square is commutative:

Pick b B such that

X ,,) Z

where r (x) r (x, y) and p (a) p (a, b). By supposition pa is continu-
ous. Hence hp is continuous. Thus rf is continuous and since f is a quo-
tient mapping, r is continuous. Hence r is left separately continuous.
The proof for right continuous is analogous. The separately continuous

case follows from the other two.

COROLLARY 4.2. Let (S, X) be a separately continuous transformation
semigroup, (p, ) a congruence on (S, X) and (T, Y) the quotient transformation
semigroup where T Sip and Y X/cr are equipped with the quotient topology.
Then (T, Y) is a separately continuous transformation semigroup.

Proof. Letp:S X X X be the action of S on X and r: T X Y-*Y
be the induced action of T on Y. By definition of the induced action r the
following square is commutative:

TX Y r

SXX P. X
where the vertical mappings are naturally induced. By 4.1, is continuous.



JOINT CONTINUITY IN SEMITOPOLOGICAL SEMIGROUPS 27

COROLLARY 4.3. Let S be a right semitopological semigroup, (r a congruence
on S, and T be the quotient semigroup S/a endowed with the quotient topology.
Then T is a right semitopological sernigroUp.

Proof. The square
TX T ;T

SXS
is commutative where the vertical maps are naturally induced and the hori-
zontal maps are multiplication. Hence by 4.1, multiplication on T is right
continuous.

5. The central theorem
We now accumulate our results to deduce the central, theorem of this paper.

THEOREM 5.1. Let S be a compact Hausdorff right 8emitopological semigroup
with right identity 1, X a compact Hausdorff space, and r’S X X X a sepa-
rately continuous action such that r (1, x) x for all x X. Then r is continu-
ous at (1, x) for all x X.

Proof. Fix x e X. Assume r is not continuous at (1, x). Then there
exists an open set U, x U, such that for any open sets V and W with 1 V,
x e W, there exist v e V, w e W such that vw U. Since X is completely regu-
lar, there exists a continuous function f from X into [0, 1] such that f(x) 1
and f(X\U) O.
We inductively construct sequences Is.} -1 in S and {x} --1 in X satisfying

the following conditions for all n 1, 2,

(a) /( x.) 0,
(b) f(x,) > 1- l/n,
(c) For m < n, If(ss,, ty) f(sty) < 1In for all s e (S)m, y e Xm where

S. {s, ..., s, 1}, (S,) {tl t....t,’t, e S,, 1 <_ i <_ m}

and X {xl, xm}.

The construction is begun by choosing an open neighborhood Q of x such
thatf(Q) c (0, 1]. By supposition there exist sl e S, xl e Q such that sl x U,
i.e., f (sl x) 0.

Suppose {s,}4-_. and {x,} = have been constructed satisfying (a)-(c) for
n 1, k. There is an open neighborhood Q of x such that

f(Q) = (1 1/(k -1- 1), II.
Since slty sty for each (s, t, y) e (S)4 X (S) X X, there exists an open
set A(,,t.) containing 1 such that r e A(,, .) implies

If(srty) -f(styl < 1/(k -t- 1).
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Since
(S) X (S) XX:::) (S) X (S) XX for m </,

the preceding inequality holds for all m </ +- 1. Since thereare only finitely
many (s, t, y), A f’l {A(,.,,)’s, e (S), y e X} is open. By supposition
there exist s+ e A, x+ Q such that f(s+ x+) 0. This completes the
inductive step.

Let T U (S.) and Y r (T X (U. X) ). Then T is a countable sub-
semigroup of S containing 1 and r(T X Y) Y. Hence r (T X Y*) Y*
and thus r (T* X Y*) Y*.

T*Define a relation a on Y* by y y if f(ty) f (ty:) for all e and define
T* Y*.a relation p on T* by t p t if f(st y) f (sty. y) for all s e and for all y e

These relations satisfy the following.
(i) a is an equivalence relation. Immediate.
(ii) a is a closed subset of Y* X Y*. This follows easily from the righ

continuity of the action, and the continuity of f.
(iii) p is a congruence relation. Reflexivity, symmetry, and transitivity.

T*. T*are straightforward. Suppose s p s and let r, Then for s and
y e Y*,

] (s (rs )y ] (sr (s (ty ) ] (sr (s. (ty f (s (rso. )y ).

Hence (rs t) p (rs t) and p is a congruence.
(iv) p is a closed subset of T* X T*. This follows from the right continu-

ity of multiplication, the left continuity of the action, and the continuity of f.
(v) (p, a) is a congruence on (T*, Y*). Let t p t andy a y. Then for

e T*, f(t(t, y)) f(t(t y,) f((tt)y)) f((tt)yo.) f(t(to, y)). Hence
t y <r t y

Let T’ T*/p, Y’ Y*/a, each endowed with the quotient topology, and
T* T’ "Y* Y’r’ be the induced action of T’ on Y’. Let --+ and f --+ be the

quotient maps.
The transformation semigroup (T’, Y’) satisfies the following.
(1) T’ and Y’ are compact Hausdorff. This follows from the closure of

p and a.

(2) r’ is separately continuous. Corollary 4.2.
(3) T’ is a right semitopological semigroup. Corollary 4.3.
(4) [1], the image of 1 under a, is a right identity for T’, and [1][y] [y]

for each [y] Y’. This is a straightforward consequence of the fact that
(p, ) is a congruence and (T’, Y’) is equipped with the induced structure.

(5) There exists f’" Y’ --+ [0, 1] such that f’(y) f(y) for all y Y*.
y*Suppose y, y_ and g (yx) (y.). Then y a y, and hencef(yx) f(lye)

f (lye.) f (y). Thus there exists f’" Y’ -+ [0, 1] satisfying f’fl (y) f(y)
y*. y,for all y Since has the quotient topology, f’ is continuous.

(6) Y’ is metric. Suppose t (y), 9 (y) Y’ and g (y) fl (y.). Then
T*(yx, yo.) a; hence there exists such that f(tyx) f(ty). Since T

is dense in T* and r is left continuous, there exists s in T such that
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f(syl) f (sy.). Define
$:(,)" f’ [0, 11

by f:(,) (/ (y)) f’ (a (s)B (y)). Then

and silarly
f: (.) ( (y)) f(sy) f (sy,).

Hence the countable collection of continuous functions {f,(,)’s e T} separate
points of Y’. Since Y’ is compact, the product of these functions into a count-
able product of inteals is a homeomorpsm. Thus Y is metfizable.

(7) Let (, $) be a cluster pot of the sequence (s, x) in the compact
space T* X Y*. Thena() a(1). Toseets, letyY,sT. Then
there ests n such that y tx for some e (S.)’, x X.. Now since {s}
clusters to , f(ss, tx ) clusters tof(stx ). By condition (c), f(ss tx ) converges
to f(stx). Hence f(sy) f(stx) f (stx) f(sy) for all s T, y e Y.
Sce Y is dense in Y* and y f(sy) is contuous, f(sy) f(sy) for all
sT, yeY*. Since T is dense in T* and s f(sy) is continuous,
f(sy) f(sy) for all s e T*, y e Y*. Hence p 1, i.e., a (1) a ().

(8) ’is contuous at (a(), ($)). By (7) a() a(1). By (1),
T’ is compact Hausdo and by (1) and (6), Y’ is compact metric. By (2),

’ is separately contuous and by (3), T’ is a right setopological segroup.
Hence by Corollary 3.3, ’ is contuous (a (), B ($)).

(9) f’’ (a (), B ($)) 1. Since ’ (a (), B ($)) r’ (a (1), B ()) B ($),
we have f’r’ (a ( ), ( ) ) f’B ( ) f ($). Since $ is a cluster piont of
x} and by condition (b) of the construction of the sequence x,}, f (x,) con-
verges to 1, we have f() 1.

(10) f’’ (a (s,), (x,)) O. Since v’ is induced by ,
/’’(.(s.),/(x.)) =/’(/(. .)) :(. x.) 0

by condition (a) of the construction of the sequences {s,} and {x.}.
Statements (8), (9) and (10) provide the grand finale for the proof. Since

(s., x.) clusters to (, ) and since ’ is continuous at (a (), ($)), we have
fqr’ (a(s,,), (x,,) clusters to fqr’ (a (), () ), i.e., the constant sequence of 0
clusters to 1, a contradiction.

COROLLARY 5.2. Let S be a compact Hausdorff right semitopological semi-
group with identity u, X a compact Hausdorff space, and v’S X X ---> X a
separately continuous action. If g is a unit in S, then r is continuous at (g, x)
for all x e X.

Proof. By hypothesis there exists g-le S such that gg- g-g u.
Note that (S uX)

_
uX since sux (us)ux u (sux) uX. By The-

orem 5.1, IS uX is continuous at (u, y) for all y uX. Now the com-
position S X X’:- S uX X X defined by

(8, X) ---> (g-18, UX "-’> g-sux --* gg-sux
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is the mapping r since gg-lsux (usu)x sx. Hence r is continuous at
(g, x) since the composition

(g, x) -- (g-lg, ux (u, ux -- uux ux --* gux gx

is cont’muous at the specified points at each stage.

Remarks. Theorem 5.1 remains valid in a form analogous to Theorem 3.2,
i.e., in Theorem 3.2 replace locally compact S by compact S and compact
metric X by compact X. in order to show this more general version, the
inductive constructions, of the sequences {s.} and {x} in the proof of 5.1 must
be appropriately modified. However, I felt the slight extra generality was
not worth introducing added complication to an already cumbersome proof.

Ellis proved Corollary 5.2 for the case S is all units, i.e., a group, and S is
only locally compact. What one needs is that the quotient semigroup T con-
structed in the proof of 5.1 is a Baire space. In the locally compact group
case this will be true since the quotient mapping will be open and hence the
image will again be locally compact. However, the quotient of a locally com-
pact semitopological semigroup with respect to a closed congruence is not
necessarily locally compact. Hence one is restricted to the compact case.

6. Applications to semitopological semigroups
In the remaining portions of the paper we turn to applications of the pre-

ceding results.

PROPOSITION 6.1. Let S be a compact Hausdorff semitopological semigroup
with identity 1. Then the multiplication function is continuous at any point of
g X Su S X gforanyunitg.

Proof. This proposition is an immediate consequence of Corollary 5.2 and
its analogue for right actions; simply observe that the multiplication function
is an action of S on S.

PROPOSITION 6.2. Let G be a subgroup of a compact Hausdorff semitopologi-
cal semigroup S. Then multiplication restricted to G X S is continuous.
(Note" This is different than saying multiplication is continuous at points of
GX.)

Proof. Let e be the identity of G, and H G*. Then e is an identity for
H. Applying Corollary 5.2 to the multiplication function restricted to H X S
we see that the restriction is continuous at (g, s) for each g e G and s e S.

COROLLARY 6.3. Let G be a subgroup of a compact Hausdorff semitopological
semigroup. Then G is a topological group.

Proof. By Proposition 6.2, multiplication is jointly continuous. Let H
be G*. Then H is compact, and e, the identity of G, is an identity for H.

Let {g,} be a net in G which converges to g e G. Since H is compact, the
net {g:} clusters to some h e H. Corollary 5.2 applied to H implies continuity



JOINT CONTINUITY IN SEMITOPOLOGICAI SEMIGROUPS 283

at (g, h), and the right analogue of 5.2 implies continuity at (h, 0). Hence
/g gll clusters to gh and he net {glg} clusters to hg. Thus hg gh e,
i.e., h g-1.
A well-known result of Mostert and Shields [9] is that a topological semi-

group with 1 on a manifold has an open group of units. Joint continuity at 1
allows an analogous result for semitopological semigroups.

:PROPOSITION 6.4. Let S be a semitopological semigroup with identity 1 on a
compact Euclidean manifold. Then the group of units is open.

Proof. Let U be an open set containing 1 which is homeomorphic to R",
the Cartesian product of n copies of the reals. Identify U with R’, metric d.
By joint continuity at (1, 1 (Theorem 5.1 ), there exists an open set V such
thatleV, V U. Fixe > 0suchthatN(1) V, andletQ N(1)*.
Since multiplication is jointly continuous at (1, x) for each x Q, there exists
a > 0 such that y N (1) implies d (x, yx) < e for each x e Q. Hence for
each y e N (1), left translation by y takes Q into R". As a consequence of the
Brouwer fixed point theorem (see [7, Lemma 1.1]), there exists q e Q such
that yq 1. Hence each y e N(1) has a right inverse. Similarly there
exists a neighborhood of 1 consisting of elements having left inverses. The
intersection is a neighborhood of 1 consisting of units. Since translation by
a unit is a homeomorphism, it follows the group of units is open.

Proposition 6.4 provides an affirmative answer to a problem posed to me by
John Berglund. My attempts to solve this problem formed the starting
point for this paper. I am indebted to Professor Berglund for arousing my
interest in this type of problem.

7. Joint continuity from separate continuity
In this section we are concerned with the following question: In what classes

of semigroups does separate continuity imply joint? Berglund has shown that
semigroups on an arc with endpoints 0 and 1 are such a class [1]. It would
be of interest to know whether the results of this paper could be employed to
formulate an alternate proof. Ellis has shown that locally compact topo-
logical groups are also such a class. The results of this paper give an alter-
nate proof (although in many ways parallel).

(A) Groups. The following theorem of Ellis appears in [6].
PROPOSITION 7.1. Let G be a locally compact Hausdorff group with separately

continuous multiplication. Then G is a topological group.

Proof. Let GO denote the one-point compactification of G; define multipli-
cation on G by 0x x0 0 for all x e G. Then GO is a compact Hausdorff
semitopological semigroup. The proposition now follows from Corollary 6.3.

(B) Semilattices. A semilattice is a commutative, idempotent semigroup.
An order can be defined on a semilattice S by x _< y if xy x. The order is
closed if the set (x, y):x _< y} is a closed subset in the topology of S X S.
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If A c S, define

L(A) {y’y_<. x for some xeA}
and M(A) {w’x <_ w for some x e A}. A set is decreasing (increasing) if
L(A) A(M(A) A).
The multiplication function on S is said to be lower semicontinuous if given

(x, y) e S S and W an open, decreasing set containing L (xy), there exist
open sets U and V such that x e U, y V, and UV W.
POeOSTO 7.2. Let S be a compact Hausdorff semilattice with closed

order. Then multiplication is lower semicontinuous.

Proof. Let W be an open decreasing set containing xy. Let {x}, {y} be
nets converging to x and y resp. Then x, /k y _< x for each a, . Hence
for any cluster point z of the net {x/k ya}, we have z <_ x since the order is
closed. Similarly z _< y, and hence z _< x/k y. Thus every cluster point is
in L (x/ y) c W. Since S is compact and since no cluster point lies outside
Of W, the conclusion follows by standard arguments involving nets and con-
tinuity.
The multiplication function is upper semicontinuous if given (x, y) e S X S

and W an open increasing set containing (x, y), there exist open sets U, V
with x e U, y e V such that UV W.
PaOOSTO 7.3. Let S be a compact Hausdorff semilattice in which mul-

tiplication is separately continuous. Then it is upper semicontinuous.

Proof. Let W be an open increasing set containing xy. By Corollary 5.2,
multiplication restricted to L (x) S is continuous at (x, y). Hence there
exist P’ open in L(x), V open in S, with x e P’, y e V and P’V W. Pick
P open in S such that P [’l L (x) P’. By separate continuity there exists
U open, e U, such that Ux P. Since Ux L (x), we have Ux P’.
LetueU, veV. Thenuv >_ xuv uxv eP’V W. HenceuveM(W)
W.

Paooso 7.4. Let S be a compact Hausdorff semilattice with closed order
and separately continuous multiplication. Then S is a topological semilattice.

Proof. By a result of Nachbin, a point in a compact Hausdorff space with
closed order has a basis of neighborhoods which are the intersection of an
open increasing set and an open decreasing set [10]. It follows then from
Propositions 7.2 and 7.3 that multiplication is jointly continuous.

Conditions which imply joint continuity in semilattices have been con-
sidered by Borrego [3]. A modification of his results was used in [8] to help
show continuity in a certain example constructed there. Proposition 7.4
appears to be a stronger and more useful formulation of conditions which give
joint continuity.

(C) Dense Ideals of Continuity. A semigroup S is said to be weakly re-
ductive if given x, y e S, x y, there exist r, s e S such that rx ry and
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xs ys. The next proposition illustrates the principle that continuity
"below" implies continuity "at the top."

PROPOSITION 7.5. Let S be a compact Hausdorff weakly reductive semitopo-
logical semigroup. If I is a dense ideal, and f multiplication restricted to
I I is jointly continuous, then S is a topological semigroup.

Proof. Let (a, b) e I I and let W be an open set containing ab. Pick
an open set W1 such that ab WI c W * W. By continuity there exist
sets U, V open in I such that U. V c W. Then by separate continuity
U*. V c W*, and applying separate continuity again U*. V* W* W.
Since I is dense U* and V* are neighborhoods of a and b resp. in S. Hence
multiplication is continuous in S S at any point (a, b) e I X I.
Now let c e S, d e I, and y S, y cd. Then by weak reductivity there

exists S such that tcd ty. Since I is dense, there exists r e I such that
rcd ry. Since I is an ideal, rc e I. Hence multiplication is continuous at
(rc, d). Thus by Proposition 2.2, multiplication is continuous at (c, d).
Now employing the right analogue of Proposition 2.2, a procedure on the

right analogous to the preceding paragraph, and the conclusion of the pre-
ceding paragraph, we deduce continuity at any point (p, q) S S.

Professor K. H. Hofmann pointed out the following corollary.

CoRoLlARY 7.6. If S is a compact semitopological semigroup with identity,
the group of’units H of S is nowhere dense, and S\H is an ideal and a topological
semigroup, then S is a topological semigroup and hence H is compact.
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