PARABOLIC POTENTIALS WITH SUPPORT ON A HALF-SPACE

BY
Richard J. Bagby

1. Introduction

We study the class of parabolic potentials \mathcal{L}_{α}^{p} introduced by Jones [4]. These spaces arise in the study of the heat equation; they are analogous to Sobolev spaces of fractional order.

We direct our attention to the problem of deciding whether the restriction of a function in \mathscr{L}_{α}^{p} to a half-space necessarily agrees with a function in \mathscr{L}_{α}^{p} supported on that half-space. In the case of Sobolev spaces the result is well known; one method of answering this question appears in Strichartz [7, §3]. Essentially the same approach is used here, but the presence of the time variable raises a number of complications.

For $1<p<\infty$, it is possible to describe \mathscr{L}_{α}^{p} in terms of Sobolev spaces on R. This is done, for example, in [2]. Such a characterization could also be used here to give a somewhat shorter proof of the main theorem. However, the techniques used here produce additional insight.

2. Definitions and basic properties

Definition. A function f is in $\mathscr{L}_{\alpha}^{p}\left(R^{n+1}\right)$ if $\hat{f}=\left(1+|x|^{2}+i t\right)^{-\alpha / 2} \hat{\phi}$ for some $\phi \epsilon L^{p}\left(R^{n+1}\right)$. Here $x \epsilon R^{n}, t \in R$, and ^ denotes the Fourier transform in R^{n+1}. The norm of f is $\|f\|_{p, \alpha}=\|\phi\|_{p}$.

Definition.

$$
\begin{aligned}
H_{\alpha}(x, t) & =t^{(\alpha-n) / 2-1} \exp \left\{-x^{2} / 4 t\right\}, & & t>0 \\
& =0, & & t \leq 0
\end{aligned}
$$

Sampson [5] proves that if $f \in \mathscr{L}_{\alpha}^{p}, 0<\alpha<n+2$, then $f=H_{\alpha} * g$ for some $g \in L^{p}$ with $\|g\|_{p} \leq c_{p, \alpha}\|f\|_{p, \alpha}$.

The following functional is useful in examining these spaces:
$S_{\alpha} f(x, t)=$

$$
\left\{\int_{0}^{\infty}\left[\int_{|y|<1} \int_{0}^{1}\left|f\left(x-r y, t-r^{2} s\right)-f(x, y)\right| d s d y\right]^{2} r^{-1-2 \alpha} d r\right\}^{1 / 2}
$$

Theorem 2.2 of [1] states that for $0<\alpha<1$ and $1<p<\infty, f \in \mathscr{L}_{\alpha}^{p}$ if and only if both $f \in L^{p}$ and $S_{\alpha} f \in L^{p}$, and that $\|f\|_{p, \alpha} \approx\|f\|_{p}+\left\|S_{\alpha} f\right\|_{p}$. Since

$$
S_{\alpha}(f g) \leq\|f\|_{\infty} S_{\alpha} g+|g| S_{\alpha} f
$$

this characterization of \mathscr{L}_{α}^{p} is especially useful when products of functions are involved.

Note that an equivalent functional is obtained if the y-integration is performed over the region $-1 \leq y_{i} \leq 1, i=1, \cdots, n$; for our purposes, this will be more convenient.

3. Main theorem

Let $f \in \mathscr{L}_{\alpha}^{p}\left(R^{n+1}\right)$, where $0<\alpha<1 / p<1$. Let $\zeta \in R^{n} \sim\{0\}$, and let

$$
\begin{aligned}
g(x, t) & =f(x, t), & & t>x \cdot \zeta \\
& =0, & & t \leq x \cdot \zeta
\end{aligned}
$$

Then $g \epsilon \mathcal{L}_{\alpha}^{p}\left(R^{n+1}\right)$, with $\|g\|_{p, \alpha} \leq c_{p, \alpha}\|f\|_{p, \alpha}$.

4. Some mixed-norm Sobolev inequalities

Lemma 1. Let $f \in \mathcal{L}_{\alpha}^{p}\left(R^{n+1}\right)$, where $0<\alpha<1 / p<1$. Let $1 / u=1 / p-$ $\alpha / 2$. Then for a.e. $x \in R^{n}, f(x, \cdot) \in L^{u}(R)$ and $\int\|f(x, \cdot)\|_{u}^{p} d x \leq c_{p, \alpha}\|f\|_{p \alpha}^{p}$.

Lemma 2: Let $f \in \mathscr{L}_{\alpha}^{p}\left(R^{n+2}\right)$, where $n \geq 0$ and $0<\alpha<1 / p<1$. Denote points in R^{n+1} as (x, ζ, t), where $x \in R^{n}, \zeta \in R$, and $t \in R$. Let $1 / v=1 / p-\alpha$. Then for a.e. $(x, t) \in R^{n+1}$,

$$
f(x, \cdot, t) \in L^{v}(R) \quad \text { and } \quad \iint\|f(x, \cdot, t)\|_{v}^{p} d x d t \leq c_{p, \alpha}\|f\|_{p, \alpha}^{p}
$$

Proof of Lemma 1. Let $f=H_{\alpha} * g, g \in L^{p}\left(R^{n+1}\right),\|g\|_{p} \leq c_{p, \alpha}\|f\|_{p, \alpha}$. Then

$$
f(x, t)=\int_{0}^{\infty} s^{(\alpha-n) / 2-1} d s \int_{R^{n}} \exp \left\{-|y|^{2} / 4 s\right\} g(x-y, t-s) d y
$$

Now

$$
\begin{aligned}
\mid \int_{R^{n}} \exp & \left\{-|y|^{2} / 4 s\right\} g(x-y) d y \mid \\
& \leq \sum_{j=1}^{\infty} \int_{(j-1) s \leq|y|^{2} \leq j s} \exp \left\{-|y|^{2} / 4 s\right\}|g(x-y, t-s)| d y \\
& \leq \sum_{j=1}^{\infty} \exp \{-(j-1) / 4\} \int_{|y|^{2} \leq j s}|g(x-y, t-s)| d y \\
& \leq \sum_{j=1}^{\infty} \exp \{-(j-1) / 4\} c_{n}(j s)^{n / 2} M_{1} g(x, t-s) \\
& =A s^{n / 2} M_{1} g(x, t-s)
\end{aligned}
$$

where $A=\sum_{j=1}^{\infty} c_{n} j^{n / 2} \exp \{-(j-1) / 4\}$ and M_{1} denotes a partial maximal function defined by

$$
M_{1} g(x, t)=\sup _{r>0} \frac{1}{m\{y:|y| \leq r\}} \int_{|y| \leq r}|g(x-y, t)| d x
$$

Thus

$$
|f(x, t)| \leq A \int_{0}^{\infty} s^{\alpha / 2-1} M_{1} g(x, t-s) d s
$$

By the standard fractional integration theorem and the L^{p}-boundedness of the maximal function,

$$
\|f(x, \cdot)\|_{u} \leq c_{p, \alpha}\left\|M_{1} g(x, \cdot)\right\|_{p}
$$

and

$$
\int\|f(x, \cdot)\|_{u}^{p} d x \leq c_{p, \alpha} \iint M_{1} g(x, t)^{p} d t d x \leq c_{p, \alpha}\|g\|_{p}^{p} \leq c_{p, \alpha}\|f\|_{p, \alpha}^{p}
$$

The fractional integration theorem is proved in Hardy, Littlewood, and Polya [3, Theorem 383] and in Zygmund [8]. Stein [6, Chapter 1] contains a discussion of the maximal function.

Proof of Lemma 2. Again we set $f=H_{\alpha} * g$; this time

$$
\begin{aligned}
&\left.f(x, \zeta, t)=\int_{-\infty}^{\infty} d \eta \int_{0}^{\infty} s^{(\alpha-n-1) / 2-1} d s \int_{R^{n}} \exp \left\{-|y|^{2}+\eta^{2}\right) / 4 s\right\} \\
& \cdot g(x-y, \zeta-\eta, t-s) d y
\end{aligned}
$$

Just as in Lemma 1, the first integral is bounded by

$$
A s^{n / 2} \exp \left\{-\eta^{2} / 4 s\right\} M_{1} g(x, \zeta-\eta, t-s) .
$$

Now we bound the s-integral:

$$
\begin{aligned}
& A \int_{0}^{\infty} s^{(\alpha-1) / 2-1} \exp \left\{-\eta^{2} / 4 s\right\} M_{1} g(x, \zeta-\eta, t-s) d s \\
&=A \sum_{j=-\infty}^{\infty} \int_{2^{i} \eta^{2}}^{2 j+\eta^{2}} s^{(\alpha-1) / 2-1} \exp \left\{-\eta^{2} / 4 s\right\} M_{1} g(x, \zeta-\eta, t-s) d s \\
& \leq A \sum_{j=-\infty}^{\infty}\left(2^{j} \eta^{2}\right)^{(\alpha-1) / 2-1} \exp \left\{-1 / 4 \cdot 2^{j+1}\right\} \\
& \quad \cdot \int_{0}^{2 j+1 \eta^{2}} M_{1} g(x, \zeta-\eta, t-s) d s \\
& \quad \leq A \sum_{j=-\infty}^{\infty}\left(2^{j} \eta^{2}\right)^{(\alpha-1) / 2-1} \exp \left\{-2^{-j-3}\right\} \cdot 2^{j+1} \eta^{2} M_{3} M_{1} g(x, \zeta-\eta, t) \\
& \quad=A B|\eta|^{\alpha-1} M_{3} M_{1} g(x, \zeta-\eta, t),
\end{aligned}
$$

where $B=\sum_{j=-\infty}^{\infty} 2^{1+(\alpha-1) c / 2} \exp \left\{-2^{-j-3}\right\}$ and M_{3} denotes another partial maximal function. Thus

$$
|f(x, \zeta, t)| \leq A B \int_{-\infty}^{\infty}|\eta|^{\alpha-1} M_{3} M_{1} g(x, \zeta-\eta, t) d \eta
$$

the desired conclusion follows as in Lemma 1.

5. Proof of main theorem

Let

$$
\begin{aligned}
\chi(x, t) & =1, \quad t>x \cdot \zeta \\
& =0, \quad t \leq x \cdot \zeta
\end{aligned}
$$

Then we must prove that $f \rightarrow \chi f$ defines a continuous mapping from \mathcal{L}_{α}^{p} into itself for $0<\alpha<1 / p<1$.

Clearly $\|\chi f\|_{p} \leq\|f\|_{p} \leq\|f\|_{p, \alpha}$; it remains only to show $\left\|S_{\alpha}(\chi f)\right\|_{p} \leq$ $c\|f\|_{p, \alpha}$. Now

$$
S_{\alpha}(\chi f) \leq\|\chi\|_{\infty} S_{\alpha} f+|f| S_{\alpha} \chi
$$

As $\|\chi\|_{\infty}=1$ and $S_{\alpha} f \in L^{p}$, we must show $|f| S_{\alpha} \chi \in L^{p}$.
Rotate coordinates in R^{n} so that ζ becomes ($0, \cdots, 0,|\zeta|$). Then χ and consequently $S_{\alpha} \chi$ are independent of x_{1}, \cdots, x_{n-1}; to simplify notation we assume $n=1$ and $\zeta=\lambda>0$.

In the next section we show $S_{\alpha} \chi(x, t) \leq c_{\alpha}\left(\lambda^{\alpha}|t-\lambda x|^{-\alpha}+|t-\lambda x|^{-\alpha / 2}\right)$.
By Lemma 1, we have for $\phi \in L^{2 / \alpha}(R)$,

$$
\begin{aligned}
\iint|\phi(t) f(x, t)|^{p} d t d x & \leq \int\|\phi\|_{2 / \alpha}^{p}\|f(x, \cdot)\|_{u}^{p} d x \\
& \leq c_{p, \alpha}\|\phi\|_{2 / \alpha}^{p}\|f\|_{p, \alpha}^{p}
\end{aligned}
$$

since $\alpha / 2+1 / u=1 / p$. Using the same technique as in Strichartz [7, Theorem 3.6], it follows that also

$$
\iint|\phi(t) f(x, t)|^{p} d t d x \leq M^{p} c_{p, \alpha}\|f\|_{p, \alpha}^{p}
$$

provided only that

$$
m\{t:|\phi(t)|>\eta\} \leq\left(M \eta^{-1}\right)^{2 / \alpha}
$$

Since $m\left\{t:|t-\lambda x|^{-\alpha / 2}>\eta\right\}=2 \eta^{-2 / \alpha},|t-\lambda x|^{-\alpha / 2}|f| \epsilon L^{p}$ with norm bounded by $c_{p, \alpha}\|f\|_{p, \alpha}$.

Using Lemma 2 and the same technique, we also have that $\lambda^{\alpha}|t-\lambda x|^{-\alpha}|f|$ ϵL^{p}.

It is interesting to note that the estimate thus obtained for $\|\chi f\|_{p, \alpha}$ is independent of λ.

6. Estimates for $S_{\alpha} \chi$

Let

$$
I=\int_{-1}^{1} \int_{0}^{1}\left|\chi\left(x-r y, t-r^{2} s\right)-\chi(x, t)\right| d y d s
$$

where χ is the characteristic function of $\{(x, t): t>\lambda x\}$. Then $S_{\alpha} \chi^{2}=$ $\int_{0}^{\infty} I^{2} r^{-1-2 \alpha} d r$. Note that I is simply the measure of the set of points (y, s) in $[-1,1] \times[0,1]$ for which (x, t) and $\left(x-r y, t-r^{2} s\right)$ lie on opposite sides of the line $t=\lambda x$.

As (y, s) ranges over $[-1,1] \times[0,1]$, the points $\left(x-r y, t-r^{2} s\right)$ sweep out a rectangle R with vertices at $(x-r, t),(x+r, t),\left(x+r, t-r^{2}\right)$, and $\left(x-r, t-r^{2}\right)$. Ignoring the cases in which the line $t=\lambda x$ passes through a vertex, there are six possible configurations.

We see that in cases A and $\mathrm{F}, I=0$. In case B, I is the area of a triangle. In cases C and D, I is the area of a trapezoid. In case E, I is either the area of a triangle or the area of its complement in R, depending on the sign of $t-$ λx.

First we consider the possible cases when $t-\lambda x>0$. For small r, case A occurs and $I=0$.

Let r increase. We enter case B when

$$
t-r^{2}=\lambda(x+r) \quad \text { or } \quad r=\frac{1}{2}\left(-\lambda+\sqrt{\left.\lambda^{2}+4(t-\lambda x)\right)}=r_{0}\right.
$$

During case B , the line crosses the bottom of R when $t-r^{2}=\lambda(x-r y)$, i.e.,

$$
y=\left[r^{2}-(t-\lambda x)\right] / \lambda r=y_{0}
$$

and the right-hand side of R when

$$
t-r^{2} s=\lambda(x+r), \text { i.e., } \quad s=(t-\lambda x+\lambda r) r^{-2}=s_{0}
$$

Thus we have

$$
I=\frac{1}{2}\left(y_{0}+1\right)\left(1-s_{0}\right)=\left[r^{2}+\lambda r-(t-\lambda x)\right] / 2 \lambda r^{3} .
$$

As r increases, the upper right-hand corner of R crosses the line when $t=\lambda(x+r)$, i.e., $r=\lambda^{-1}(t-\lambda x)=r_{1}$, and the bottom left-hand corner crosses the line when $t-r^{2}=\lambda(x-r)$, i.e.,

$$
r=\frac{1}{2}\left(\lambda+\sqrt{\left.\lambda^{2}+4(t-\lambda x)\right)}=r_{2} .\right.
$$

If $r_{1}<r_{2}$ we have the following situation: case \mathbf{A} for $0<r<r_{0}$, case B for $r_{0}<r<r_{1}$, case C for $r_{1}<r<r_{2}$, and case E for $r_{2}<r$.

If $r_{2}<r_{1}$, then we have case A for $0<r<r_{0}$, case B for $r_{0}<r<r_{2}$, case D for $r_{2}<r<r_{1}$, and case E for $r_{1}<r$.

The condition $r_{1}<r_{2}$ is seen to be equivalent to $0<t-\lambda x<2 \lambda^{2}$. With reasoning similar to that used in case B , we discover that

$$
\begin{aligned}
& I=\left[2 \lambda r+r^{2}-2(t-\lambda x)\right] / 2 \lambda r \quad \text { in case } \mathrm{C} \\
& I=2\left[r^{2}-(t-\lambda x)\right] / r^{2} \quad \text { in case } \mathrm{D}
\end{aligned}
$$

and

$$
I=\left[4 \lambda r^{3}-(t-\lambda x+\lambda r)^{2}\right] / 2 \lambda r^{3} \quad \text { in case } \mathrm{E} .
$$

We thus obtain

$$
\begin{aligned}
S_{\alpha} \chi^{2}= & \frac{1}{4} \lambda^{-2} \int_{r_{0}}^{r_{1}}\left[r^{2}+\lambda r-(t-\lambda x)\right]^{2} r^{-7-2 \alpha} d r \\
& +\frac{1}{4} \lambda^{-2} \int_{r_{1}}^{r_{2}}\left[2 \lambda r+r^{2}-2(t-\lambda x)\right]^{2} r^{-8-2 \alpha} d r \\
& +\frac{1}{4} \lambda^{-2} \int_{r_{2}}^{\infty}\left[4 \lambda r^{3}-(t-\lambda x+\lambda r)^{2}\right]^{2} r^{-7-2 \alpha} d r
\end{aligned}
$$

when $0<t-\lambda x<2 \lambda^{2}$ and

$$
\begin{align*}
S_{\alpha} \chi^{2}= & \frac{1}{4} \lambda^{-2} \int_{r_{0}}^{r_{2}}\left[r^{2}+\lambda r-(t-\lambda x)\right]^{4} r^{-7-2 \alpha} d r \\
& +4 \int_{r_{2}}^{r_{1}}\left[r^{2}-(t-\lambda x)\right]^{2} r^{-5-2 \alpha} d r \tag{2}\\
& +\frac{1}{4} \lambda^{-2} \int_{r_{1}}^{\infty}\left[4 \lambda r^{8}-(t-\lambda x+\lambda r)^{2}\right]^{2} r^{-7-2 \alpha} d r
\end{align*}
$$

when $2 \lambda^{2}<t-\lambda x$.
When $t-\lambda x<0$, the situation is simpler. The rectangle is in case F for small r. It enters case E when $t=\lambda(x-r)$ or $r=\lambda^{-1}|t-\lambda x|=r_{0}$. It will enter case C at the first solution of $t-r^{2}=\lambda(x-r)$, i.e.,

$$
r=\frac{1}{2}\left(\lambda-\sqrt{\lambda^{2}+4(t-\lambda x)}\right)=r_{3}
$$

It returns to case E at the second solution

$$
r=\frac{1}{2}\left(\lambda+\sqrt{\lambda^{2}+4(t-\lambda x)}\right)=r_{4} .
$$

If $\lambda^{2}+4(t-\lambda x)<0$, it remains in case E for all $r>r_{0}$.

We discover that
and

$$
\begin{aligned}
& I=0 \text { in case } \mathrm{F} \\
& I=[\lambda r+t-\lambda x]^{2} / 2 \lambda r^{3} \quad \text { in case } \mathrm{E} \\
& I=\left[2 \lambda r-r^{2}+2(t-\lambda x)\right] / 2 \lambda r \quad \text { in case } \mathrm{C} .
\end{aligned}
$$

We thus obtain

$$
\begin{equation*}
S_{\alpha} \chi^{2}=\frac{1}{4} \lambda^{-2} \int_{r_{0}}^{\infty}[\lambda r+t-\lambda x]^{4} r^{-7-2 \alpha} d r \tag{3}
\end{equation*}
$$

for $t-\lambda x<-\lambda^{2} / 4$ and

$$
S_{\alpha} \chi^{2}=\frac{1}{4} \lambda^{-2} \int_{r_{0}}^{r_{3}}[\lambda r+t-\lambda x]^{4} r^{-7-2 \alpha} d r
$$

$$
\begin{align*}
& +\frac{1}{4} \lambda^{-2} \int_{r_{3}}^{r_{4}}\left[2 \lambda r-r^{2}+2(t-\lambda x)\right]^{2} r^{-3-2 \alpha} d r \tag{4}\\
& +\frac{1}{4} \lambda^{-2} \int_{r_{4}}^{\infty}[\lambda r+t-\lambda x]^{4} r^{-7-2 \alpha} d r
\end{align*}
$$

for $-\lambda^{2} / 4<t-\lambda x<0$.
While each integral can be evaluated explicitly, such a computation does not display the dependence on λ and $|t-\lambda x|$ very well. A change of variables

$$
r=\lambda^{-1}|t-\lambda x| r^{*}
$$

is helpful. The quantity $\lambda^{2}|t-\lambda x|^{-1}$ occurs frequently; we denote this by σ^{2}.

We thus obtain

$$
\begin{align*}
S_{\alpha} \chi^{2}= & \frac{1}{4} \lambda^{2 \alpha}|t-\lambda x|^{-2 \alpha}\left\{\sigma^{4} \int_{r_{0}^{*}}^{1}\left[\sigma^{-2} r^{2}+r-1\right]^{4} r^{-7-2 \alpha} d r\right. \\
& \left.+\int_{1}^{r_{2}^{*}}\left[2 r+\sigma^{-2} r^{2}-2\right]^{2} r^{-3-2 \alpha} d r+\int_{r_{2}^{*}}^{\infty}\left[4 r^{3}-\sigma^{2}(1+r)^{2}\right]^{2} r^{-7-2 \alpha} d r\right\}
\end{align*}
$$

for $t-\lambda x>0, \quad \sigma^{2}>\frac{1}{2}$;

$$
\begin{align*}
S_{\alpha} \chi^{2}=\lambda^{2 \alpha} \mid & t-\left.\lambda x\right|^{-2 \alpha}\left\{\frac{1}{4} \sigma^{4} \int_{r_{0}^{*}}^{r_{2}^{*}}\left[\sigma^{-2} r^{2}+r-1\right]^{4} r^{-7-2 \alpha} d r\right. \\
& \left.+4 \int_{r_{2}^{*}}^{1}\left[r^{2}-\sigma^{2}\right]^{2} r^{-5-2 \alpha} d r+\frac{1}{4} \int_{1}\left[4 r^{3}-\sigma^{2}(1+r)^{2}\right]^{2} r^{-7-2 \alpha} d r\right\}
\end{align*}
$$

for $t-\lambda x>0, \quad \sigma^{2}<\frac{1}{2}$;

$$
S_{\alpha} \chi^{2}=\frac{1}{4} \sigma^{2} \lambda^{2 \alpha}|t-\lambda x|^{-2 \alpha} \int_{1}^{\infty}(r-1)^{4} r^{-7-2 \alpha} d r
$$

for $t-\lambda x<0, \quad \sigma^{2}<4 ;$ and

$$
\begin{align*}
& S_{\alpha} \chi^{2}=\frac{1}{4} \lambda^{2 \alpha}|t-\lambda x|^{-2 \alpha}\left\{\sigma^{2} \int_{1}^{r_{3}^{*}}(r-1)^{4} r^{-7-2 \alpha} d r\right. \\
&\left.+\int_{r_{3}^{*}}^{r_{4}^{*}}\left[2 r-\sigma^{-2} r^{2}-2\right]^{2} r^{-8-2 \alpha} d r+\sigma^{2} \int_{r_{4}^{*}}^{\infty}(r-1)^{4} r^{-7-2 \alpha} d r\right\}
\end{align*}
$$

for $t-\lambda x<0, \quad \sigma^{2}>4$.
In the above,

$$
\begin{aligned}
& r_{0}^{*}=\frac{1}{2}\left(-\sigma^{2}+\sigma \sqrt{\sigma^{2}+4}\right), \quad r_{2}^{*}=\frac{1}{2}\left(\sigma^{2}+\sigma \sqrt{\sigma^{2}+4}\right), \\
& r_{3}^{*}=\frac{1}{2}\left(\sigma^{2}-\sigma \sqrt{\sigma^{2}-4}\right), \quad \text { and } \quad r_{4}^{*}=\frac{1}{2}\left(\sigma^{2}+\sigma \sqrt{\sigma^{2}-4}\right) .
\end{aligned}
$$

For the first integral in (1^{\prime}), note that

$$
r_{0}^{*}=\frac{1}{2} \sigma^{2}\left(-1+\sqrt{1+4 \sigma^{-2}}\right) \geq \frac{1}{2} \sigma^{2}\left(-1+1+2 \sigma^{-2}-2 \sigma^{-4}\right)=1-\sigma^{-2}
$$

since $\sqrt{ }(1+a) \geq 1+a / 2-a^{2} / 8$ for $0 \leq a \leq 8$. Thus

$$
\left|\sigma^{-2} r^{2}+r-1\right| \leq \sigma^{-2} \text { for } r_{0}^{*} \leq r \leq 1
$$

As $r_{0}^{*}>0$ for $\sigma>0$ and $r_{0}^{*} \geq 1-\sigma^{-2}$ for large $\sigma, r_{0}^{*} \geq c>0$ for $\sigma^{2} \geq \frac{1}{2}$. Thus

$$
\int_{r_{0}^{*}}^{1}\left[\sigma^{-2} r^{2}+r-1\right]^{4} r^{-7-2 \alpha} d r \leq \sigma^{-8} \int_{c}^{1} r^{-7-2 \alpha} d r=c_{\alpha} \sigma^{-8} .
$$

For the second integral in (1^{\prime}), note that

$$
r_{2}^{*}=\frac{1}{2}\left(\sigma^{2}+\sigma \sqrt{\sigma^{2}+4}\right) \leq 2 \sigma^{2} .
$$

Thus

$$
\int_{1}^{r_{2}^{*}}\left[2 r+\sigma^{-2} r^{2}-2\right]^{2} r^{-3-2 \alpha} d r \leq \int_{1}^{\infty}[4 r]^{2} r^{-3-2 \alpha} d r=c_{\alpha}
$$

For the third integral, note that $r_{2}^{*} \geq \sigma^{2} \geq \frac{1}{2}$ and thus

$$
\int_{r_{2}^{*}}^{\infty}\left[4 r^{3}-\sigma^{2}(1+r)^{2}\right]^{2} r^{-7-2 \alpha} d r \leq \int_{1 / 2}^{\infty}\left[4 r^{3}+r(1+r)^{2}\right]^{2} r^{-7-2 \alpha} d r=c_{\alpha}
$$

Thus from (1^{\prime}) we obtain

$$
S_{\alpha} X^{2} \leq c_{\alpha} \lambda^{2 \alpha}|t-\lambda x|^{-2 \alpha} \text { for } \quad 0<t-\lambda x<2 \lambda^{2}
$$

Next we look at $\left(2^{\prime}\right)$. For the first integral, note $r_{0}^{*} \leq r \leq r_{2}^{*}$ implies

$$
\frac{1}{2}\left(-\sigma+\sqrt{\sigma^{2}+4}\right) \leq \sigma^{-1} r \leq \frac{1}{2}\left(\sigma+\sqrt{\sigma^{2}+4}\right)
$$

Squaring and subtracting $1,-r_{0}^{*} \leq \sigma^{-2} r^{2}-1 \leq r_{2}^{*}$. Thus $\left|\sigma^{-2} r^{2}+r-1\right| \leq$ $2 r_{2}^{*}$.

Now

$$
\sigma^{-1} r_{0}^{*}=\frac{1}{2}\left(-\sigma+\sqrt{\sigma^{2}+4}\right) \geq \frac{1}{2} \quad \text { and } \quad \sigma^{-1} r_{2}^{*}=\frac{1}{2}\left(\sigma+\sqrt{\sigma^{2}+4}\right) \leq 2
$$

for $\sigma^{2} \leq \frac{1}{2}$. Thus $r_{0}^{*} \geq \frac{1}{2} \sigma$ and $r_{2}^{*} \leq 2 \sigma$. Consequently

$$
\int_{r_{0}^{*}}^{r_{2}^{*}}\left[\sigma^{-2} r^{2}+r-1\right]^{4} r^{-7-2 \alpha} d r \leq c \int_{\sigma / 2}^{2 \sigma} \sigma^{4} r^{-7-2 \alpha} d r=c_{\alpha} \sigma^{-2-2 \alpha}
$$

For the second integral, since $r_{2}^{*} \geq \sigma$,

$$
\begin{aligned}
\int_{r_{2}^{*}}^{1}\left[r^{2}-\sigma^{2}\right]^{2} r^{-5-2 \alpha} d r & \leq \int_{\sigma}^{1}\left[r^{2}-\sigma^{2}\right]^{2} r^{-5-2 \alpha} d r \\
& =\sigma^{-2 \alpha} \int_{1}^{\sigma^{-1}}\left[r^{2}-1\right]^{2} r^{-5-2 \alpha} d r \\
& \leq c_{\alpha} \sigma^{-2 \alpha}
\end{aligned}
$$

Since $\sigma^{2} \leq \frac{1}{2}$, the third integral in (2^{\prime}) is bounded by c_{α}. Thus from (2^{\prime}) we obtain

$$
\begin{aligned}
S_{\alpha} \chi^{2} & \leq c_{\alpha} \lambda^{2 \alpha}|t-\lambda x|^{-2 \alpha}\left(\sigma^{2-2 \alpha}+\sigma^{-2 \alpha}+1\right) \\
& \leq c_{\alpha} \lambda^{2 \alpha}|t-\lambda x|^{-2 \alpha}+c_{\alpha}|t-\lambda x|^{-\alpha}
\end{aligned}
$$

for $2 \lambda^{2}<t-\lambda x$.
From (3^{\prime}) we see immediately that

$$
S_{\alpha} \chi^{2}=c_{\alpha} \sigma^{2} \lambda^{2 \alpha}|t-\lambda x|^{-2 \alpha} \leq c_{\alpha} \lambda^{2 \alpha}|t-\lambda x|^{-2 \alpha}
$$

for $t-\lambda x<0, \sigma^{2}<4$.
Finally we look at (4'). For $\sigma^{2}>4$ we have

$$
r_{3}^{*}=\frac{1}{2} \sigma^{2}\left(1-\sqrt{1-4 \sigma^{-2}}\right) \leq \frac{1}{2} \sigma^{2}\left(1-1+2 \sigma^{-2}+8 \sigma^{-4}\right)=1+4 \sigma^{-2}
$$

since $\sqrt{ }(1-a) \geq 1-\frac{1}{2} a-\frac{1}{2} a^{2}$ for $0 \leq a \leq 1$. Hence

$$
\int_{1}^{r_{8}^{*}}(r-1)^{4} r^{-7-2 \alpha} d r \leq \int_{1}^{\infty}\left(4 \sigma^{-2}\right)^{4} r^{-7-2 \alpha}=c_{\alpha} \sigma^{-8}
$$

To bound the second integral in (4'), we observe that $r_{4}^{*} \leq \sigma^{2}$ and hence $\sigma^{-2} r^{2} \leq r$ for $\quad r \leq r_{4}^{*}$. Thus

$$
\int_{r_{3}^{*}}^{r_{4}^{*}}\left[2 r-\sigma^{-2} r^{2}-2\right]^{2} r^{-8-2 \alpha} d r \leq \int_{1}^{\infty}[2 r-2]^{2} r^{-3-2 \alpha} d r=c_{\alpha}
$$

For the last integral, note $r_{4}^{*} \geq \frac{1}{2} \sigma^{2}$. Hence

$$
\int_{r_{4}^{*}}^{\infty}(r-1)^{4} r^{-7-2 \alpha} d r \leq \int_{\sigma^{2} / 2}^{\infty} r^{-8-2 \alpha} d r=c_{\alpha} \sigma^{-4-4 \alpha}
$$

Using these bound in (4') yields
$S_{\alpha} \chi^{2} \leq \frac{1}{4} \lambda^{2 \alpha}|t-\lambda x|^{-2 \alpha}\left(c_{\alpha} \sigma^{-6}+c_{\alpha}+c_{\alpha} \sigma^{-2-4 \alpha}\right) \leq c_{\alpha} \lambda^{2 \alpha}|t-\lambda x|^{-2 \alpha}$ for $t-\lambda x<0, \sigma^{2} \geq 4$.

Consequently, we have in all cases

$$
S_{\alpha} \chi \leq c_{\alpha}\left(\lambda^{\alpha}|t-\lambda x|^{-\alpha}+|t-\lambda x|^{\alpha / 2}\right)
$$

as claimed previously.

Bibliography

1. R. J. Bagby, Lebesgue spaces of parabolic potentials, Illinois J. Math, vol. 15 (1971), pp. 610-634.
2. -, A difference quotient norm for spaces of quasi-homogeneous Bessel potentials, Studia Math, vo.. 40 (1971), pp. 41-48.
3. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1964.
4. B. F. Jones, Jr., Lipschitz spaces and the heat equation, J. Math. Mech., vol. 18 (1968), pp. 379-410.
5. C. H. Sampson, A characterization of parabolic Lebesgue spaces, Dissertation, Rice University, 1968.
6. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.
7. R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech., vol. 16 (1967), pp. 1031-1061.
8. A. Zygmund, On a theorem of Marcinkiewicz concerning interpolation of operators, J. Math. Pures Appl., vol. 35 (1956), pp. 223-248.

New Mexico State University
Las Cruces, New Mexico

