EXTENSIONS OF ELEMENTARY ABELIAN GROUPS OF ORDER 2^{2n} BY $S_{2n}(2)$ and the degree 2-cohomology of $S_{2n}(2)^1$

BY

ULRICH DEMPWOLFF

Following Artin's notation (see [1]) we denote by $S_{2n}(2)$ the symplectic group of dimension 2n over the field F_2 of 2 elements which is defined as a subgroup of GL(V), V a 2n-dimensional vector space over F_2 leaving a nondegenerate, skew-symmetric scalar product invariant. We want to show:

THEOREM. Let G be a finite group which satisfies the following conditions:

(i) $V \triangleleft G$, V is elementary abelian of order 2^{2n} ,

(ii) $G/V \simeq S_{2n}(2)$,

(iii) $C_{\mathcal{G}}(V) \subseteq V$.

Then G/V acts on V faithfully and one can define a skew symmetric, nondegenerate scalar product which is G/V-invariant. If $n \ge 2$ then either G splits over V or G is a uniquely determined (up to equivalence of extensions) nonsplit extension of V by $S_{2n}(2)$ and such nonsplit extensions do exist.

We have a corollary.

COROLLARY. If V denotes the standard F_2 -module for $S_{2n}(2)$, then

 $\dim_{F_2} H^2(S_{2n}(2), V) = 1$ if $n \ge 2$.

Remark. By a result of Pollatsek [7], it is known that

$$\dim_{F_2} H^1(S_{2n}(2), V) = 1.$$

A recent result of R. Griess [5] shows that $\dim_{\mathbb{F}_2} H^2(S_{2n}(2), V) \geq 1$. We will show that $\dim_{\mathbb{F}_2} H^2(S_{2n}(2), V) \leq 1$ which will imply the theorem. The proof follows the same line of arguments as in [2], [3]. Thus we consider for $v \in V^{\#}$ the stabilizer H of v in G and determine the structure of $O_2(H)$. Then we study the action of $H/O_2(H)$ on $O_2(H)$. The information obtained in this way will enable us to determine the structure of G in terms of generators and relations. As the arguments used in the proof are very computational, a more group theoretic proof is certainly more desirable. We prove the theorem by a series of lemmas.

By our assumptions we may always V consider as an F_2 vector space of dimension 2n acted upon by G/V as a subgroup of GL(2n, 2) faithfully. We will always denote by E_{ij} a square-matrix whose entries are all 0 with the sole exception of the entry 1 for the index pair (i, j). If the matrices which

Received January 22, 1973.

¹ This work was supported by the FAZIT-Stiftung.

are in question have dimension 2m we set for $i + j \neq 2m + 1$,

and for
$$1 \le i \le 2m$$
,
 $t_{ij} = I_{2m} + E_{ij} + E_{2m+1-j,2m+1-i}$ $t_{i,2m+1-i} = I_{2m} + E_{i,2m+1-i}$

where I_{2m} is the 2m-dimensional identity matrix.

It is easy to check that the subgroup X generated by t_{ij} for $i + j \le 2m + 1$ of GL(2m, 2) is isomorphic to $S_{2m}(2)$. Moreover the subgroups

 $B_0 \,=\, \langle t_{ij} \,|\, t_{ij} \,\epsilon\, X; \, i < j \rangle \quad \text{and} \quad N_0 \,=\, \langle t_{i,i+1} \,t_{i+1,i} \,t_{i,i+1} \,|\, 1 \,\leq\, i \,\leq\, m \rangle$

form a (B, N)-pair for X. Note that $t_{ij} = t_{2m+1-j,2m+1-i}$.

Throughout the proof we will always denote by t_{ij} either matrices of the type described above or elements of the automorphism group of a F_2 -vector-space which act in respect to a fixed basis v_1, \dots, v_{2m} as described by the matrices.

(1) Let \mathfrak{V} be a 2*m*-dimensional F_2 vector space and $\mathfrak{X} \simeq S_{2m}(2)$ a subgroup of $GL(\mathfrak{V})$. Then one can define a symplectic scalar product on \mathfrak{V} which is \mathfrak{X} -invariant. In particular \mathfrak{X} "acts as a symplectic group" on \mathfrak{V} .

Proof. The case m = 1 is trivial and as $A_8 \simeq GL(4, 2)$ has only one conjugacy class of subgroups isomorphic to $\Sigma_6 \simeq S_4(2)$ the assertion is true for m = 2.

Choose an elementary abelian subgroup \mathcal{E} in \mathfrak{X} of order 3^m . As F_4 is a splitting field for \mathcal{E} we have a decomposition $\mathcal{V} = \mathcal{V}_1 \oplus \cdots \oplus \mathcal{V}_r$ in irreducible \mathcal{E} -invariant subspaces where dim $\mathcal{V}_i = 1$ or 2 for $1 \leq i \leq r$. As \mathcal{E} acts faithfully it follows r = m and dim $\mathcal{V}_i = 2$ for $1 \leq i \leq m$. For $e, f \in \mathcal{E}$ we introduce an equivalence relation by $e \approx f$ if and only if dim $[e, \mathcal{V}] = \dim [f, \mathcal{V}]$. We have exactly m + 1 equivalence classes say $\mathcal{C}_0, \cdots, \mathcal{C}_m$ with dim $[e, \mathcal{V}] = 2i$ for $e \in \mathcal{C}_i$. Then

$$|\mathfrak{C}_i| = \binom{m}{i} 2^i \quad ext{for} \quad 0 \leq i \leq m.$$

As $m \geq 3$ we have

(*)
$$|C_0| < |C_1| < |C_i|$$
 for $2 \le i \le m$.

If $e \not\approx f$ then e and f can not be conjugate in \mathfrak{X} . \mathfrak{X} has exactly m conjugacy classes of elements of order 3 and so \mathfrak{C}_i for $1 \leq i \leq m$ are the intersection of these classes with \mathfrak{E} and by (*) and the structure of $S_{2m}(2)$ for $r \in \mathfrak{C}_1$ we must have

$$C_{\mathfrak{x}}(r) = \langle r \rangle \times \mathfrak{L}$$

where $\mathfrak{L} \simeq S_{2m-2}(2)$ and \mathfrak{L} acts faithfully on $C_{\mathfrak{V}}(r)$ and trivially on $[r, \mathfrak{V}]$. Assume $r_0 \in \mathfrak{C}_1, r_0 \neq r$ or r^{-1} and $C_{\mathfrak{X}}(r_0) = \langle r_0 \rangle \times \mathfrak{L}_0$, with $\mathfrak{L}_0 \simeq S_{2m-2}(2)$. Then

$$C_{\mathfrak{x}}(r, r_0) = \langle r \rangle \times \langle r_0 \rangle \times (\mathfrak{L} \cap \mathfrak{L}_0)$$

452

and $\mathfrak{L} \cap \mathfrak{L}_0 \simeq S_{2m-4}(2)$. By induction there is a \mathfrak{L}_0 -admissible symplectic scalar product on $C_{\mathfrak{V}}(r_0)$ and an \mathfrak{L} -admissible symplectic scalar product on $C_{\mathfrak{V}}(r)$ and an $\mathfrak{L} \cap \mathfrak{L}_0$ -admissible one on $C_{\mathfrak{V}}(r, r_0)$. We have $C_{\mathfrak{V}}(r) = C_{\mathfrak{V}}(r, r_0) \oplus \mathfrak{K}$ where $C_{\mathfrak{V}}(r, r_0)$ and \mathfrak{K} are regular subspaces, mutually orthogonal, in respect to the scalar product of $C_{\mathfrak{V}}(r)$ which was induced on $C_{\mathfrak{V}}(r)$ by $C_{\mathfrak{X}}(r)$. In the same manner we have a orthogonal decomposition $C_{\mathfrak{V}}(r_0) = C_{\mathfrak{V}}(r, r_0) \oplus \mathfrak{K}_0$. Note that the symplectic scalar product induced on $C_{\mathfrak{V}}(r, r_0)$ by $\mathfrak{L}, \mathfrak{L}_0, \mathfrak{L} \cap \mathfrak{L}_0$ is always the same. Clearly $\mathfrak{V} = C_{\mathfrak{V}}(r_0, r) \oplus \mathfrak{K} \oplus \mathfrak{K}_0$. Reading this direct sum as a orthogonal sum we define a symplectic scalar product on \mathfrak{V} . Certainly this scalar product is \mathfrak{L} - and \mathfrak{L}_0 -admissible. As $\mathfrak{X} = \langle \mathfrak{L}, \mathfrak{L}_0 \rangle$ the assertion follows.

Using (1) we now choose a basis v_1, v_2, \dots, v_{2n} of V such that $\{v_1, v_{2n}\}$, $\{v_2, v_{2n-1}\}, \dots, \{v_n, v_{n+1}\}$ are hyperbolic pairs in respect to the action of G/V. In particular there are elements $\tau_{ij} \in G - V$ such that the action of τ_{ij} in respect to our fixed basis is described by matrices of the form t_{ij} (here we have m = n) and always $\tau_{ij}^2 \in V$.

Without proof we state:

(2) Let the t_{ij} 's have their fixed meaning and set

$$X = \langle t_{ij} \mid i+j \leq 2n+1 \rangle \simeq S_{2n}(2).$$

Set $s = t_{n-1,n} t_{n,n-1} t_{n-1,n} t_{n+1,n+2} t_{n+2,n+1} t_{n+1,n+2}$. Then the classes of involutions in X are represented by

$$t_{2n,1}, t_{2n,1}, t_{2n-1,2}, \cdots, t_{2n,1}, \cdots, t_{n+1,n}$$

and

$$y, t_{2n,1}, t_{2n-1,2}, y, \cdots, t_{2n,1}, t_{2n-1,2}, \cdots, t_{n+4,n-3}, t_{n+3,n-2}, y$$

where $y = (t_{n,n+1} s)^2$ and $\alpha = 1$ if n is even and $\alpha = 0$ if n is odd.

(3) If
$$\tau \in G - V$$
 such that $\tau^2 \in V$ then there is a t in τV such that $t^2 = 1$.

Proof. Choose elements ρ_1, \dots, ρ_n of order 3 in G - V such that ρ_i normalizes $\langle v_i, v_{2n+1-i} \rangle$ and centralizes

$$\langle v_1, \cdots, v_{i-1}, v_{i+1}, \cdots, v_{2n-i}, v_{2n+2-i}, \cdots, v_{2n} \rangle$$

Set $Y = \langle \rho_i | 1 \leq i \leq n \rangle V$. Then Y/V is elementary of order 3ⁿ and Y/V acts fixed-point-free on V. Denote by σ an element in G - V which acts as s on V where s has the meaning as in (2). Then

$$Z = \langle \tau_{2n,1}, \tau_{2n-1,2}, \cdots, \tau_{n+1,n}, \sigma \rangle$$

normalizes Y. Using a Frattini argument it follows that for every $\chi \epsilon Z$, $\chi^2 \epsilon V$ there is an $x \epsilon \chi V$ with $x^2 = 1$. Now using (2) the assertion follows.

(4) There are involutions $t_{21} \in \tau_{21} V$ and $t_{2n-1,2} \in \tau_{2n-1,2} V$ such that

 $\langle t_{21}, t_{2n-1,2} \rangle \simeq D_8$ and $\langle t_{21}, t_{2n-1,2} \rangle \cap V = 1.$

Furthermore there is an involution $t_{2n,1} \in \tau_{2n,1} V$ such that one of the following possibilities is true

(i) $[\langle t_{21}, t_{2n-1,2} \rangle, t_{2n,1}] = 1$ (ii) $[t_{2n,1}, t_{2n-1,2}] = v_1, [t_{2n,1}, t_{21}] = v_{2n-1}$ and

$$[v_{2n} t_{2n,1}, \langle t_{21}, (t_{21} t_{2n-1,2})^2 \rangle] = [v_{2n} t_{2n-1,2}, \langle t_{2n,1}, v_{2n} t_{2n,1} \rangle] = 1$$

Proof. As $\langle \tau_{21}, \tau_{2n-1,2}, \tau_{2n,1} \rangle$ centralizes the nonsingular symplectic subspace $\langle v_3, v_4, \cdots, v_{2n-2} \rangle$ we may restrict our attention to the case n = 2. Using the same Frattini argument as in (3) we find involutions t_{21}, t_{32} such that $\langle t_{21}, t_{32} \rangle \simeq D_8$ and $\langle t_{21}, t_{32} \rangle \cap V = 1$. Choose an involution t_{41} in $\tau_{41} V$ and set $\tau = t_{32}, \sigma = t_{21}, j = t_{41}$ and $\xi = \tau \sigma$. By changing j if necessary by v_3 we may assume $[\tau, j] \in \langle v_1 \rangle$.

 ξ^2 is an involution and so $[j, \xi^2] \epsilon \langle v_1, v_2 \rangle$. Assume $[j, \xi] = v_1^{\alpha} v_2^{\beta} v_3^{\gamma} v_4^{\delta}$, then $[j, \xi^2] = v_3^{\delta} w$ where $w \epsilon \langle v_1, v_2 \rangle$. So $\delta = 0$ and $[j, \xi^2] = v_1^{\beta} v_2^{\gamma}$. Now choose $\rho \epsilon G - V$ such that

$$\xi^2 V \xrightarrow{\rho} \tau j V \xrightarrow{\rho} \tau j \xi^2 V$$

and ρ shall act fixed-point-free on $\langle \xi^2, \tau j \rangle V$. By [6; V, 8.9c)],

$$\xi^{2}(\xi^{2})^{\rho}(\xi^{2})^{\rho^{2}} = 1.$$

Set $[\tau, j] = v_1^{\chi}$. Then

$$(\xi^2)^{
ho} \epsilon v_4^{\chi} \tau j \langle v_1, v_2 \rangle$$
 and $(\xi^2)^{
ho^2} \epsilon v_3^{\beta+\chi} v_4^{\gamma+\beta+\chi} \tau j \xi^2 \langle v_1, v_2 \rangle.$

On the other hand

$$(\xi^2)^{\rho^2} \epsilon v_4^{\chi} \tau j \xi^2 \langle v_1, v_2 \rangle.$$

Hence $\beta = \chi = \gamma$ and

[j,

$$\tau] = v_1^{\chi}, \qquad [j, \, \xi] = v_1^{\alpha} \, v_2^{\chi} \, v_3^{\chi}, \qquad [j, \, \xi^2] = v_1^{\chi} \, v_2^{\chi}.$$

As $C_{\mathbf{v}}(\sigma, j) = \langle v_1, v_3 \rangle$ we have $[j, \sigma] = v_1^{\epsilon} v_3^{\delta}$. So

$$v_1^{\alpha} v_2^{\chi} v_3^{\chi} = [j, \xi] = [j, \sigma \tau] = v_1^{\chi + \epsilon} v_2^{\delta} v_3^{\delta}$$

which implies $\chi + \varepsilon = \alpha$ and $\delta = \chi$. If we replace j by $v_2^{\alpha+\chi}j$ and denote it now by j we have

 $[j, \tau] = v_1^{\chi}, \qquad [j, \xi] = v_1^{\chi} v_2^{\chi} v_3^{\chi}, \qquad [j, \xi^2] = v_1^{\chi} v_2^{\chi}, \qquad [j, \sigma] = v_3^{\chi}.$

For $\chi = 0$ we get case (i) of (4) and $\chi = 1$ implies (ii). As an immediate corollary we have:

(4') If V is elementary of order 2^4 and $G/V \simeq \Sigma_6$ and G does not split over V an S₂-subgroup of G is uniquely determined.

(5) Denote by H the centralizer of v_1 in G and set $A = O_2(H)$. Then A possesses a H-admissible subgroup X of index 2 such that $A = X\langle v_{2n} \rangle$ and $1 = X \cap \langle v_{2n} \rangle$ and

$$A/D(A) = \langle v_{2n} \rangle D(A) / D(A) \times X/D(A)$$

is an H/A-invariant decomposition where D(A) denotes the Frattini subgroup of A.

Further one of the following cases is true:

(i) X is the direct product of an extra special group Y of width 2n - 2 and type (+) with a group $\langle w \rangle$ of order 2. If $V_0 = \langle v_1, \dots, v_{2n-1} \rangle$ then $V_0 \subseteq Y$, $Z(Y) = \langle v_1 \rangle$ and $Z(X) = \langle v_1, w \rangle$ is elementary abelian of order 4.

(ii) $X = Y\langle w \rangle$ where Y is extra special of width 2n - 2, |w| = 4, $[Y, \langle w \rangle] = 1$, $Y \cap \langle w \rangle = \langle v_1 \rangle$ and $Z(X) = \langle w \rangle$.

Proof. A/V is elementary abelian of order 2^{2n-1} and H/A acts faithfully on A/V and centralizes $\langle \tau_{2n,1} \rangle V/V$. Choose involutions $w_1 \in \tau_{21} V$, $w_2 \in \tau_{31} V$, \cdots , $w_{2n-1} \in \tau_{2n,1} V$. Then $A = \langle v_1, \cdots, v_{2n}, w_1, \cdots, w_{2n-1} \rangle$. Certainly, $A' \subseteq V$. Set $V_0 = \langle v_1, \cdots, v_{2n-1} \rangle$. Then $V_0 \triangleleft H$. No element in A - Vcommutes with any element in $v_{2n} V_0$. Therefore if $a \in A$, then $a^2 \in V_0$. But clearly $V_0 \subseteq A'$ and so $A' = D(A) = V_0$ and $Z(A) = \langle v_1 \rangle$. We use the "bar convention" for groups and elements in A modulo Z(A). Obviously $\overline{V}_0 \subseteq Z(\overline{A})$. Further

$$C_{A/A'}(H/A) = \langle v_{2n}, w_{2n-1} \rangle A'/A'.$$

Using (4) for $\bar{x} \in (w_1 V_0)^-$ one of the following statements is true:

(i) $[\bar{x}, \bar{w}_{2n-1}] = 1.$

(ii) $[\bar{x}, (v_{2n} w_{2n-1})^{-}] = 1.$

As $(w_{2n-1} V_0)^-$ and $(v_{2n} w_{2n-1} V_0)^-$ are H/A-invariant cosets and H/A acts transitively on $A/V\langle w_{2n-1}\rangle$ we may assume that for each involution $\bar{x} \epsilon \bar{A} - \bar{V}$ one of the following statements is true:

- (i) $[\bar{x}, \bar{w}_{2n-1}] = 1.$
- (ii) $[\bar{x}, (v_{2n} w_{2n-1})^{-}] = 1.$

In case (i) we set $\overline{w} = (w_{2n-1})^-$ in case (ii) we set $\overline{w} = (v_{2n} w_{2n-1})^-$. So $Z(\overline{A}) = Z_2(A)/\langle v_1 \rangle = (V_0 \langle w \rangle)^-$

and (4) implies that for $\bar{a} \in \bar{A}$ either $\bar{a}^2 = 1$ or $((v_{2n} a)^{-})^2 = 1$.

For each pair of involutions \bar{a} , $\bar{b} \in \bar{A} - (V\langle w \rangle)^{-}$ such that $|\langle \bar{a}, \bar{b} \rangle (V\langle w \rangle)^{-}/(V\langle w \rangle)^{-}| = 4$ there is an element ρ of order 3 in H such that ρ permutes the elements in

$$\langle ar{a}, ar{b}
angle^{st} (V \langle w
angle)^{-} / (V \langle w
angle)^{-}.$$

Hence $\bar{a}^{\rho} \epsilon \bar{b} (V_0 \langle w \rangle)^-$ and $\bar{a}^{\rho^2} \epsilon (ab)^- (V \langle w \rangle)^-$. Assume $(ab)^-$ is not an involution, i.e. $[\bar{a}, \bar{b}] \neq 1$. As \bar{a}^{ρ^2} is an involution we have

 $\bar{a}^{\rho^2} \epsilon (abv_{2n})^- (V_0 \langle w \rangle)^-$ by the above. So $(abv_{2n})^-$ has order 2 and therefore

$$1 = [\bar{a}, \bar{b}][(ab)^{-}, (v_{2n})^{-}].$$

Therefore if $\bar{a}, \bar{b} \in \bar{A} - (V \langle w \rangle)^{-}$ are noncommuting involutions, then

$$[\bar{a}, \bar{b}] = \bar{v}_{2n}^{(ab)} \bar{v}_{2n}$$

Assume \bar{b} and \bar{c} are commuting involutions in \bar{A} such that

$$(V\langle w\rangle)^{-} \neq (bV\langle w\rangle)^{-} \neq (cV\langle w\rangle)^{-} \neq (V\langle w\rangle)^{-}.$$

Assume further that \bar{a} does not commute with \bar{c} ; then using that \bar{A} has class 2 we conclude

 $[\bar{a}, \, \bar{b}\bar{c}] = [\bar{a}, \, \bar{b}][\bar{a}, \, \bar{c}]$

and

and

$$\begin{bmatrix} \bar{a}, \ (bc)^{-} \end{bmatrix} = \bar{v}_{2n} (\bar{v}_{2n})^{(abc)^{-}} & \text{if} \quad [\bar{a}, \ (bc)^{-}] \neq 1$$
$$= 1 & \text{if} \quad [\bar{a}, \ (bc)^{-}] = 1$$
$$\begin{bmatrix} \bar{a}, \ \bar{b} \end{bmatrix} \begin{bmatrix} \bar{a}, \ \bar{c} \end{bmatrix} = \bar{v}_{2n} (\bar{v}_{2n})^{(ac)^{-}} \bar{v}_{2n} (\bar{v}_{2n})^{(ab)^{-}} & \text{if} \quad [\bar{a}, \ \bar{b}] \neq 1$$
$$= \bar{v}_{2n} (\bar{v}_{2n})^{(ac)^{-}} & \text{if} \quad [\bar{a}, \ \bar{b}] = 1.$$

So we may conclude, if $\bar{a} \in \bar{A} - (V\langle w \rangle)^-$ is an involution and there is an involution $\bar{b} \in \bar{A} - \langle \bar{a} \rangle (V\langle w \rangle)^-$ which does not commute with \bar{a} then no involution in $\bar{A} - \langle \bar{a} \rangle (V\langle w \rangle)^-$ will commute with \bar{a} . Assume this is the case. Let $\bar{a} \in \bar{A} - (V\langle w \rangle)^-$ and $\bar{b} \in \bar{A} - (V\langle w, a \rangle)^-$ be involutions; then $[\bar{v}_{2n} \bar{a}, \bar{v}_{2n} \bar{b}] = 1$ and it follows that $\bar{A}_0 = \langle Z(\bar{A}), (v_{2n} w_1)^-, \cdots, (v_{2n} w_{2n-2})^- \rangle$ is an abelian subgroup of index 2 in \bar{A} and \bar{A}_0 is of type $(2, 4, 4, \cdots, 4)$. Let A_0 be the counter image of \bar{A}_0 in A. Then A_0 has class 2 and $Z(A_0) \subseteq \langle v_1, w \rangle$. Now choose $a \in A_0$ of order 4. Then for every $b \in A_0$ we have $[a^2, b] = [a, b]^2 = 1$. So $\bar{X} = \langle \bar{x}^2 | \bar{x} \in \bar{A}_0 \rangle \subseteq (Z(\bar{A}_0))^-$. But as $a^2 \in v_{2n} v_{2n}^a \langle v_1 \rangle$ for each a of order 4 it follows $|X \cap V_0| \geq 4$, a contradiction.

We have shown that every pair of involutions in $\overline{A} - \overline{V}\langle \overline{w} \rangle$ commutes. It follows that $\overline{X} = \langle Z(\overline{A}), \overline{w}, \overline{w_1}, \overline{w_2}, \cdots, \overline{w_{2n-2}} \rangle$ is elementary abelian of order 2^{4n-3} . Let X be the complete counter image of X. Then $X' = D(X) = \langle v_1 \rangle$ and $Z(X) = \langle v_1, w \rangle$.

Set $Y = \langle V_0, w_1, \cdots, w_{2n-2} \rangle$. Then Y is extra special of type (+) as $V_0 \subseteq Y$. (An extra special group X of order 2^{2n+1} is called of type (+) if it contains an elementary abelian group of order 2^{n+1} .) Finally $\bar{X} \operatorname{char} \bar{A}$: As for every $\bar{x} \in \bar{v}_{2n} Z(\bar{A})$ we have $C_{\bar{A}}(\bar{x}) = \langle \bar{x} \rangle Z(\bar{A})$ it follows that an automorphism α of \bar{A} has the property $\bar{X}^{\alpha} \cap \bar{v}_{2n} Z(\bar{A}) = \emptyset$

As $\overline{A} - (\overline{v}_{2n} Z(\overline{A}) \cup \overline{X})$ is the set of elements of order 4 we have shown that X is *H*-admissible.

The following fact is an easy consequence of the result of Pollatsek [7] and (1).

(6) Let \mathbb{U} be a (2n + 1)-dimensional F_2 vector space and assume there is a subgroup $\mathfrak{X} \simeq S_{2n}(2)$ of $GL(\mathbb{U})$ such that \mathfrak{X} centralizes $v \in \mathbb{U}^*$ and acts faithfully on $\mathbb{U}/\langle v \rangle$. Suppose there is no \mathfrak{X} -admissible complement of $\langle v \rangle$ in \mathbb{U} . Then \mathbb{U} has a basis v, v_1, \dots, v_{2n} such that $\{v_i + \langle v \rangle, v_{2n+1-i} + \langle v \rangle\}$ are hyperbolic pairs with respect to the action of \mathfrak{X} on $\mathbb{U}/\langle v \rangle$ for $1 \leq i \leq n$. If $\mathfrak{x} \in \mathfrak{X}$ is represented on $\mathbb{U}/\langle v \rangle$ in respect to the basis $v_i + \langle v \rangle(1 \leq i \leq 2n)$ by the matrix $X = (x_{ij})$

456

then the matrix of \mathbf{x} with respect to the basis of \mathbf{U} has the form

$$\begin{bmatrix} 1 & 0 \\ K(X) & X \end{bmatrix} \text{ where } K(X) = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_{2n} \end{pmatrix} \text{ and } \alpha_i = \sum_{j=1}^n x_{ij} x_{i,2n+1-j}$$

Now (5) implies the existence of an *H*-admissible subgroup $X \subset A$ such that $X = Y\langle w \rangle$ and we have either $X = Y \times \langle w \rangle$ and |w| = 2 or $X = Y\langle w \rangle$, $\langle w \rangle \cap Y = Z(Y), |w| = 4$ where Y is in both cases an extra special 2-group of width n - 1 and type (+). We consider $\mathfrak{V} = X/\langle v_1 \rangle$ as a F_2 vector space. If we define $q(\alpha) = a^2$ where $\alpha \in \mathcal{V}$ and $a \in \alpha$ and $(\alpha, \beta) = [a, b]$ for $\alpha, \beta \in \mathcal{V}$ and $a \in \alpha$, $b \in \beta$, then q is a quadratic form on \mathcal{V} and $(\alpha, \beta) = [a, b]$ for $\alpha, \beta \in \mathcal{V}$ and $a \in \alpha$, $b \in \beta$, then q is a quadratic form on \mathcal{V} and $(\alpha, \beta) = [a, b]$ for $\alpha, \beta \in \mathcal{V}$ and $a \in \alpha$, $b \in \beta$, then q is a quadratic form on \mathcal{V} and $(\alpha, \beta) = [a, b]$ for $\alpha, \beta \in \mathcal{V}$ and the structure of X.

(i) |w| = 2, $Y \cap \langle w \rangle = 1$. Then \mathcal{U} is a orthogonal vectorspace such that rad $\mathcal{U} = \langle w \langle v_1 \rangle \rangle$, $\mathcal{U} / \langle w \langle v_1 \rangle \rangle$ is a regular orthogonal vector space of maximal index and dimension 4n - 4.

(ii) |w| = 4, $Y \cap \langle w \rangle = Z(X)$. Then \mathcal{U} is a (4n - 3)-dimensional, regular orthogonal vector space.

According to (6) and the proof of (5) we have to study the following situation (here n = m + 1):

Given a (4m + 1)-dimensional F_2 vector space v with a basis $w, w_1, \cdots, w_{2m}, v_1, \cdots, v_{2m}$ and an orthogonal form q and a bilinear form (,) such that either

(i)
$$q(w) = 0, \quad q(v_i) = q(w_i) = 0 \text{ for } 1 \le i \le 2m$$

 $(w, v) = 0 \text{ for all } v \in \mathbb{V},$
 $(v_i, w_j) = \delta_{ij} \text{ for } 1 \le i, j \le 2m,$
 $(v_i, v_j) = (w_i, w_j) = 0 \text{ for } 1 \le i, j \le 2m,$
 $q(\sum_i a_i v_i + \sum_j b_j w_j + cw) = \sum_{i=1}^{2m} a_i b_i$
or
(ii) $q(w) = 1, \quad q(v_i) = q(w_i) = 0 \text{ for } 1 \le i \le 2m,$
 $(w, v) = 0 \text{ for all } v \in \mathbb{V},$
 $(v_i, w_j) = \delta_{ij} \text{ for } 1 \le i, j \le 2m,$
 $(v_i, v_j) = (w_i, w_j) = 0 \text{ for } 1 \le i, j \le 2m,$

By (5) it is clear that $H/X \simeq S_{2n-2}(2) \times Z_2$. Thus there is a subgroup $\mathfrak{X} \simeq S_{2m}(2)$ of $GL(\mathfrak{U})$ such that \mathfrak{X} normalizes $\mathfrak{U}_1 = \langle v_1, \cdots, v_{2m} \rangle$ and respects the form q and the scalar product (,). Note that only in the case $m \geq 3$ the group \mathfrak{X} corresponds to a unique subgroup of H/X.

 $q(\sum a_i v_i + \sum_i b_i w_i + cw) = \sum_i a_i b_i + c.$

Furthermore the structure of H tells us that \mathfrak{X} acts reducibly but not completely reducibly on $\mathfrak{U}/\mathfrak{V}_1$ and centralizes in particular $w + \mathfrak{V}_1$. In any case we may assume that we have chosen v_i, w_i for $1 \leq i \leq 2m$ in such a way, that if $\mathfrak{x} \in \mathfrak{X}$ induces the matrix X on $\mathfrak{U}/\langle \mathfrak{V}_1, w \rangle$ with respect to the basis $w_1 + \langle \mathfrak{V}_1, w \rangle, \cdots, w_{2m} + \langle \mathfrak{V}_1, w \rangle$ that the matrix induced by \mathfrak{x} with respect to the basis $w, v_1, \cdots, v_{2m}, w_1, \cdots, w_{2m}$ of \mathfrak{V} has the form

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & S(X) & 0 \\ K(X) & Y(X) & X \end{bmatrix}$$

There K(X) denotes the function described in (6). As $(v_i, w_j) = \delta_{ij}$ for $1 \leq i, j \leq 2m$ we have $S(X) = (X^{-1})^t$ and Y is function such that

(A)
$$Y(XZ) = Y(X)(Z^{-1})^t + XY(Z).$$

As we have $(w_i, w_j) = 0$ for $1 \le i, j \le 2m$ it follows that

(B)
$$Y(X)X^{t} = X(Y(X))^{t}.$$

If we set $Y(X) = (y_{ij}), X = (x_{ij})$ and $K(X) = (k_i)$ for $1 \le i \le 2m$ implies

(C)
$$0 = \sum_{l=1}^{2^{m}} y_{il} x_{il} \quad \text{for case (i).} \\ = \sum_{l=1}^{2^{m}} y_{il} x_{il} + k_{i} \quad \text{for case (ii)}$$

In other words the diagonal elements of $Y(X)X^{t}$ are 0 in case (i) and equal k_{i} in case (ii).

We now determine the function Y in case (i) as well as case (ii). Therefore we set of $1 \le i, j \le 2m$, $K_{ij} = V(t_{ij})$

$$K_{ji} = T(t_{ij}),$$

$$K_{ij} = (k_{rs}^{ij}) \text{ for } 1 \le r, s \le 2m,$$

$$\tau_{ij} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & t_{ij} & 0 \\ K(t_{ij}) & K_{ij} & t_{ji} \end{bmatrix}.$$

Using $\tau_{ij}^2 = 1$ it follows that $0 = K_{ij} t_{ij} + t_{ji} K_{ij}$. Further $K_{ij} t_{ij} = t_{ji} (K_{ij})^t$.

These equations imply for $i + j \neq 2m + 1$,

$$\begin{aligned} k_{sl}^{ij} &= k_{ls}^{ij} \quad \text{for all} \quad 1 \le s, l \le 2m, \\ k_{il}^{ij} &= k_{2m+1-j,l}^{ij} = 0 \quad \text{for all} \quad 1 \le l \le 2m, l \ne j, 2m + 1 - i, \\ k_{i,2m+1-i}^{ij} &= k_{2m+1-j,j}^{ij}. \end{aligned}$$

Finally using equation (C) we have

$$\begin{aligned} k_{ll}^{ij} &= 0 \quad \text{for} \quad 1 \le l \le 2m \quad \text{and} \quad l \ne j, 2m + 1 - j, \\ k_{ij}^{ij} &= k_{jj}^{ij}, \qquad k_{2m+1-j, 2m+1-i}^{ij} = k_{2m+1-i, 2m+1-i}^{ij}. \end{aligned}$$

If i + j = 2m + 1 we have again

$$K_{i,2m+1-i} = (K_{i,2m+1-i})^t$$

and

$$k_{il}^{i,2m+1-i} = 0 \quad \text{for all} \quad 1 \le l \le 2m, \qquad l \ne 2m+1-i$$
$$k_{i,2m+1-i}^{i,2m+1-i} = k_{2m+1-i,2m+1-i}^{i,2m+1-i} + \varepsilon$$

where $\varepsilon = 0$ in case (i) and $\varepsilon = 1$ in case (ii).

Using the equation $[\tau_{ij}, \tau_{rs}] = 1$ for $\{r, s\} \cap \{i, j, 2m + 1 - i, 2m + 1 - j\} = \emptyset$ we get by (A) the equation

$$K_{ij} t_{rs} + t_{ji} K_{rs} = K_{rs} t_{ij} + t_{sr} K_{ij}$$

which implies

$$k_{rs}^{ij} = 0$$
 for all $\{r, s\} \cap \{i, j, 2m + 1 - i, 2m + 1 - j\} = \emptyset$

and $r + s \neq 2m + 1$. Furthermore we have for $\{r, s\} \cap \{i, j, 2m + 1 - i^{*} 2m + 1 - j\} = \emptyset$ always $k_{r,2m+1-r}^{ij} = k_{s,2m+1-s}^{ij}$.

Using $[\tau_{rs}, \tau_{i,2m+1-i}] = 1$ for all $\{r, s\} \cap \{i, 2m + 1 - i\} = \emptyset$ we get

$$K_{rs} t_{i,2m+1-i} + t_{sr} K_{i,2m+1-i} = t_{2m+1-i,i} K_{rs} + K_{i,2m+1-i} t_{rs}$$

and it follows that

$$k_{rs}^{i,2m+1-i} = 0$$
 for all $\{r, s\} \cap \{i, 2m+1-i\} = \emptyset$

and $r + s \neq 2m + 1$. Furthermore we have $k_{r,2m+1-r}^{ij} = k_{s,2m+1-s}^{ij}$ for $\{r, s\} \cap \{i, 2m + 1 - i\} = \emptyset$.

Therefore we can write for $r + s \neq 2m + 1$,

$$K_{rs} = \sum_{l \neq s} \alpha_l(r, s) (E_{sl} + E_{ls}) + \sum_{l \neq 2m+1-r} \beta_l(r, s) (E_{2m+1-r, l} + E_{l,2m+1-r}) + \alpha_r(r, s) E_{ss} + \beta_{2m+1-s}(r, s) E_{2m+1-r,2m+1-r} + \gamma(r, s) \sum_{k \neq r, s, 2m+1-s, 2m+1-r} E_{k,2m+1-k}$$

Note that the entry for the index (2m + 1 - r, s) and (s, 2m + 1 - r) is $\alpha_{2m+1-r}(r, s) + \beta_s(r, s)$. We will later denote this entry by $\varepsilon(r, s)$. Further for all $1 \le r \le 2m$,

$$K_{r,2m+1-r} = \sum_{k \neq 2m+1-r} \alpha_k (r, 2m + 1 - r) (E_{2m+1-r,k} + E_{k,2m+1-r}) + \tilde{\alpha}_r (r, 2m + 1 - r) E_{2m+1-r,2m+1-r} + \gamma (r, 2m + 1 - r) \sum_{k \neq r,2m+1-r} E_{k,2m+1-k}$$

Here $\tilde{\alpha}_r(r, 2m + 1 - r) = \alpha_r(r, 2m + 1 - r)$ in case (i) and

$$\tilde{\alpha}_r(r, 2m+1-r) = \alpha_r(r, 2m+1-r) + 1$$
 in case (ii).

The equation $[\tau_{rs}, \tau_{rj}] = 1$ for $j \neq 2m + 1 - r$, s implies

(1.1)
$$\beta_r(r,j) = \gamma(r,j) + \alpha_{2m+1-j}(r,s)$$

and $[\tau_{rs}, \tau_{js}] = 1$ for $j \neq 2m + 1 - s$, r gives us (2.1) $\beta_{2m+1-s}(j, s) = \beta_{2m+1-s}(r, s).$

The equation $[\tau_{rs}, \tau_{r,2m+1-r}] = 1$ leads to

(3.1)
$$\alpha_r(r,s) + \alpha_r(r,2m+1-r) = \gamma(r,2m+1-r)$$

and since $[\tau_{r,2m+1-s}, \tau_{s,2m+1-s}] = 1$ it follows that

(4.1)
$$\alpha_s(s, 2m + 1 - s) + \beta_s(r, 2m + 1 - s) = \gamma(s, 2m + 1 - s).$$

For $m \ge 3$ and $j \ne r, s, 2m + 1 - r, 2m + 1 - s$ the equation $[\tau_{rs}, \tau_{j,2m+1-j}] = 1$ implies

(5.1) $\alpha_r(j, 2m+1-j) = \alpha_j(r, s),$

(5.2)
$$\alpha_{2m+1-s}(j, 2m+1-j) = \beta_j(r, s).$$

The equation $[\tau_{j,2m+1-j}, \tau_{r,2m+1-r}] = 1$ for $j \neq 2m + 1 - r$ gives us

(6.1)
$$\alpha_r(j, 2m+1-j) = \alpha_j(r, 2m+1-r).$$

For $j + s \neq 2m + 1 \neq r + s$ and $j \neq r$ we have $[\tau_{rs}, \tau_{sj}] = \tau_{rj}$ which implies

$$K_{rs} t_{sj} t_{rs} + t_{sr} K_{sj} t_{rs} + t_{sr} t_{js} K_{rs} = K_{rj} t_{sj} + t_{jr} K_{sj}$$

Computing both sides of this equation yields

(7.1)
$$\varepsilon(r,s) + \varepsilon(r,j) + \varepsilon(s,j) + \beta_{\varepsilon}(r,j) + \alpha_{2m+1-j}(s,j) = \gamma(r,s),$$

(7.2) $\alpha_r(r,s) + \alpha_r(s,j) = \alpha_s(r,j),$

(7.3)
$$\alpha_{2m+1-j}(r,s) + \beta_r(s,j) = \gamma(r,j),$$

(7.4)
$$\beta_{2m+1-j}(r,s) + \beta_{2m+1-s}(r,j) = \beta_{2m+1-j}(r,j)$$

To obtain these equations we must have $m \ge 3$. If $m \ge 4$, then we also obtain $\gamma(r, j) = 0$. The equation $[\tau_{ik}, \tau_{k,2m-1-k}] = \tau_{i,2m-1-k} \tau_{i,2m-1-i}$ implies

$$K_{ik} t_{k,2m+1-k} t_{ik} + t_{ki} K_{k,2m+1-k} t_{ik} + t_{ki} t_{2m+1-k,k} K_{ik}$$

= $K_{i,2m+1-k} t_{i,2m+1-i} t_{k,2m+1-k} + t_{2m+1-k,i} K_{i,2m+1-i} t_{k,2m+1-k}$
+ $t_{2m+1-k,i} t_{2m+1-i,i} K_{k,2m+1-k}$.

And therefore we have

$$(8.1) \quad \varepsilon(i, k) + \alpha_{2m+1-k}(i, k) + \varepsilon(i, 2m - 1 - k) + \tilde{\alpha}_k(k, 2m + 1 - k) \\ = \beta_k(i, 2m + 1 - k) + \alpha_{2m+1-k}(i, 2m + 1 - i) + \alpha_k(i, 2m + 1 - i) \\ + \alpha_i(k, 2m + 1 - k) + \alpha_k(k, 2m + 1 - k) + \gamma(i, 2m + 1 - i), \\ (8.2) \quad \alpha_i(i, k) + \alpha_k(i, 2m + 1 - k) \\ = \alpha_i(k, 2m + 1 - k) + \gamma(i, 2m + 1 - i),$$

$$(8.3) \quad \varepsilon(i, k) + \tilde{\alpha}_{k}(k, 2m + 1 - k) + \varepsilon(i, 2m + 1 - k) + \alpha_{2m+1-k}(i, k) \\ + \alpha_{i}(i, 2m + 1 - k) + \alpha_{i}(i, 2m + 1 - i) \\ = \gamma(k, 2m + 1 - k) + \alpha_{2m+1-k}(i, 2m + 1 - i), \\ (8.4) \quad \alpha_{i}(i, k) + \alpha_{k}(k, 2m + 1 - k) + \alpha_{i}(k, 2m + 1 - k) \\ + \beta_{k}(i, 2m + 1 - k) + \alpha_{k}(i, 2m + 1 - i) \\ = \gamma(k, 2m + 1 - k).$$

Also if $m \ge 3$ we obtain $\gamma(i, 2m + 1 - i) = \gamma(i, 2m + 1 - k)$. First we assume $m \ge 3$. Using our fixed basis we define $\varphi \in Aut(\mathbb{U})$ by

$$\varphi = \begin{bmatrix} 1 & 0 & 0 \\ 0 & I_{2m} & 0 \\ 0 & S & I_{2m} \end{bmatrix}.$$

S is a $2m \times 2m$ matrix with entries $s_{ij} = \alpha_i(j, 2m + 1 - j)$ for $i \neq j$ and $i + j \neq 2m + 1$. Further set $s_{ii} = s_{i,2m+1-i} = 0$. By (6.1), S is well defined. We replace τ_{ij} by $\varphi^{-1}\tau_{ij}\varphi$ and denote these elements again by τ_{ij} . (This operation is nothing else then replacing the basis $w, v_1, \dots, v_{2m}, w_1, \dots, w_{2m}$ by $w^{\varphi}, v_1^{\varphi}, \dots, v_{2m}^{\varphi}, w_1^{\varphi}, \dots, w_{2m}^{\varphi}$ which has the same properties as the old one.) We have

$$K_{i,2m+1-i} = \alpha_i (i, 2m + 1 - i) (E_{2m+1-i,i} + E_{i,2m+1-i}) + \tilde{\alpha}_i (i, 2m + 1 - i) E_{2m+1-i,2m+1-i} + \gamma (i, 2m + 1 - i) \sum_{k \neq i, 2m+1-i} E_{k,2m+1-k}.$$

Using (5.1) and (5.2) we have

$$K_{rs} = \alpha_r(r, s) (E_{sr} + E_{ss} + E_{rs}) + \beta_{2m+1-s}(r, s) (E_{2m+1-r,2m+1-s} + E_{2m+1-s,2m+1-r} + E_{2m+1-r,2m+1-r}) + \varepsilon(r, s) (E_{s,2m+1-r} + E_{2m+1-r,s}) + \gamma(r, s) \sum_{k \neq r,s,2m+1-r,2m+1-s} E_{k,2m+1-k}$$

If $m \ge 4$ then at once $\gamma(k, 2m + 1 - k) = \gamma(r, s) = 0$, but also (7.3) does imply this equation. Combining (7.2), (7.4), and (8.4) we get finally

(+)
$$K_{i,2m+1-i} = \tilde{\alpha}_i (i, 2m + 1 - i) E_{2m+1-i,2m+1-i}, K_{ik} = \varepsilon(i, k) (E_{2m+1-i,k} + E_{k,2m+1-i})$$

Looking in the proof of (5) and using the terminology of (5) we have

$$H/X \simeq S_{2n-2}(2) \times Z_2$$

where Z_2 corresponds to the coset $v_{2n} X$. So in the case of $m \leq 2$ we may choose $\mathfrak{X} \simeq S_{2m}(2)$ suitably such that $\gamma(k, 2m + 1 - k) = 0$ by using $(t_{k,2m+1-k}, t_{2m+1-k,k})^3 = 1$. So we get the equations (+) in the case

m = 1. In the case m = 2 again we may assume

 $K_{i,2m+1-i} = \alpha_i (i, 2m + 1 - i) (E_{2m+1-i,i} + E_{i,2m+1-i})$ $+ \tilde{\alpha}_i (i, 2m + 1 - i) E_{2m+1-i,2m+1-i}.$

The equation $(\tau_{rs} \tau_{sr})^3 = 1$ implies

$$\varepsilon(r,s) + \varepsilon(s,r) = \alpha_{5-s}(r,s) = \alpha_{5-r}(s,r)$$
 and $\beta_{5-r}(s,r) = \beta_{5-s}(r,s)$.

Then (6.1), (3.1), (4.1), (8.2), and (8.4) again imply finally the equations (+). Now set

$$\gamma = \begin{bmatrix} 1 & 0 & 0 \\ 0 & I_{2m} & 0 \\ 0 & \Delta & I_{2m} \end{bmatrix} \epsilon \operatorname{Aut} (\mathfrak{U})$$

where $\Delta^{t} = \Delta$ and $\Delta = \sum_{l=1}^{2m} a_{l,2m+1-l} E_{l,2m+1-l}$. Choose $a_{i,2m+1-i}$ in such a way that $a_{2m,1} + a_{s,2m+1-s} = \varepsilon(2m, s)$ for $m+1 \le s \le 2m-1$.

We replace now τ_{ij} by τ_{ij}^{γ} and denote these elements again by τ_{ij} . So we may assume that $\varepsilon(2m, s) = 0$ for $m + 1 \le s \le 2m - 1$.

(I) Assume that we are in case (i). We have $\tilde{\alpha}_i(i, 2m + 1 - i) = \alpha_i(i, 2m + 1 - i) = 0$ and so $K_{i,2m+1-i} = 0$. Using equation (8.3) we have $\varepsilon(i, k) = \varepsilon(i, 2m + 1 - k)$. With (7.1) we get $\varepsilon(s, \mu) = \varepsilon(2m, s) + \varepsilon(2m, \mu) = 0$ if $2 \le s, \mu \le 2m - 1$. For $2 \le k \le 2m - 1$ we have further

$$0 = \varepsilon(2m, k) = \varepsilon(2m + 1 - k, 1) = \varepsilon(2m + 1 - k, 2m + 1 - 1)$$

= $\varepsilon(2m + 1 - k, 2m).$

So for all possible k, r we have $\varepsilon(r, k) = 0$

(II) Assume that we are in case (ii). We have $\tilde{\alpha}_i(i, 2m + 1 - i) = 1$ and (8.3) implies $\varepsilon(i, k) = \varepsilon(i, 2m + 1 - k) + 1$. Hence $\varepsilon(2m, l) = 1$ for $2 \le l \le m$. (7.1) implies $\varepsilon(s, \mu) = \varepsilon(2m, s) + \varepsilon(2m, \mu)$. Hence $\varepsilon(s, \mu) = 1$ for

 $(s, \mu) \in \{2, \dots, m\} \times \{m + 1, \dots, 2m - 1\}$ $\cup \{m + 1, \dots, 2m - 1\} \times \{2, \dots, m\}$ Finally $\varepsilon(2m, k) = \varepsilon(2m + 1 - k, 1) = \varepsilon(2m + 1 - k, 2m) + 1$ and so

$$\varepsilon(j, 2m) = 1 \quad \text{for} \quad 2 \le j \le m$$
$$= 0 \quad \text{for} \quad m+1 \le j \le 2m-1$$

If we summarize the results of (I) and (II) we can state:

(7) There is a subgroup K of H of index 2 with $K \cap A = X$. If we are in case (i) of (5) then there is an elementary group W of A such that WV = A, $W \cap V = Z(X)$ and W is K/A-admissible.

If we are in case (ii) of (5) K/X acts reducibly but not completely reducibly on X/X'. The action of K/X on $V/\langle v_1 \rangle$ is uniquely determined.

(8) If we are in case (i) of (5) H and G splits over V.

Proof. First we assume that we are in the situation of case (i) of (5). Keeping the same notation we have $A = \langle v_{2n} \rangle X$ where X is a H/X-admissible group which is isomorphic to the direct product of a group $\langle w \rangle$ of order 2 with an extra special 2-group Y of width n - 1 and type (+).

As every involution in $H/A \simeq S_{2n-2}(2)$ has a pre-image which is an involution too (see for instance (3)), we have by [4] a subgroup $H_0 \subset H$ such that $H_0 A = H$ and $H_0 \cap A = X$. $X/\langle w \rangle$ is an extra special group and the situation of (7) applies further to X/X'. Hence there is an elementary abelian group $W \subseteq A$ such that $V_0 W = X$, $V_0 \cap W = Z(X)$ and W is H_0/X -admissible where V_0 has the same meaning as in the proof of (5). By the structure of GL(2n-1,2) we can find a subgroup H_1 of H_0 such that $H_1 X = H_0 H_1 \cap A =$ W and H_1/W acts on W in such a way that $\langle v_1 \rangle$ has a H_1/X -invariant complement W_0 , with $W_0 \times \langle v_1 \rangle = W$. On the other hand there is a subgroup H_2 of H such that $H_2 X = H_0$ and $H_2 \cap X = V_0$.

Hence with the modular law

$$H_1 = H_1 \cap H_0 = H_1 \cap H_2 W = (H_1 \cap H_2) W.$$

Hence $H_1 \cap H_2 = Z(X)$ and $(H_1 \cap H_2)/Z(X) \simeq S_{2n-2}(2)$. As every involution in $(H_1 \cap H_2)/Z(X)$ has a pre-image which is an involution we have subgroup $H_3 \subset H_1 \cap H_2$, $H_3 \simeq S_{2n-2}$, $H_3 A = H$ and H_3 normalizes W_0 . So $W_0 H_3 \cap V = 1$ and hence we get the assertion for the case (i) by a result of Gaschütz [6; I, 17.4].

From now on we have only to handle the situation described in case (ii) of (5). For $1 \leq i, j \leq 2n$ and $i + j \neq 2n + 1$ we choose involutions t_{ij} which act as it is suggested by the notation (use (3)). For $1 \leq i \leq 2n$ choose elements $t_{i,2n+1-i}$ of order 4 such that $t_{i,2n+1-i}$ acts on V in the way suggested by the notation. By (3) it follows $(t_{i,2n+1-i})^2 = v_{2n+1-i}$.

For $1 \le i \le 2m$ we set $H_i = C_{\sigma}(v_i)$ and $A_i = O_2(H_i)$. With this notation we have

$$\begin{array}{l} H_i = \langle t_{rs} \mid 1 \leq r, s \leq 2n; \{s, r\} \cap \{i, 2n + 1 - i\} = \emptyset \rangle. V. \\ \langle t_{ri} \mid 1 \leq r \leq 2n; i \neq r \rangle \end{array}$$

and

$$A_i = V\langle t_{ri} \mid 1 \le r \le 2n; i \ne r \rangle.$$

In the course of the following argument we are going to modify the t_{ij} by elements in V step by step. We say the k-th component of t_{ij} is determined if we do not change t_{ij} in the course of the argument by v_k any more. We always make use of the action of H_i/X_i on X_i/X_i as it was developed in the proof of (7) where X_i corresponds to the subgroup X of A. As we will not change the

order of the t_{ij} the *i*- and the (2n + 1 - j)-component of these elements are already determined.

First we consider H_{2n} . We may assume that we have choosen $t_{1,2n}, t_{2,2n}, \cdots$, $t_{2n-1,2n}$ in such a way that $\langle v_2, t_{2,2n} \rangle$, \cdots , $\langle v_{2n-1}, t_{2n-1,2n} \rangle$ are dihedral groups of order 8 and $\langle t_{1,2n} \rangle$ is of order 4 and X_{2n} is the central product of these groups, where X_{2n} corresponds to the group X of (5).

As $\langle t_{1,2n} \rangle$ commutes with all the dihedral groups, it follows that all components with exception of the 2*n*-component of $t_{1,2n}$ are determined.

Further there is a skew symmetric matrix $\emptyset = (\varphi_{ij})$ with $2 \le i, j \le 2n - 1$ and numbers $\alpha(i, j; k, 2n)$ for $j \ne k, 1; i \ne 2n + 1 - k, 2n$ such that

$$[t_{ij}, t_{k,2n}] = v_j^{\varphi_k i} v_{2n+1-i}^{\varphi_{k,2n+1} - j} v_{2n}^{\alpha(i,j;k,2n)}$$

for $k \neq 1$, 2n and $i + j \neq 2n + 1$ and $[t_{i,2n+1-i}, t_{k,2n}] = v_{2n+1-i}^{\varphi_{k_i}} v_{2n}^{\alpha(i,2n+1-i;k,2n)}$

The proof of (7) tells us that we have if necessary to change t_{ij} by v_1 to obtain these equations. Therefore the 1-component for $t_{ij} 2 \leq i, j \leq 2n - 1$ is determined. Moreover we replace $t_{k,2n}$ by $v_2^{\varphi_{k,2}} \cdots v_{2n-1}^{\varphi_{k,2n-1}-1} t_{k,2n}$ for $2 \leq k \leq 2n - 1$ and denote again this element by $t_{k,2n}$. By the proof of (8) it follows that X_{2n} is still the central product of $\langle t_{1,2n} \rangle$, $\langle v_2, t_{2,2n} \rangle$, \cdots , $\langle v_{2n-1}, t_{2n-1,2n} \rangle$. In this way all components of $t_{k,2n}$ for $1 \leq k \leq 2n - 1$ but the 2*n*-component are determined and $\varphi_{ij} = 0$ for $2 \leq i, j \leq 2n - 1$.

We have, by the above, numbers $\alpha(i, j; i, 2n)$ with

$$[t_{ij}, t_{i,2n}] = v_{2n}^{\alpha(i,j;i,2n)}$$

As t_{ij} , $t_{i,2n} \in A_{2n+1-i}$ there exist elements in $t_{ij} V$ and $t_{i,2n} V$ of the same order as t_{ij} and $t_{i,2n}$ respectively which do commute. Hence $\alpha(i, j; i, 2n) = 0$.

Further we have numbers $\gamma(i, 2n + 1 - i, 2n)$ and $\gamma(i, j, 2n)$ such that

 $[t_{i,2n+1-i}, t_{2n+1-i,2n}] = v_{2n+1-i} v_{2n}^{\gamma(i,2n+1-i,2n)} t_{i,2n} t_{1,2n} \text{ for } 2 \le i \le 2n-1.$ If $i+j \ne 2n+1$

$$\begin{aligned} [t_{ij}, t_{j,2n}] &= v_{2n+1-i} v_{2n}^{\gamma(i,j,2n)} t_{i,2n} & \text{for } 2 \leq i,j \leq n \\ & \text{or } n+1 \leq i,j \leq 2n-1 \\ &= v_{2n}^{\gamma(i,j,2n)} t_{i,2n} & \text{for } 2 \leq i \leq n; n+1 \leq j \leq 2n-1 \\ & \text{or } n+1 \leq i \leq 2n-1; 2 \leq j \leq n \end{aligned}$$

We proceed now by induction and assume that we have shown the following for $k \geq 1$.

(i) $\langle t_{i,2n+1-l} | 1 \leq i \leq 2n; i \neq 2n+1-l \rangle$ is an abelian group of type $(4, 2, \dots, 2)$ for $1 \leq l \leq k$.

(ii) $t_{k,2n}, \cdots, t_{3,2n}, t_{2,2n} \\ t_{k,2n-1}, \cdots, t_{3,2n-1} \\ \vdots \\ t_{k,2n-k+2}$ are completely determined in all components. The $t_{i,2n+1-l}$ for $i \neq 2n + 1 - l$ are either completely determined if they are an element listed above or they are completely determined up to their (2n + 1 - l)-component for $1 \leq l \leq k$.

(iii) For $1 \le l \le k$ the following relations hold: There are numbers $\alpha(i, j; k, 2n + 1 - l), \quad \gamma(i, 2n + 1 - i, 2n + 1 - l), \quad \gamma(i, j, 2n + 1 - l)$ such that

$$[t_{ij}, t_{k,2n+1-l}] = v_{2n+1-l}^{\alpha(i,j;k,2n+1-l)}$$

for

 $\begin{aligned} r \quad j \neq k, \quad 2n+1-i \neq k, \quad l \neq j, \quad l \neq 2n+1-i. \\ [t_{i,2n+1-i}, t_{2n+1-i,2n+1-l}] &= v_{2n+1-i} v_{2n+1-l}^{\gamma(i,2n+1-i,2n+1-l)} t_{i,2n+1-l} t_{l,2n+1-l}. \\ [t_{ij}, t_{j,2n+1-l}] &= v_{2n+1-i} v_{2n+1-l}^{\gamma(i,j,2n+1-l)} t_{i,2n+1-l} \text{ for } i, j \leq n \\ &= v_{2n+1-l}^{\gamma(i,j,2n+1-l)} & \text{ for } i \leq n \text{ and } j > n \\ &\quad \text{ or } i > n \text{ and } j \leq n \end{aligned}$

(iv) $\alpha(i, 2n + 1 - l; r, 2n + 1 - f) = 0$ for all $1 \le l < f \le k$ and all possible *i*, *r*. $\alpha(i, j; i, 2n + 1 - l) = 0$ for all possible *i*, *j* and $1 \le l \le k$. $\alpha(r, s; i, 2n + 1 - l) = 0$ for all possible *r*, *s* and $1 \le i, l \le k$.

(v) If t_{ij} is not an element listed under (ii) then the *l*-component of t_{ij} is determined for $1 \le l \le k$ and $l \ne j, 2n - 1 - i$.

We have $A_{2n-k} = \langle t_{i,2n-k} | 1 \le i \le 2n \rangle V$. By (iii) we know for $i \le k$ and $j \ne 2n + 1 - i$ that $[t_{i,2n-k}, t_{j,2n-k}] = 1$. By changing if necessary $t_{2n+1-i,2n-k}$ by v_i and $t_{i,2n-k}$ by v_{2n+1-i} we may assume

 $[t_{j,2n-k}, t_{i,2n-k}] = 1$ for $1 \le i \le k$ and all j.

In this way all components of $t_{k+1,2n+1-l}$ $(1 \le l \le k)$ are determined and we will see that $t_{k+1,2n+1-l}$ $(1 \le l \le k)$ is not being changed in the course of the argument.

Changing $t_{j,2n-k}$ $(k + 1 \le j \le 2n)$ by elements in $\langle v_{k+2}, \cdots, v_{2n} \rangle$ we may assume that (i) is true.

We have further by (iii) and (iv),

$$[t_{s,2n+1-l}, t_{i,2n-k}] = v_{2n+1-l}^{\alpha(i,2n-k;s,2n+1-l)} \text{ for } 1 \le l \le k \text{ and } i \ne k+1$$

and $[t_{s,2n+1-l}, t_{k+1,2n-k}] = 1$. Set $\alpha(i, 2n-k; s, 2n+1-l) = \varphi_{is}$.

We only have to change t_{rs} for $r \ge k + 2$ and $s \le 2n + 2 - k$ by v_{k+1} if necessary in order to get with help of (7) the fact

$$\begin{bmatrix} t_{rs}, t_{i,2n-k} \end{bmatrix} = v_s^{\varphi_{ir}} v_{2n+1-r}^{\varphi_{i,2n+1}-s} v_{2n-k}^{\alpha(r,s;i,2n-k)}, \\ \begin{bmatrix} t_{r,2n+1-r}, t_{i,2n-k} \end{bmatrix} = v_{2n+1-r}^{\varphi_{ir}} v_{2n-k}^{\alpha(r,2n+1-r;i,2n-k)}$$

for $r \neq 2n - k$, 2n + 1 - i; $i \neq s \neq k + 1$.

In this way the 1-, \cdots , (k + 1)-components of t_{rs} are determined. More-

over by (iv), $\alpha(i, 2n - k; s, 2n + 1 - l) = 0$ $(1 \le l \le k)$ if $1 \le i \le k$. So $\varphi_{is} = 0$ for $i \le k$ and all s.

If $1 \le i \le k$ then the determination of the (k + 1)-component of t_{rs} forces $\alpha(r, s; k + 1, 2n + 1 - i) = 0$ and so

$$[t_{rs}, t_{i,2n-k}] = 1$$

We now replace $t_{i,2n-k}$ by $v_1^{\varphi_i 1} \cdots v_{2n}^{\varphi_i,2n} t_{i,2n-k}$. As $\varphi_{is} = \varphi_{si} = 0$ for all s and $i \leq k$, it follows that $t_{i,2n-k}$ stays unchanged for $1 \leq i \leq k$ and $t_{i,2n-k}$ is only changed in the *t*-component where $t \geq k+2$ as desired.

In this way we have determined all components of $t_{s,2n-k}$ but the (2n - k)component for $s \ge k + 2$.

Moreover we have for $1 \leq l < s \leq k + 1$; $l \neq 2n + 1 - j$, s: $i \neq 2n + 1 - j$, s,

$$[t_{i,2n+1-l}, t_{j,2n+1-s}] = 1$$

and as t_{ij} , $t_{i,2n-k} \in A_{2n+1-i}$ we have

$$[t_{ij}, t_{i,2n-k}] = 1$$

By (7) we have furthermore numbers $\gamma(i, 2n + 1 - i, 2n - k)$, $\gamma(i, j, 2n - k)$ such that

$$[t_{ij}, t_{j,2n-k}] = v_{2n+1-i} v_{2n-k}^{\gamma(i,j,2n-k)} t_{i,2n-k} \quad \text{for} \quad 1 \le i,j \le n$$

or $n+1 \le i,j \le 2n$
$$= v_{2n-k}^{\gamma(i,j,2n-k)} \quad \text{for} \quad 1 \le i \le n; \quad n+1 \le j \le 2n$$

or $n+1 \le i \le 2n; \quad 1 \le j \le n.$

$$[t_{i,2n+1-i}, t_{2n+1-i,2n-k}] = v_{2n+1-i} v_{2n-k}^{\gamma(i,2n+1-i,2n-k)} t_{i,2n-k} t_{k+1,2n-k}.$$

And for $i \neq 2n - k$, 2n + 1 - s; $j \neq s$, k + 1 we have

$$[t_{ij}, t_{s,2n-k}] = v_{2n-k}^{\alpha(i,j;s,2n-k)}$$

where

$$\alpha(i, j; i, 2n - k) = 0 \text{ for all } i \text{ and } j,$$

$$\alpha(i, 2n + 1 - l; s, 2n - k) = 0$$
 for all i, s and $1 \le l \le k$,

and finally

$$\alpha(r, s; f, 2n + 1 - d) = 0$$
 for all r, s and $1 \le f, d \le k + 1$.

As we have not changed results obtained by the induction step $i \rightarrow i + 1$ for $i \leq k$ it follows that (i)-(v) are verified for the induction step $k \rightarrow k + 1$.

Therefore we end up finally with

(i) For $1 \le i, j \le 2n, t_{ij}$ is completely determined in all its components if $i + j \ne 2n + 1$.

(ii) $t_{i,2n+1-i}$ is completely determined in all its components but the (2n + 1 - i)-component for $1 \le i \le 2n$.

(iii) $(t_{i,2n+1-i})^2 = v_{2n+1-i}, t_{ij}^2 = 1 \text{ for } 1 \le i, j \le 2n \text{ and } i+j \ne 2n+1.$ (iv) $[t_{ij}, t_{rs}] = 1 \text{ if } \{i, j\} \cap \{r, s, 2n+1-r, 2n+1-s\} = \emptyset \text{ or } i = r \text{ or } j = s \text{ and } 1 \le i, j \le 2n.$

$$[t_{i,2n+1-i}, t_{2n+1-i,s}] = v_{2n+1-i} v_s^{\gamma(i,2n+1-i,s)} t_{is} t_{2n+1-s,s}$$

for
$$1 \le i, s \le 2n$$
 and $i + s \ne 2n + 1$.

$$\begin{bmatrix} t_{ij}, t_{js} \end{bmatrix} = v_{2n+1-i} v_s^{\gamma(i,j,s)} t_{is} \quad \text{for} \quad 1 \le i, j \le n$$
or $n+1 \le i, j \le 2n$

$$= v_s^{\gamma(i,j,s)} t_{is} \quad \text{for} \quad 1 \le i \le n; \quad n+1 \le j \le 2n$$
or $1 \le j \le n; \quad n+1 \le i \le 2n$

where $i + j \neq 2n + 1 \neq j + s$.

Using that
$$t_{ij} = t_{2n+1-j,2n+1-i}$$
 and $t_{js} = t_{2n+1-s,2n+1-j}$ we conclude that

$$\begin{split} [t_{ij}, t_{js}] &= v_{2n+1-i} t_{is} & \text{if} \quad 1 \le i, j \le n; n+1 \le s \le 2n \\ &= v_{2n+1-i} v_s t_{is} & \text{if} \quad 1 \le i, j, s \le n \\ &= t_{is} & \text{if} \quad n+1 \le i, s \le 2n; 1 \le j \le n \\ &= v_s t_{is} & \text{if} \quad 1 \le j, s \le n; n+1 \le i \le 2n \\ &= t_{is} & \text{if} \quad 1 \le i, s \le n; n+1 \le j \le 2n \\ &= t_{is} & \text{if} \quad 1 \le i, s \le n; n+1 \le j \le 2n \\ &= v_{2n+1-i} v_s t_{is} & \text{if} \quad n+1 \le i, j, s \le 2n. \end{split}$$

Clearly $(t_{ij} t_{ji})^3 \epsilon V$ and $t_{ij} t_{ji}$ commutes with every t_{re} for

$$\{r, s\} \cap \{i, j, 2n + 1 - i, 2n + 1 - j\} = \emptyset$$

So

$$(t_{ij} t_{ji})^3 \epsilon \langle v_i, v_j, v_{2n+1-i}, v_{2n+1-j} \rangle = B_{ij}$$

But as $t_{ij} t_{ji}$ acts fixed-point-free on B_{ij} we conclude

$$(t_{ij} t_{ji})^3 = 1$$
 for all $1 \le i, j \le 2n$.

Therefore we have determined our multiplication table up to the (2n + 1 - i)component of $t_{i,2n+1-i}$ and the numbers $\gamma(i, 2n + 1 - i, j)$. If we set $\varepsilon(i, j) = 0$ for $1 \leq i, j \leq n$ or $n + 1 \leq i, j \leq 2n$ and $i + j \neq 2n + 1, i \neq j$ and $\varepsilon(i, j) = 1$ for $1 \leq i \leq n, n + 1 \leq j \leq 2n$ or $1 \leq j \leq n, n + 1 \leq i \leq 2n$ and $i + j \neq 2n + 1$ we can set

$$[t_{ij}, t_{js}] = v_s^{\varepsilon(2n+1-s,2n+1-j)} v_{2n+1-i}^{\varepsilon(i,j)} t_{is}.$$

Further

$$[t_{i,2n+1-i}, t_{2n+1-i,s}] = v_{2n+1-i} v_s^{\gamma(i,2n+1-i,s)} t_{is} t_{2n+1-s,s}$$

and

$$t_{sr}^{[t_{i,2n+1-i},t_{2n+1-i,s}]} = v_{2n+1-i}^{1+\epsilon(2n+1-i,s)} v_r^{\gamma(i,2n+1-i,r)+\epsilon(2n+1-s,i)+\epsilon(2n+1-r,2n+1-i)} v_s^{1+\epsilon(2n+1-i,s)+\epsilon(2n+1-s,i)} \cdot t_{ir} t_{sr} t_{2n+1-s,r} t_{2n+1-r,r}$$

and

 $t_{sr}^{q} = v_{r}^{\gamma(2n+1-s,s,r)+\varepsilon(2n+1-r,2n+1-s)+\gamma(i,2n+1-i,s)} v_{2n+1-i}^{\varepsilon(i,s)} v_{2n+1-i}^{\varepsilon(i,s)} v_{2n+1-s,r}^{\varepsilon(i,s)} t_{ir} t_{sr} t_{2n+1-s,r} t_{2n+1-r,r}$ where $q = v_{2n+1-i} v_{s}^{\gamma(i,2n+1-i,s)} t_{is} t_{2n+1-s,s}$. This implies $(*) \quad \gamma(i, 2n+1-i, r) = \gamma(2n+1-s, s, r) + \gamma(i, 2n+1-i, s)$ $+ \varepsilon(2n+1-s, i)$ $+ \varepsilon(2n+1-r, 2n+1-i)$ $+ \varepsilon(2n+1-r, 2n+1-s).$

By changing $t_{i,2n+1-i}$ if necessary by v_{2n+1-i} we may assume that

$$\gamma(i, 2n + 1 - i, 1) = 0$$
 for $2 \le i \le 2n - \gamma(1, 2n, 2) = \gamma(2n, 1, 2) = 0.$

1,

Then (*) determines all other $\gamma(i, 2n + 1 - i, j)$.

So we can state:

(9) If G is a nonsplit extension of V by $S_{2n}(2)$, then G is uniquely determined. Moreover G is generated by elements t_{ij} for $1 \leq i, j \leq 2n, i + j \leq 2n + 1, i \neq j$ which satisfy the relations listed above.

Using (9) and (8) and a result of Griess [5] it follows that if G is a nonsplit extension, that G is uniquely determined and that there are such nonsplit extensions.

References

- 1. EMIL ARTIN, The orders of the classical simple groups, Comm. Pure Appl. Math., vol. 8 (1955), pp. 455-472.
- ULRICH DEMPWOLFF, On second cohomology of GL(n, 2), Austral. J. Math., vol. 16 (1973), pp. 207-209.
- On extensions of an elementary abelian group of order 2⁵ by GL(5, 2), Rend. Sem. Padova, vol. 63 (1972), pp. 359-364.
- ROBERT GRIESS JR., Schur multipliers of the known finite simple groups, Bull. Amer. Math. Soc., vol. 78 (1972), pp. 68-71.
- 5. , Automorphisms of extra special groups and nonvanishing degree 2-cohomology,
- 6. BERTRAM HUPPERT, Endliche Gruppen I, Springer, Berlin, 1967.
- 7. HARRIET POLLATSEK, First cohomology groups of some linear groups over fields of characteristic two, Illinois J. Math., vol. 15 (1971), pp. 393-417.

THE OHIO STATE UNIVERSITY COLUMBUS, OHIO

468