
EXTENSIONS OF ELEMENTARY ABELIAN GROUPS OF ORDER BY
,( AND THE DEGREE -COHOMOLOGY OF .,()

BY

ULRICH EMPWOLFF

Following Artin’s notation (see [1]) we denote by $2. (2) the symplectic
group of dimension 2n over the field F2 of 2 elements which is defined as a
subgroup of GL (V), V a 2n-dimensional vector space over F2 leaving a non-
degenerate, skew-symmetric scalar product invariant. We want to show"
THEOREM. Let G be a finite group which satisfies the following conditions"

(i) V < G, V is elementary abelian of order 22’,
(ii) G/V --- S(2),(iii) Co(V)

_
V.

Then G/V acts on g faithfully and one can define a skew symmetric, non-
degenerate scalar product which is G/V-invariant. If n >_ 2 then either G splits
over V or G is a uniquely determined (up to equivalence of extensions) nonsplit
extension of V by S., (2) and such nonsplit extensions do exist.
We have a corollary.

COROLLARY. If V denotes the standard F-module for $2, (2), then

dimFH($2.(2),V) 1 if n>_ 2.

Remark. By a result of Pollatsek [7], it is known that

dimF H (S.. (2), V) 1.

A recent result of R. Griess [5] shows that dim H (S (2), V) > 1. We will
show that dim H (S. (2), V) _< 1 which will imply the theorem. The proof
follows the same line of arguments as in [2], [3]. Thus we consider for v e V
the stabilizer H of v in G and determine the structure of 02 (H). Then we
study the action of H/O (H) on O (H). The information obtained in this
way will enable us to determine the structure of G in terms of generators and
relations. As the arguments used in the proof are very computational, a
more group theoretic proof is certainly more desirable. We prove the theorem
by a series of lemmas.
By our assumptions we may always V consider as an F2 vector space of

dimension 2n acted upon by G/V as a subgroup of GL (2n, 2) faithfully.
We will always denote by Eii a square-matrix whose entries are all 0 with the
sole exception of the entry 1 for the index pair (i, j). If the matrices which
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are in question have dimension 2m we set for i + j 2m W 1,

tii !2m -" Ei" E2m+l-y,2+l-i
and for1 i 2m,

t,2+- I E,+_

where I2 is the 2m-dimensional identity marrY.
It is easy to check that the subgroup X generated by t for i j 2m W 1

of GL (2m, 2) is isomorphic to S(2). Moreover the subgroups

Bo (ttX;i<j) and N0 (t,+xt+,t,+xl i m)

form a (B, N)-pair for X. Note that t hx-,+x-.
Throughout the proof we will always denote by t either matrices of the

type described above or elements of the automorphism group of a F2-veetor-
space which act in respect to a fixed basis v, v as described by the
matrices.

(1) Let be a 2m-dimensional F vector space and S(2) a bgroup
of GL (.). Then one can define a symplectic scalar product on which is
-invariant. In particular "acts as a symplectic group" on .

Proof. The case m 1 is trivial and as As GL (4, 2) has only one con-
jugacy class of subgroups isomorphic to e $4 (2) the assertion is true for

Choose an elementary abelian subgroup 8 in of order 3. As F is a split-
ting field for 8 we have a decomposition x in irreducible
-invariant subspaces where dim 1 or 2 for I i r. As 8 acts faith-
fully it follows r m and dim 2 for I i m. For e, f 8 we introduce
an equivalence relation by e f if and only if dim [e, ] dim , ]. We
have exactly m + 1 equivalence classes say 0, with dim [e, ] 2i
for e . Then

[e,=(:)2 for Oim.

Asm 3wehave

(,) lol<le, l<l,l for 2im.

If e # f then e and f can not be conjugate in . has exactly m conjugacy
classes of elements of order 3 and so for 1 i m are the intersection of
these classes with 8 and by (.) and the structure of S(2) for r we must
have

where S_(2) and acts faithfully on Cv (r) and trivially on It, ].
Assume r0 , r0 # r or r- and C(ro) (r0) X 0, with 0 S_ (2).
Then

c (r, r0) (r> x (r0> x ( n 0)
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and n 0 --- S_(2). By induction there is a 0-admissible symplectic
scalar product on Cv (r0) and an -admissible symplectic scalar product on
Cv(r) and an n 0-admissible one on Cv(r, to). We have Cv(r)
Cv (r, r0) 3 where Co(r, ro) and are regular subspaces, mutually orthog-
onal, in respect to the scalar product of Cv(r) which was induced on Cv (r)
by C (r). In the same manner we have a orthogonal decomposition Cv(r0)
Cv(r, to) . Note that the symplectic scalar product induced on Cv(r, to)
by , 0, 0 is always the same. Clearly
Reading this direct sum as a orthogonal sum we define a symplectic scalar
product on X). Certainly this scalar product is - and 0-admissible. As

(, 0) the assertion follows.
Using (1) we now choose a basis vl, v, ..., v of V such that {vl, v.},

v2, v.-}, {v, v+} are hyperbolic pairs in respect to the action of G/V.
In particular there are elements r e G V such that the action of to" in
respect to our fixed basis is described by matrices of the form to" (here we have
m n) and always re V.
Wihou proof we sae:
(2) Let the t’s have their fixed meaning and set

X (t,ii + j <_ 2n - 1} --- S. (2).

Set s t,_,, t,,,_x t,,_i,,, tn+l,n+2 tn+2,n+l tn+l,n+2.
tions in X are represented by

Then the classes of involu-

t.,,x, t2n,x t.n-l,9., t,,x tn+l,n
and

y, t2n,1 tZn-l,9, y, t2, ta.-1,2 tn+4,n-a t+8,n--9, y,

where y (t.,.+l s)2 and a 1 if n is even and 0 if n is odd.

(3) IfreG- Vsuchthatr 1.e V then there is a in rV such that tg.

Proof. Choose elements m, p of order 3 in G V such that p nor-
malizes (v, vg..+_) and centralizes

Vl Vi--l Yi+l Y2n--i V2n-2--i V2n>
Set Y (m 1 <_ i

_
n)V. Then Y/V is elementary of order 3 and Y/V

acts fixed-point-free on V. Denote by a an element in G V which acts as
s on V where s has the meaning as in (2). Then

Z (Tg.n,1, T2n--l,2, Tnq..1,n,

normalizes Y. Using a Frattini argument it follows that for every Z,
x V there is an x e xV with x 1. Now using (2) the assertion follows.

(4) There are involutions t2 7"9.1 V and tg.n-l,2 e T2n--l,2 V such that

(tg.1, tg.n-l,9.) --- Ds and (t2, t2n--1,2> I"1 V 1.
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Furthermore there is an involution t,a ’.,, V such that one of the following
possibilities is true

(i) [(tn, t.._,.), t.,l 1
(ii) [t2n,1, t2n-l,] Vl, [t2n,X, tn] v._

and
Ivy. t.,,, (t, (t t._,)’>] Ivy. t._,, (t.,, v. t.,>]

Proof. As <r21, r.,-i,2, r,,1) centralizes the nonsingular symplectic sub-
space (vs, v4, ..., vn-} we may restrict our attention to the case n 2.
Using the same Frattini argument as in (3) we find involutions t, ts such
that (tn, ts} --- Ds and (tl, t2} n V 1. Choose an involution t4 in r V
and set r t2, ti, j tl and r. By changing j if necessary by
v we may assume It, j]

is an involution and so [j, ]e (v, w.}. Assume [j, ] v[ v v v, then
[j, ] v w where w v.. Now choose
p e G V such that

v jv j v
and p shall act fixed-point-free on {, rj)V. By [6; V, 8.9c)],

(.)() 1.
Set [, j] v. Then

() e v rj(v, v) and (),
On the other hand

()’ v "v (v, v).
Hence x " and

[j, r] v, [j, 1 v’ v v,
As Cv (a, j) (v, v,) we have [j, a] v v. So

which implies x A- e a and x.
now by j we have

aq-xzIf we replace j by v and denoge ig

[j, r] v, [j, 1 v v v, [j, 2] v v, [j, 1 v.
For x 0 we get case (i) of (4) and x 1 implies (ii). As an immediate
corollary we have:

(4 If V is elementary of order 2 and G/V _- Z and G does not split over
V an S-subgroup of G is uniquely determined.

(5) Denote by H the centrahzer of v in G and set A O (H). Then A
possesses a H-admissible subgroup X of index 2 such that A X(v,} and
1 X n (vn) and

AID (A (v.)D (A )/D (A X X/D (A
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is an H/A-invariant decomposition where D (A denotes the Frattini subgroup
of A.

Further one of the following cases is true:
(i) X is the direct product of an extra special group Y of width 2n 2 and

type (+) with a group (w} of order 2. If Vo (vl, v,_} then Vo c_ Y,
Z (Y) (v} and Z (X) (v, w} is elementary abelian of order 4.

(ii) X Y(w} where Y is extra special of width 2n 2, wl
4, IV, (w}] 1, Y n (w} (v} and Z (X)

Proof. A/V is elementary abelian of order 2-1 and H/A acts faithfully
on A/V and centralizes (r,a}V/V. Choose involutions wl e r. V, w. e 31 V,.., w2_ e r... V. Then A (v, -.., v,, wl, ..., w_}. Certainly,
A’ V. SetV0 (v, ...,v._}. ThenV0 <:IH. No element inA V
commutes with any element in w. V0. Therefore if a cA, then a e V0.
But clearly Vo A’ and so A’ D (A) V0 and Z (A) (vl). We use the
"bar convention" for groups and elements in A modulo Z (A). Obviously
?0
_
Z (). Further

Caa, (H/A (w.,, w,_)A’/A’.

Using (4) for e (wl V0)- one of the following statements is true"

(i) [, w,._] 1.
(ii) [, (v, w.,_)-I 1.

As (w2,- V0)- and (v2, w2,- V0)- are H/A-invariant cosets and H/A acts
transitively on A/V(w,_I) we may assume that for each involution 17"
one of the following statements is true"

(i) [, w,_] 1.
(ii) [4, (w., w,_)-] 1.

In ease (i) we set (w,_)- in ease (ii) we set (v, w,_)-. So

Z () Z_ (A)/(v) (Vo(w))-
and (4) implies that for a A either 6 i or (v, a)-) 1.

For each pair of involutions 6, 6 (V(w))- such that (6, ) (V(w))-/
(V(w))-] 4 there is an element p of order 3 in H such that p permutes the
elements in

<a, ) (v<w>)-/(v(w>)-.

Hence 6 6 (Vo(w))- and 60’ (ab)- (V(w))-. Assume (ab)- is not an
involution, i.e. [6, 6] 1. As 6 is an involution we have
6 (abv,)-(Vo(w))- by the above. So (abv,)- has order 2 and therefore

1 [6, g][ (ab)-, (v2,)-].

Therefore if 6, 6 e g (V(w))- are noncommuting involutions, then

) ab)-[a, ]
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Assume $ and are commuting involutions in such that

(V(w) )- (bV(w) )- (cV(w) )- (V(w) )-.

Assume further that Z does not commute with g; then using that has class
2 we conclude

[a, [a, el
and

[, (bc)-] (s))- if [Z, (be)-] # 1

and
1 if [Z, (bc)-] 1

[a, bl 1

[a, ] 1.

So we may conclude, if a t (V(w})- is an involution and there is an invo-
lution e (a} (V(w})- which does not commute with a then no involution
in (a)(V(w})- will commute with a. Assume this is the case. Let
a .71 (V(w))- nd e .zi (V(w, a))- be involutions; then [ a, 9, ] 1
nd it follows that .0 (Z (), (v w,)-, ..., (vs ws,_s)-) is sn belisn
subgroup of index 2 in and 0 is of type (2, 4, 4, 4). Let A0 be the
counter image of 0 in A. Then A0 has class 2 and Z (A0) (vl, w}. Now
choose a e A0 of order 4. Then for every b e A0 we have [as, b] [a, b] 1.
So : (i .0 (Z (.0))-. But as a v, v,(vl) for each a of order 4
it follows IX n V0[ _> 4, a contradiction.
We have shown that every pair of involutions in . <@) commutes.

It follows that . (Z (), @, @, @, ..., @.n-s) is elementary abelian of
order 24n-3. Let X be the complete counter image of X. Then X’ D (X)
(v> and g (X)

Set Y <V0, wl, ..., w_s). Then Y is extra special of type (+) as
V0 Y. (An extra special group X of order 2+ is called of type (-{-) if it
contains an elementary abelian group of order 2+1.) Finally
As for every e s Z() we have C () ()Z (.) it follows that an auto-
morphism a of
As (s Z() u :) is the set of elements of order 4 we have shown that

X is H-admissible.
The following fact is an easy consequence of the result of Pollatsek [7] and

(6) Let be a (2n -{- 1 ).dimensional F vector space and assume there is a
subgroup Sn (2) of GL( such that centralizes v and acts faithfully
on X)/(v). Suppose there is no -admissible complement of (v) in . Then
has a basis v, v, v,, such that {v -4- (v), v+_ -4- (v)} are hyperbolic pairs
with respect to the action of on /(v) for i < i < n. If is represented on
.)/(v) in respect to the basis v A- (v}(1 < i _< 2n) by the matrix X (x)
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then the matriz of with respect to the basis of has theform

Now (5) implies the estence of an H-adssible subgroup X A such
that X Y(w) and we have either X Y X (w) and w 2 or X Y(w),
(w) Y Z (Y), w 4 where Y is in both cases an extra special 2-group
of dth n 1 and type (W). We coider X/(v as a F vector space.
If we define q (a) a where a and a a and (a, ) [a, b] for a,
and a a, b , then q is a quadratic form on and ( is the symplectic
bflinear form belonging to q. We have to distinguish two cases according to
the structure of X.

(i) w] 2, Y a (w) 1, Then is a orthogonal vectorspace such
that rad (w(v)), /(w(v)) is a regular orthogonal vector space of maxi-
mal index and dimension 4n 4.

(fi) ]w 4, Y (w) Z(X). ThenVisa (4n- 3)-dimensional,
regular orthogonal vector space.

Accordg to (6) and the proof of (5) we have to study the follong situa-
tion (here n m + 1):

Given a (4m 1)-mensional F vector space th a bas w, w,
such

(i) q(w) O, q(v) q(w) 0 for 1_< i_< 2m

(w,v)=0 forall v,
(v,w) for 1 <i,j< 2m,

(v, v) (w, w) 0 for l<i,j< 2m,

q(av + bw "4- cw) "ab

q(w) 1, q(v) q(w) =0 for l < i < 2m,

(w,v) 0 for all v,
(v,w) =a for l<i,j<2m,

(v,v) (w,w) =0 for l<i,j<2m,

q( av + bw-4- cw) ’ab + c.

By (5) it is clear that H/X S,,_ (2) X Z. Thus there is a subgroup
$ S. (2) of GL () such that normalizes (v, ..., v,,,) and respects
the form q and the scalar product ( ). Note that only in the case m >_ 3
the group corresponds to a unique subgroup of H/X.

or
(ii)

w., v, v and an orthogonal form /and a bilinear form (
that either
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Furthermore the structure of H tells us that acts reducibly but not com-
pletely reducibly on X)/x) and centralizes in particular w -[- Xh. In any case
we may assume that we have chosen v, w for 1 _< i _< 2m in such a way, that
if e induces the matr X on /(, w) th respect to the basis
Wl + (1, W), W2m (1, W) that the matr induced by th respect
to the basis w, Vl, v2, Wl, w2 of has the form

s(x)
(x) Y (x)

There K(X) denotes the function described in (6). As (v, w.)
for 1 _< i, j _< 2m we have S (X) (X-) and Y is function such that

(A) r (XZ) Y (X) (Z-) zr XY (Z).

As we have (w, w.) 0 for 1 _< i,j <_ 2m it follows that

(B) Y (X)X X(Y (X)).
If we set Y(X) (y),X (x) andK(X) (k,) for 1 _< i_< 2m

implies
0 ya xi for case (i).

(C)
’l Ya x + k for case (ii).

In other words the diagonal elements of Y (X)X are 0 in case (i) and equal
k in case (ii).
We now deterne the function Y in case (i) as well as case (ii). There-

fore we set of 1 i,j 2m,
K Y(t),

K () for lg r,s 2m,

r 0 t
K (t) K

Using r lit follows that 0 Kt tK. Further Kt
ti(K).
These equations imply for i j 2m W 1,

i i or al 1 s, ,
i{ +,_ o for all 2, i,2 + i,

Finally using equation (C) we have

k 0 for 1 _< l_< 2m and lj,2m+ l-j,
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If i - j 2m W 1 we have again

K,+_ (K,+_
and

2ml-- 0 for all 1_< l_< 2m, l2m 1-i

where 0 in case (i) and e 1 in case (ii).
Using the equation [r, r] 1 for r, s} i, j, 2 + 1 i, 2 + 1 j}
we get by (A) the equation

K t W tK Kt W tK
which implies

k 0 forall {r,sa{i,j, 2m + 1 -i, 2m

andr + s 2m + 1. Furthermore we have for r, s} a{i,j, 2m + 1 -i

Using [,,, v.+_] I for all {r, s) n {i, 2m + 1 i} we get

and it follows

k’}+- 0 for all {r,s]n{i, 2m + 1-

and r + s 2m + 1. Furthermore we have
for{r,sn{i, 2m + 1- i} :.

Therefore we can write for r + s 2m + 1,

Note that he entry for the index (2m + 1 r, s) and (s, 2m + 1 r) is
a+_, (r, s) + $, if, s). We will later denote ts entry by e (r, s). Further
for alll r 2m,

K,.+_ +_,a(r, 2m + 1 r)(E+_. + E,+_)
+ (r, 2m + 1 r)E+_,.+_

+ (r, 2m + 1 r).+_E..+_

Here&(r, 2m + 1 r) a,(r, 2m +1- r) incase (i) and

&(r, 2m + l-r) a,(r, 2m + l-r) + 1 incase (ii).

The equation [,,, ,] i for j 2m + 1 r, s implies

(1. ) , (r, j ) (r, j ) + .+_(r, s)
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and [r, r] 1 for 2 1 , r ives us

(2. ) +_. (j, ) +_. (r, ).

The equation [,, .+;_] 1 leads to

(3.1) (r, s) W a (r, 2m W 1 r) (r, 2m + 1 r)

and since [.+_,, ,.+_,] 1 it follows that

(4.1) a,(s, 2m + 1 s) + ,(r, 2m. W 1 s) (s, 2m + 1 s).

For m 3 and j # r, s, 2m T 1 r, 2m T 1 s the equation [,, r.=,+_]
1 implies

(5.1) a(j, 2m + 1 j) a(r, s),

(5.2) ,+_. (j, 2 + j) (r, ).

The equation [r,+-, r,,+_,] 1 for j 2m 1 r gives us

(6.1) a,(j, 2m + 1 j) a(r, 2m + 1 r).

Forj W s # 2m W 1 r + sandj rwehave [,, r,] rwch
implies

Computing both sides of this equation yields

(7.1) e(r, s) + e(r,j) + e(s,j) + ,(r,j) + a+_(s,j) (r, s),

(7.2) ,(r, s) + ,,(s,j) ,,(r,j),

(7.3) a,+_ (r, s) + (s, j) (r, j),

(7.4) +_(r, s) + +_, (r, j) +_(r, j).

To obtain these equations we must have m 3. If m 4, then we also
obtain (r, j) 0. The equation [r .__] r.-- r.__ implies

K t.+_ t + tK.+_ t t+_.K
K,+_ t,+_ t,+_ + +_,K,+_ t;+_
+ h+-. h+-.K.+_.

And therefore we have

(8.1) e(i,k) +a2_(i,k) +e(i, 2m- 1- k) +5(k, 2m + 1 k)
(i, 2m + 1 k) + a_(i, 2m + 1 i) + a (i, 2m + 1 i)

+ a(k, 2m + 1 k) + a(k, 2m + 1 k) + (i, 2m + 1 i),

(s.2) ,, (i, ) + , (i, 2m + 1 k)

a(k, 2m+ 1- k) +(i, 2m+ 1-i),
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(8.3)

(8.4)

e(i,/c) + &(/c, 2m + 1 k) + e(i, 2m + 1 k) + a+,_(i, k)
+a(i, 2m+ 1- k) +a(i, 2m + l-i)

(k, 2m + 1 k) + a+_(i, 2m + 1 i),

a,(i, k) + x(]c, 2m + 1 lc) + z(k, 2m + 1 k)

+ (i, 2m + 1-- k) + a(i, 2m + 1--i)

.(k, 2m + 1 k).

First weAlso if m >_ 3 we obtain /(i, 2m + 1 i) (i, 2m + 1 ).
assume m > 3. Using our fixed basis we define 9 Aut (X)) by

S I==
S is a 2m X 2m matr th entries si a(j, 2m + 1 j) for i j and
iWj # 2 W 1. Further sets, si.,_ 0. By (6.1),Siswellde-
fined. We replace r by -r and denote these elements again by
(This operation is noting else then replacing the basis w, v,, v=, w,,

w== by w, v[, v=, w[, w= which has the same properties as
the old one.) We have

K.=_ i(i, 2m + 1 i)(E=,_. + Ei,=,_)

W &(i, 2m + 1 i)E=_i,=+,_

Using (5.1) and (5.2) we have

K,, ,(r, s) (E,, + E,, +
+ _.(r, s)(Ex_,.x_, + Ex_,.x_ + Ex_.t_)

If m 4 then at once (k, 2m + 1 k) (r, s) 0, but also (7.3) does
imply this equation. Combing (7.2), (7.4), and (8.4) we get finally

(+)
K (i, (E,_. +

Looking the proof of (5) and using the ternology of (5) we have

where Z corresponds to the coset v, X. So in the case of m g 2 we may
choose &(2) suitably such that (k, 2m + 1 k) 0 by
using (t,._ hx_.) 1. So we get the equations (+) in the case
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n 1. In the case n 2 again we may assume

K,+_ (i, 2 / 1 i)(E+_, - E,_)W (i, 2m 1 i)E_._.
The equation (r, r) 1 implies

(r, s) W (s, r) a_(r, s) _(s, r) and _(s, r) _(r, s).

Then (6.1), (3.1), (4.1), (8.2), and (8.4) again imply finally the equations
(W). Now set

I Aut ()

where A* A and A 2a.x_ E.x_. Choose a,x_ in such a
way that a,x + a,.x_, e (2m, s) for m + 1 s 2m 1.
We replace now r by r. and denote these elements again by r. So we

may assume thate(2m, s) 0form + 1 g s 2m- 1.
(I) Assume that we arein case (i). Wehave 5(i, 2m + 1 i)

a(i, 2m + 1 i) 0 and so K.x_ 0. Using equation (8.3) we have
e (i, k) e (i, 2m + 1 k). With (7.1) we get e (s, ) e (2m, s) + e (2m, )
=0if2s,2m-1. For2k2m-lwehavefurther

0 e(2m, k) e(2m + 1 k, 1) e(2m + 1 k, 2m + 1 1)

=e(2m+l-k, 2m).

So for M1 possible k, r we have e (r, k) 0
(II) Assume that we are in case (ii). We have (i, 2m + 1 i) 1

and (8.3) implies e (i, k) e (i, 2m + 1 k) + 1. Hence e (2m, l) 1 for
2 m. (7.1) implies e (s, ) e (2m, s) + e (2m, ). Hence e (s, ) 1
for

(s,)e{2, ...,m} X {m + 1, ...,2m- 1}
u{m + 1, ,2m 1} x {2, ,}

Finallye(2m, k) e(2m + 1 k, 1) e(2m + 1 k, 2m) + 1 andso

e(j, 2m) 1 for 2 j m

=0 for m+lj2m-1

If we summarize the results of (I) and (iI) we can state"

(7) There is a subgroup K of H of iex 2 with K n A X. If we are in
case (i) of (5) then there is an elementary group W of A such that WV A,
W n V Z(X) a W is K/A-misdble.
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If we are in case (ii) of (5) K/X acts reducibly but not completely reducibly
on X/X’. The action of K/X on V/(vl} is uniquely determined.

(8) If we are in case (i) of (5) H and G splits over V.

Proof. First we assume that we are in the situation of case (i) of (5).
Keeping the same notation we have A (v2n}X where X is a H/X-admissible
group which is isomorphic to the direct product of a group (w} of order 2 with
an extra special 2-group Y of width n I and type ().
As every involution in H/A --_ S.,_. (2) has a pre-image which is an involu-

tion too (see for instance (3)), we have by [4] a subgroup H0 c H such that
Ho A H and Ho n A X. X/(w} is an extra special group and the situa-
tion of (7) applies further to X/Xp. Hence there is an elementary abelian
group W

_
A such that V0 W X, V0 n W Z(X) and W is Ho/X-admissi-

ble where V0 has the same meaning as in the proof of (5). By the structure of
GL (2n 1, 2) we can find a subgroup H1 of H0 such that H1 X H0H n A
W and HI/W acts on W in such a way that (v} has a H/X-invariant comple-
ment W0, with W0 X (v} W. On the other hand there is a subgroup H
of H such thatH X H0 andH n X V0.
Hence with the modular law

H HlaH0 HaH2W (HnH.)W.

Hence H1 r H Z(X) and (H r H)/Z(X) --- S,_2(2). As every involu-
tion in (H r H.)/Z (X) has a pre-image which is an involution we have sub-
group Ha c H1 a H., H8 --- S_, H8 A H and H normalizes W0. So
W0H n V 1 and hence we get the assertion for the case (i) by a result of
Gaschiitz [6; I, 17.4].
From now on we have only to handle the situation described in case (ii) of

(5). For 1 <_ i, j _< 2n and i - j 2n - 1 we choose involutions t. which
act as it is suggested by the notation (use (3)). For 1 _< i _< 2n choose ele-
ments ti,2+- of order 4 such that t.n+-- aCtS on V in the way suggested by
the notution. By (3) it follows (ti,2n+l-i) V2n+-i.
For 1 _< i _< 2m we set H Ca (v) and A 02 (H). With this notation

we have

and

Hi (t, l

_
r, s

_
2n; {s, r} a i, 2n + 1 i} }.V.

(tll_ r_ 2n;ir}

A V(tl l <_ r <_ 2n; i r).

In the course of the following argument we are going to modify the to by
elements in V step by step. We say the/-th component of t. is determined if
we do not change t in the course of the argument by v any more. We always
make use of the action of H/X on X/X as it was developed in the proof of
(7) where X corresponds to the subgroup X of A. As we will not change the
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order of the t the i- and the (2n + 1 j)-component of these elements are
already determined.

First we consider H2,. We may assume that we have choosen tl.2,, t.,,
t,_l., in such a way that {v2, h..,), (v,_, h,-x.,) are dihedral groups of
order 8 and (t.,) is of order 4 and X, is the central product of these groups,
where X2, corresponds to the group X of (5).
As (.) commutes with all the dihedral groups, it follows that all com-

ponents with exception of the 2n-component of t. are determined.
Further there is a skew symmetric matrix D (j) with 2 _< i, j _< 2n 1

and numbers a (i, j; k, 2n) for j k, 1; i 2n W 1 k, 2n such that

for k 1, 2n and i + j 2n + 1 and [t.,+x_, .,] v/_ v-’+x-;’)
The proof of (7) tells us that we have if necessary to change t by to

obta these equations. Therefore the 1-component for 2 i, j 2n 1
is deterned. Moreover we replace . by v’ ’-’-. for 2 _< _<
2n 1 and denote again this element by .. By the proof of (8) it follows
that X is still the central product of (.), (v, h.), ..’, (v_, h-.).
In ts way all components of . for 1 k 2n- 1 but the 2n-component
are deterned and 0 for 2 i, j 2n 1.
We have, by the above, numbers a (i, j; i, 2n) th

[t, t,.] .
As t, t., e A.,+_ there exist elements in t V and t., V of the same order

as t. and t.., respectively which do commute. Hence a (i, j; i, 2n) 0.
Further we have numbers 7 (i, 2n + 1 i, 2n) and (i, j, 2n) such that

,2+I--,2)[t,.+_, .+_,.] v.+_v ,. t,. for 2 i 2n- 1.

for

or

" {’’")" for02. hi,2.

or

2<_i,j<_n

n+ 1 <_i,j <_ 2n-- 1

2<_i<_n; n+l<_j<_2n- 1

n+l<_i<_2n--1; 2<_j<_n

We proceed now by induction and assume that we have shown the following
fork> 1.

(i) <t.2,+x- 1 _< i _< 2n; i 2n + 1 l)is an abelian group of type
(.4, 2, ...,2) forl_< l_< k.

(ii)
t,2.-a,
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are completely determined in all components. The t,.+x- for i 2n + 1
are either completely determined if they are an element listed above or they
are completely determined up to their (2n -b 1 -/)-component for 1 _< _< k.

(iii) For 1 _< _< k the following relations hold: There are numbers

a (i, j; k, 2n -}- 1 l), (i, 2n + 1 i, 2n -b 1 -/), (i, j, 2n + 1 l)

such that

[tiy, tk,9nWl--l]

for j k, 2n+ 1-ik, lj, l2n-b 1- i.

[i,2nq-l--, 2n-l--,Sn-i-l--/] )2n-i-l--i 2-i-I-- i,2-bl-- ,2n-}-l--.

[t, t.+x_] v2+- 2/1- .+_ for i, _< n

Z+l- for i_<n nd >
or > and

(iv) (,21- l;r, 2-t- l-f) 0foralll_< l<f_<kndall
possible , . (, ; , 2 + 1 l) 0 for 1! possible i, and 1 _< _<
(, s; , 2 1 l) 0 for 11 possible , s nd 1 _< i, _< k.
(v) If t is not n element listed under (ii) then the/-component of

is determined for 1 <_ <_ k nd , 2 1 i.
We have A_ ._ 1 _< i _< 2). By (iii)we know for

nd 2 1 that [t._, t._] 1. By changing if necessary
t+_._ by v nd t._ by w.+_ we my assume

[._,._] I for 1k nd.
In ts wy all components of t+.+_ (1 k) re deterned nd we
l see that +.+_ (1 ) not being chged the course of the
rgument.

sume that (i) is
We hve further by () nd (iv),

=2+1-’ for llk d ik+l

and [t,.+_, t+.2-] 1. Set a (i, 2n- k; s, 2n 1 l)
We oy ve to change t,, for r k W 2 d s 2n 2 k. by v+ if

necessary order to get th help of (7) the fact

[t,, t,_] v’’’’’+-’’"
v2n+l--r v2a--

fort 2n-k, 2nW 1-i;iskW 1.
In ts way the 1-, (k W 1)-components of t, are detered. More-
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over by (iv),a(i, 2n-- k;s, 2n+ 1 l) 0 (1 _< l_< k) ifl < i_< k.
So 0 for i < k nd 11 s.

If 1 _< i </ then the determination of the (/ -t- 1)-component of tra forces
a(r,s;]c+ 1,2n-4- l--i) 0andso

[try, t,-k] 1

We now replace t,_k by "2. ,.-. As. . 0foralls
and i < k, it follows that t,.._ stays unchanged for 1 < i < k and t,._ is
only changed in the t-component where > k + 2 as desired.

In this way we have determined all components of t.,=_ but the (2n k)-
component for s > k A- 2.
Moreover we have for 1 _< < s _< k + 1; 2n + 1 -j, s"

i rs 2n + 1 j, s,

and as ti., t._ e A+I_ we have

[tii, $i,2n--k] 1

By (7) we have furthermore numbers 7 (i, 2n + 1 i, 2n k), 7 (i, j,
2n k) such that

3’ i,1,2 n--k)[ty, ty.,_] v+- v2- .,_ for

or
7(i,j,2n--k)

t2 n--k for

or

l<_.i,j<_n

n-l- 1 <_i,j < 2n

l<i<_n; n+lNj<_2n

n+l<_i<_2n; l<_j<_n.
/(i,2n+l--i,2n--k)[ti,2n+i-i, t2n+l-i,2n-k] V2n+l--i "l)2 n--k bi,2n--k tk+l,2n--k.

And fori 2n- k, 2n+ 1 s;j s,k+ lwehave
i,j;s ,2 n--k)[t, t.,_] -.-

where
a(i,j;i, 2n-k) 0 for all i and j,

a(i, 2nA- 1 l;s, 2n-- k) 0

and finally

a(r,s;f, 2n+ l-d) 0 for all

for all i,s and 1< l< /,

r,s and l_<f, d < k + l.

As we have not changed results obtained by the induction step i --* i A- 1 for
i _< k it follows that (i)-(v) are verified for the induction step k --. k A- 1.

Therefore we end up finally with

(i) For 1 < i, j _< 2n, t is completely determined in all its components if
i-4-j 2n+ l.
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(ii) t,..+_ is completely determined in all its components but the
(2n -t- 1 -/)-component for 1 < i < 2n.

(iii) (t,.+l_) v.+l_, t 1 for 1 _< i j _< 2n and i + j 2n + 1.

(iv) [t., t8] 1 if {i, j} n {r, s, 2n A" 1 r, 2n + 1 s} or i r or
j sandi <_ i,j < 2n.

) " ,2 Wl-- ,s)

forl < i,s <_ 2nandi+s 2n+ 1.

v,*(’j ’)t, for

wherei+j # 2n+ 1 #j+s.

for 1 <i,j<_n

or nA- 1 gi,j _< 2n

l<_i<_n; n+l gj<2n

or l_<j <_ n; n+ 1 < ig 2n

Using that tj &,+_...,+x_ and t.8 t2,+_,.,+x_, we conclude that

if 1_< i,j < n;n+ 1 <_ s< 2n

if l<_i,j,s<n

if n+ l_<i,s<_ 2n;1 <j< n

if l<_j,s< n;n + 1 < i < 2n

if 1_< i,s< n;n+ 1 <_j < 2n

if n+ l<i,j,s<_2n.

Clearly (t t.) e V and t. t commutes with every t, for

So
{r, s} n i,j, 2n -4- 1-- i, 2n + l--j} .

But as t t acts fixed-point-free on B we conclude

(tt.)a= 1 for all 1 _< i,j < 2n.

Therefore we have determined our multiplication table up to the (2n A- 1 i)-
component of t,.+_ and the numbers (i, 2n 1 i, j). If we set (i, j)
0for 1 < i,j _< horn 1 _< i,j _< 2nandi +j 2n+ 1, ijand
(i,j) lforl < i_< n,n+ l_<j_< 2norl_<j g n, nA- 1 < i _< 2n
and i -4-j 2n + 1 we can set
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Further
’(,+I--i,)

and
,sn+_e ,tsn+_,e]

where +_ <,=.+;-,.It. +_.,.. TNs implbs

(.) v(,2+l-,r)=v(2+l-,,)+v(,2+l-,)

+ (2 + i r, 2 + I )

+ (2 + I , 2 + I ).

By chsnging t,s.+;_ necesry by s.+;- we rosy sssume thst

v({,2+l-i,l) =0 for 2{2- I,

v(i, , ) v(, i, ) 0.

Then (.) deterges sll other v (i, 2 + i , ).
So we csn stste:

(9) If G is a nlit extension of V by Ss (2), then G is uniquely deter-
mined. Moreover G is gerat by elements t for 1 i, j 2n, i W j
2n 1, i j which satisfy the relations listed above.

Using (9) and (8) and a result of Griess [5] it follows that if G a nonsplit
extension, that G is quely deterned and that there are such nonsplit
extensions.
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