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1. Introduction
We study the class of parabolic potentials introduced by Jones [4]. These

spaces arise in the study of the heat equation; they are analogous to Sobolev
spaces of fractional order.
We direct our attention to the problem of deciding whether the restriction

of a function in 0 to a half-space necessarily agrees with a function in
supported on that half-space. In the case of S0bolev spaces the result is well
known; one method of answering this question appears in Strichartz [7, 3].
Essentially the same approach is used here, but the presence of the time vari-
able raises a number of complications.
For 1 p , it is possible to describe 2 in terms of Sobolev spaces on

R. This is done, for example, in [2]. Such a characterization could also be
used here to give a somewhat shorter proof of the main theorem. However,
the techniques used here produce additional insight.

2. Definitions and basic properties
DEFINITION. A function f is in 2(R"+) if] (1 + x 1 + it)-n6 for

some L (R+). Here x R", R, and denotes the Fourier transform in
R+. The norm of f is f IJ, J] I].
DEFiTTON.

H (x, t) (-’)/- exp x/4t}, > 0
=0, t_<0

Sampson [5] proves that if f e oct, 0 < a < n -t- 2, then f H.,g for some
g e L with il g i1 < c, Ill I[,.
The following functional is useful in examining these spaces"

S,,f(x,t)

{fo’* [f<x fo f(x ry’ rs) f(x’ y) ds dyl r-- dr}
Theorem 2.2 of [1] states that for 0 < a < 1 and 1 < p < o ,f e 2 if and

only if both f L and Sfe L, and that f II, f IJ h- I! Sf Jl. Since

s(fg) < Il f li. ,S,, g -4- g lS.f,
this characterization of is especially useful when products of functions
are involved.
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Note that an equivalent functional is obtained if the y-integration is per-
formed over the region 1 <_ y _< 1, i 1, ..., n; for our purposes, this will
be more convenient.

3. Main theorem
R and letLet](Rn+l) where0 < a < 1/p < 1 Leti" e {0},

g(x,
=0, t<_x..

Then g (R+1), with II g

4. Some mixed-norm Sobolev inequalities
LEMIIA 1. Let f e J,(R’+), where 0 ,< a ,< 1/p ,< 1. Let 1/u--- 1/p-

a/2. Then for a.e. x R", f(x,

LE.a 2" Let f 2(R+), where n 0 and 0 < a < 1/p < 1. Denote
points in R’+1 as (x, , t), where x R, R, and e R. Let 1Iv lip a.

Rn+lThen for a.e. (x, t)

LV Iff (x, t) e (R and

Let f H,.g, gProof of Lemma 1.
Then

Now

f(x, t) fo s("-")/-I ds exp {-lY 1/4s}g(x Y,t s) dy.

f exp {-[yl/4s}g(x y)dy

f( exp {-lyl/4s} Ig(x y,t s) ldy_-exp {--(j 1)/41 f,,<, lg(x y,t s) ldy

<: - exp {-(j 1)/4}c,(js)’*/*Mg(x,t s)

As"/Mg(x, t- s),

C
:n/2where A ’.= , exp {- (j 1 )/4} and M denotes a partial maxi-

mal function defined by
1 f ig(x -y,t) idx.Mg(x, t) sup,>Om{y.ly
_

r}
Thus

A f s/-IMg(x, s) ds.
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By the standard fractional integration theorem and the -boundedness of
the maximal function,

nd

/ f(x,.)il dx

The fractional integration theorem is proved in Hardy, Littlewood, and
Polya [3, Theorem 383] and in Zygmund [8]. Stein [6, Chapter 1] contains a
discussion of the maximal function.

Proof of Lemma 2. Again we set f H .g; this time

f(x,t,t) .&
g(x- y,-v,t- s) dy.

Just as in Lemma 1, the first integral is bounded by

As" exp{- l/4s}M g (x, , s).

Now we bound the s-integral:

A s(-1)/- exp {-n/4slMg(x, r 1, s) ds

[ s(-/- exp {-q/4sJMg(x, 1, s) ds

_< A 2-_ (2,)-’- exp {-1/4.2+}
gi+n

Mg(x,

< A

_
(2/)(-)- exp {-2--} .2+lMMg(x, *1, t)

ABI, I-lMaMg(x, , t),

where B -- 2+(-)/" exp {- 2--} and M denotes another partial
maximal function. Thus

If(x,

the desired conclusion follows as in Lemma 1.

5. Proof of main theorem
Let

x(x,t) , t>

=0,
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Then we must prove that f -, xf defines a continuous mapping from 2 into
itself for 0 <: a < 1/p < 1.

Clearly !! xf ]1 - f ][ f ]], it remains only to show ]l S () ][
c

As x I1 1 and Sf e L, we must show If ISa x e L.
Rotate coordinates in R" so that becomes (0, ..., O, I1). Then x and

consequently S x are independent of xl, ..’, x_l to simplify notation we
assumen= land=X>O.

In the next section we show S x (x,

_
c (,’ x + x

By Lemma 1, we have for e LTM (R),

ff ck(t)f(x, t) dt dx <_ f ill(x, ")ii:

since a/2 + 1/u lip. Using the same technique as in Strichartz [7,
Theorem 3.6], it follows that also

f/
provided oy that

re{t" (t > ,} (MY-)/.

Since re{t" [t-x[-" > n} 2n-=/", ]t--x[-"[f]eL with norm
bounded by c,, f [,,.
UsgLe 2 nd the sme tecique, we lso hve that
Lp.
It is interesting to note that the estimate thus obtained for xf [,, is in-

dependent of .
Let

6. Estimates for S= x

where x is the characteristic function of {(x, t)’t > Xx}. Then S x
f Ir-- dr. Note that I is simply the mesure of the set of points (y, s)
in [- 1, 1] [0, 1] for which (x, t) and (x ry, rs) lie on opposite sides of
the line x.
As (y, s) rnges over [-1, 1] [0, 1], the points (x ry, rs) sweep

out rectangle R with vertices at (x r, t), (x q- r, t), (x -k r, r), nd
(x r, r). Ignoring the cses in which the line Xx passes through a
vertex, there re six possible configurations.
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We see that in cases A and F, I 0. In case B, I is the area of a triangle.
In cases C and D, I is the area of a trapezoid. In case E, I is either the area
of a triangle or the area of its complement in R, depending on the sign of
)X.

First we consider the possible cases when kx > 0. For small r, case A
occurs and I 0.

Let r increase. We enter case B when

t--r ,(x-r) or r 1/2(--X-/X+4(t- x))"
During case B, the line crosses the bottom of R when r = (x ry), i.e.,

y-- [r- (t- hz)]/,r yo

and the right-hand side of R when

rs , (x -t- r), i.e., s (t- ,x-[- kr)r- so.

Thus we have

I 1/2(yo + 1)(1 So) [r +),r- (t- hx)]/2hr3.
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As r increases, the upper right-hand corner of R crosses the line when
(x - r), i.e., r X- (t x) r, and the bottom left-hand comer

crosses the line when r X (x r), i.e.,

r 1/2 ( + x + 4- x))= r.

If rl < r. we have the following situation" case A for 0 < r < r0, case B for
ro < r < rl, case C for r < r < r2, and case E for r2 < r.

If r < rl, then we have case A for 0 < r < r0, case B for r0 < r < r2, case
D for r < r < r,and case E for r < r.
The condition r < r is seen to be equivalent to 0 < Xz <: 2. With

reasoning similar to that used in case B, we discover that

I =[2r+r2- 2(- Xz)]/2Xr in caseC

I 2[r- (- Xx)]/r incased

and I [4Xr (t- Xx- r)]/2Xr in case E.

We thus obtain

Sa x
1 X_2 frl-- [r + Xr Xx ]r-7-" dr

(1)

1 X-2 fr"
[2Xr + r 2(t )x)]r-8-dr

when0 t- hx 2), and

(2)

r 1/2(X -t- %/X -t- 4(t Xx)) r.

If ), 4 (t Xx) < 0, it remains in case E for all r

when
When z < 0, the situation is simpler. The rectangle is in case F for

smallr. It enters caseEwhent X(z- r) orr -1- zl r0.It
will enter case C at the first solution of r , (x r), i.e.,

r 1/2(X %/X -t- 4(t Xx)) ra.

It returns to case E at the second solutioa
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and

We thus obtain

(3) Sx

for t- ),x < --X/4

We discover that

I 0 in caseF

I [hr d- ,x]/2),r in case E
I [2,r r -t- 2 (t )x)]/2r in case C.

[Xr -{- x]r--" dr

and

[Xr -F )x]r-- dr

i X-/.’(4) d- [2Xr r d- 2(t ,x)]r-- dr

1 X- [Xr -t- Xx]r-- dr

for --X/t < - Xz < 0.
We each integral can be ealuaed explicitly, sueh a computation does no

display ghe dependence on X and Xzl very well. A change of variables

r h-lt- hxr*
is helpful. e quantity X It Xx [- occurs frequently; we denote this by

We ghus obgain

(1’)

for t-- ),x> O, a> 1/2;

(2’)

for t-- hx > O, a < 1/2;

1 ),. i_, f )r__.(3’) Sx t-hx (r- 1 dr
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for t-- kx < 0, a < 4; and

S,,X t--,x a (r 1 dr
(4’)

for t-- hx <0, a > 4.
In the above,

* + 4), rro (- + (* + ;* + 4)

r, (a aa*-4), and r (a*Ta* 4).

For the first integral in (1 ), note that
, -2ro 2a (--1 + i 42) (--1 + 1 +2a-2- 2a-*) 1 a

since(l+a) 1Wa/2--a*/8 for 0a8. Thus

[a-rWr- [g a-* for r r g 1.- r >0Asr > 0 for a > 0 and r 1 a for large a, c
a . Thus

1]r__. e- r--, e-.[2r + r dr dr

For the second integral in (1’), note that

r ( + * + 4) g 2*.
Thus

(r 1 )4r--7--2a drt

for

$

dr-- c.

For the tMrd integral, note that r a and thus

[r e(1 + r)]r-- dr N [r + r(1 + r)]r--dr e..

hus from (1’) we obgain

S.XNe.xl-x- or O<-x<X.
Next we look at (2’). For the first integral, note r N r r2 implies

(- + + ) -’r g ( + + 4).

* q-2r2Squaring and subtracting 1, -r g a- 1 g r2. Thus] + r 1 <
2r.
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Now

1/2 + / 4) _> 1/2

for a <: 1/2. Thusr >_ 1/2 and

frr’ [q-2r2 -- r ]4T-7-2a dr c f
,

For the second integral, since r >_ a,

and a-lr* 1/2 (o. -}- %/a -t- ) _< 2
$

r <_ 2o’. Consequently

--2--2a

[r a]r--a dr <_ [r a212r-5-2" dr

-2a f [r 1]r--a dr

--2a

__
CaO"

Since o.2

_
1/2, the third integral in (2’) is bounded by

we obtain

for 2X2 < t-
From (3’) we see immediately that

Thus from (2’)

for t-- hx < 0, o. <4.
Finally we look at (4’). For > 4 we have

* 1/2J (1 %/1 4a-) < a (1 1 + 2o.- + 8-4) 1 + 4-
since / (1-- a ) >_ 1--1/2a--1/2a for 0_<a_<l. Hence

To bound the second integral in (4’), we observe that r
_

o." and hence
a-r _r for r_r*. Thus

[2r- a-r- 2]r-a-a dr <_ f= [2r- 212r--2a dr ca.

For the last integral, note r >_ 1/2a. Hence

(r 1)r--a dr <_ . 4--4ar-a-2a dr ca a-
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Using these bound in (4’) yields

x < Ix" It x -" (c - + c + c --") _< c " It x -"

for t-- x, 0, a >_ 4.
Consequently, we have in all cases

as claimed previously.
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