EXTENSIONS OF ELEMENTARY ABELIAN GROUPS OF ORDER $2^{2 n}$ BY $S_{2 n}(2)$ AND THE DEGREE 2-COHOMOLOGY OF $S_{2 n}(2)^{1}$

BY
Ulrich Dempwolff

Following Artin's notation (see [1]) we denote by $S_{2 n}(2)$ the symplectic group of dimension $2 n$ over the field F_{2} of 2 elements which is defined as a subgroup of $G L(V), V$ a $2 n$-dimensional vector space over F_{2} leaving a nondegenerate, skew-symmetric scalar product invariant. We want to show:

Theorem. Let G be a finite group which satisfies the following conditions:
(i) $V \triangleleft G, V$ is elementary abelian of order $2^{2 n}$,
(ii) $G / V \simeq S_{2 n}(2)$,
(iii) $C_{G}(V) \subseteq V$.

Then G / V acts on V faithfully and one can define a skew symmetric, nondegenerate scalar product which is G / V-invariant. If $n \geq 2$ then either G splits over V or G is a uniquely determined (up to equivalence of extensions) nonsplit extension of V by $S_{2 n}(2)$ and such nonsplit extensions do exist.

We have a corollary.
Corollary. If V denotes the standard F_{2}-module for $S_{2 n}(2)$, then

$$
\operatorname{dim}_{F_{2}} H^{2}\left(S_{2 n}(2), V\right)=1 \quad \text { if } \quad n \geq 2
$$

Remark. By a result of Pollatsek [7], it is known that

$$
\operatorname{dim}_{F_{2}} H^{1}\left(S_{2 n}(2), V\right)=1
$$

A recent result of R. Griess [5] shows that $\operatorname{dim}_{F_{2}} H^{2}\left(S_{2 n}(2), V\right) \geq 1$. We will show that $\operatorname{dim}_{F_{2}} H^{2}\left(S_{2 n}(2), V\right) \leq 1$ which will imply the theorem. The proof follows the same line of arguments as in [2], [3]. Thus we consider for $v \in V^{*}$ the stabilizer H of v in G and determine the structure of $O_{2}(H)$. Then we study the action of $H / O_{2}(H)$ on $O_{2}(H)$. The information obtained in this way will enable us to determine the structure of G in terms of generators and relations. As the arguments used in the proof are very computational, a more group theoretic proof is certainly more desirable. We prove the theorem by a series of lemmas.

By our assumptions we may always V consider as an F_{2} vector space of dimension $2 n$ acted upon by G / V as a subgroup of $G L(2 n, 2)$ faithfully. We will always denote by $E_{i j}$ a square-matrix whose entries are all 0 with the sole exception of the entry 1 for the index pair (i, j). If the matrices which

[^0]are in question have dimension $2 m$ we set for $i+j \neq 2 m+1$,
$$
t_{i j}=I_{2 m}+E_{i j}+E_{2 m+1-j, 2 m+1-i}
$$
and for $1 \leq i \leq 2 m$,
$$
t_{i, 2 m+1-i}=I_{2 m}+E_{i, 2 m+1-i}
$$
where $I_{2 m}$ is the $2 m$-dimensional identity matrix.
It is easy to check that the subgroup X generated by $t_{i j}$ for $i+j \leq 2 m+1$ of $G L(2 m, 2)$ is isomorphic to $S_{2 m}(2)$. Moreover the subgroups
$$
B_{0}=\left\langle t_{i j} \mid t_{i j} \in X ; i<j\right\rangle \quad \text { and } \quad N_{0}=\left\langle t_{i, i+1} t_{i+1, i} t_{i, i+1} \mid 1 \leq i \leq m\right\rangle
$$
form a (B, N)-pair for X. Note that $t_{i j}=t_{2 m+1-j, 2 m+1-i}$.
Throughout the proof we will always denote by $t_{i j}$ either matrices of the type described above or elements of the automorphism group of a F_{2}-vectorspace which act in respect to a fixed basis $v_{1}, \cdots, v_{2 m}$ as described by the matrices.
(1) Let v be a $2 m$-dimensional F_{2} vector space and $\mathfrak{X} \simeq S_{2 m}(2)$ a subgroup of $G L\left(\mathcal{U}_{\mathrm{s}}\right)$. Then one can define a symplectic scalar product on \mathcal{V} which is X-invariant. In particular \mathfrak{X} "acts as a symplectic group" on v.

Proof. The case $m=1$ is trivial and as $A_{8} \simeq G L(4,2)$ has only one conjugacy class of subgroups isomorphic to $\Sigma_{6} \simeq S_{4}(2)$ the assertion is true for $m=2$.

Choose an elementary abelian subgroup ε in \mathfrak{X} of order 3^{m}. As F_{4} is a splitting field for ε we have a decomposition $v=V_{1} \oplus \cdots \oplus V_{r}$ in irreducible \mathcal{E}-invariant subspaces where $\operatorname{dim} v_{i}=1$ or 2 for $1 \leq i \leq r$. As \mathcal{E} acts faithfully it follows $r=m$ and $\operatorname{dim} v_{i}=2$ for $1 \leq i \leq m$. For $e, f \in \mathcal{E}$ we introduce an equivalence relation by $e \approx f$ if and only if $\operatorname{dim}[e, v]=\operatorname{dim}[f, v]$. We have exactly $m+1$ equivalence classes say $\mathfrak{C}_{0}, \cdots, \mathfrak{C}_{m}$ with $\operatorname{dim}[e, \mathcal{V}]=2 i$ for $e \in \mathfrak{C}_{i}$. Then

$$
\left|\mathfrak{C}_{i}\right|=\binom{m}{i} 2^{i} \quad \text { for } \quad 0 \leq i \leq m
$$

As $m \geq 3$ we have

$$
\begin{equation*}
\left|\mathfrak{C}_{0}\right|<\left|\mathfrak{C}_{1}\right|<\left|\mathfrak{C}_{i}\right| \text { for } 2 \leq i \leq m \tag{*}
\end{equation*}
$$

If $e \not \approx f f$ then e and f can not be conjugate in \mathfrak{X}. \mathfrak{X} has exactly m conjugacy classes of elements of order 3 and so \mathfrak{C}_{i} for $1 \leq i \leq m$ are the intersection of these classes with \mathcal{E} and by (*) and the structure of $S_{2 m}(2)$ for $r \in \mathcal{C}_{1}$ we must have

$$
C_{x}(r)=\langle r\rangle \times \mathscr{L}
$$

where $\mathcal{L} \simeq S_{2 m-2}(2)$ and $\&$ acts faithfully on $C_{V}(r)$ and trivially on $[r, \mathcal{V}]$. Assume $r_{0} \in \mathcal{C}_{1}, r_{0} \neq r$ or r^{-1} and $C_{z}\left(r_{0}\right)=\left\langle r_{0}\right\rangle \times \mathscr{L}_{0}$, with $\mathscr{L}_{0} \simeq S_{2 m-2}(2)$. Then

$$
C_{\mathfrak{Z}}\left(r, r_{0}\right)=\langle r\rangle \times\left\langle r_{0}\right\rangle \times\left(\mathfrak{L} \cap \mathscr{L}_{0}\right)
$$

and $\mathfrak{L} \cap \mathscr{L}_{0} \simeq S_{2 m-4}(2)$. By induction there is a \mathscr{L}_{0}-admissible symplectic scalar product on $C_{V}\left(r_{0}\right)$ and an \mathcal{L}-admissible symplectic scalar product on $C_{v}(r)$ and an $\mathcal{L} \mathscr{L}_{0}$-admissible one on $C_{v}\left(r, r_{0}\right)$. We have $C_{v}(r)=$ $C_{\mathcal{V}}\left(r, r_{0}\right) \oplus \mathscr{F}$ where $C_{\mathcal{V}}\left(r, r_{0}\right)$ and $\mathfrak{H C}$ are regular subspaces, mutually orthogonal, in respect to the scalar product of $C_{v}(r)$ which was induced on $C_{v}(r)$ by $C^{x}(r)$. In the same manner we have a orthogonal decomposition $C_{V}\left(r_{0}\right)=$ $C_{V}\left(r, r_{0}\right) \oplus \mathscr{F}_{0}$. Note that the symplectic scalar product induced on $C_{V}\left(r, r_{0}\right)$ by $\mathscr{L}, \mathscr{L}_{0}, \mathfrak{L} \cap \mathscr{L}_{0}$ is always the same. Clearly $\mathcal{V}=C_{\mathcal{V}}\left(r_{0}, r\right) \oplus \mathscr{H} \oplus \mathfrak{H}_{0}$. Reading this direct sum as a orthogonal sum we define a symplectic scalar product on \mathcal{V}. Certainly this scalar product is \mathcal{L} - and \mathscr{L}_{0}-admissible. As $\mathfrak{X}=\left\langle\mathscr{L}, \mathscr{L}_{0}\right\rangle$ the assertion follows.

Using (1) we now choose a basis $v_{1}, v_{2}, \cdots, v_{2 n}$ of V such that $\left\{v_{1}, v_{2 n}\right\}$, $\left\{v_{2}, v_{2 n-1}\right\}, \cdots,\left\{v_{n}, v_{n+1}\right\}$ are hyperbolic pairs in respect to the action of G / V. In particular there are elements $\tau_{i j} \epsilon G-V$ such that the action of $\tau_{i j}$ in respect to our fixed basis is described by matrices of the form $t_{i j}$ (here we have $m=n$) and always $\tau_{i j}^{2} \in V$.

Without proof we state:
(2) Let the $t_{i j}$'s have their fixed meaning and set

$$
X=\left\langle t_{i j} \mid i+j \leq 2 n+1\right\rangle \simeq S_{2 n}(2)
$$

Set $s=t_{n-1, n} t_{n, n-1} t_{n-1, n} t_{n+1, n+2} t_{n+2, n+1} t_{n+1, n+2}$. Then the classes of involutions in X are represented by

$$
t_{2 n, 1}, t_{2 n, 1} t_{2 n-1,2}, \cdots, t_{2 n, 1} \cdots t_{n+1, n}
$$

and

$$
y, t_{2 n, 1} t_{2 n-1,2} y, \cdots, t_{2 n, 1} t_{2 n-1,2} \cdots t_{n+4, n-3} t_{n+3, n-2}^{\alpha} y
$$

where $y=\left(t_{n, n+1} s\right)^{2}$ and $\alpha=1$ if n is even and $\alpha=0$ if n is odd.
(3) If $\tau \in G-V$ such that $\tau^{2} \in V$ then there is a t in τV such that $t^{2}=1$.

Proof. Choose elements $\rho_{1}, \cdots, \rho_{n}$ of order 3 in $G-V$ such that ρ_{i} normalizes $\left\langle v_{i}, v_{2 n+1-i}\right\rangle$ and centralizes

$$
\left\langle v_{1}, \cdots, v_{i-1}, v_{i+1}, \cdots, v_{2 n-i}, v_{2 n+2-i}, \cdots, v_{2 n}\right\rangle
$$

Set $Y=\left\langle\rho_{i} \mid 1 \leq i \leq n\right\rangle V$. Then Y / V is elementary of order 3^{n} and Y / V acts fixed-point-free on V. Denote by σ an element in $G-V$ which acts as s on V where s has the meaning as in (2). Then

$$
Z=\left\langle\tau_{2 n, 1}, \tau_{2 n-1,2}, \cdots, \tau_{n+1, n}, \sigma\right\rangle
$$

normalizes Y. Using a Frattini argument it follows that for every $\chi \in Z$, $\chi^{2} \in V$ there is an $x \in \chi V$ with $x^{2}=1$. Now using (2) the assertion follows.
(4) There are involutions $t_{21} \in \tau_{21} V$ and $t_{2 n-1,2} \in \tau_{2 n-1,2} V$ such that

$$
\left\langle t_{21}, t_{2 n-1,2}\right\rangle \simeq D_{8} \quad \text { and } \quad\left\langle t_{21}, t_{2 n-1,2}\right\rangle \cap V=1
$$

Furthermore there is an involution $t_{2 n, 1} \in \tau_{2 n, 1} V$ such that one of the following possibilities is true
(i) $\left[\left\langle t_{21}, t_{2 n-1,2}\right\rangle, t_{2 n, 1}\right]=1$
(ii) $\left[t_{2 n, 1}, t_{2 n-1,2}\right]=v_{1},\left[t_{2 n, 1}, t_{21}\right]=v_{2 n-1}$
and

$$
\left[v_{2 n} t_{2 n, 1},\left\langle t_{21},\left(t_{21} t_{2 n-1,2}\right)^{2}\right\rangle\right]=\left[v_{2 n} t_{2 n-1,2},\left\langle t_{2 n, 1}, v_{2 n} t_{2 n, 1}\right\rangle\right]=1
$$

Proof. As $\left\langle\tau_{21}, \tau_{2 n-1,2}, \tau_{2 n, 1}\right\rangle$ centralizes the nonsingular symplectic subspace $\left\langle v_{3}, v_{4}, \cdots, v_{2 n-2}\right\rangle$ we may restrict our attention to the case $n=2$. Using the same Frattini argument as in (3) we find involutions t_{21}, t_{32} such that $\left\langle t_{21}, t_{32}\right\rangle \simeq D_{8}$ and $\left\langle t_{21}, t_{32}\right\rangle \cap V=1$. Choose an involution t_{41} in $\tau_{41} V$ and set $\tau=t_{32}, \sigma=t_{21}, j=t_{41}$ and $\xi=\tau \sigma$. By changing j if necessary by v_{3} we may assume $[\tau, j] \epsilon\left\langle v_{1}\right\rangle$.
ξ^{2} is an involution and so $\left[j, \xi^{2}\right] \epsilon\left\langle v_{1}, v_{2}\right\rangle$. Assume $[j, \xi]=v_{1}^{\alpha} v_{2}^{\beta} v_{3}^{\gamma} v_{4}^{\delta}$, then $\left[j, \xi^{2}\right]=v_{8}^{\delta} w$ where $w \in\left\langle v_{1}, v_{2}\right\rangle$. So $\delta=0$ and $\left[j, \xi^{2}\right]=v_{1}^{\beta} v_{2}^{\gamma}$. Now choose $\rho \in G-V$ such that

$$
\xi^{2} V \xrightarrow{\rho} \pi j V \xrightarrow{\rho} \pi j \xi^{2} V
$$

and ρ shall act fixed-point-free on $\left\langle\xi^{2}, \tau j\right\rangle V$. By $\left.[6 ; V, 8.9 \mathrm{c})\right]$,

$$
\xi^{2}\left(\xi^{2}\right)^{\rho}\left(\xi^{2}\right)^{\rho^{2}}=1
$$

$\operatorname{Set}[\tau, j]=v_{1}^{\chi}$. Then

$$
\left(\xi^{2}\right)^{\rho} \in v_{4}^{\chi} \tau j\left\langle v_{1}, v_{2}\right\rangle \quad \text { and } \quad\left(\xi^{2}\right)^{\rho^{2}} \epsilon v_{3}^{\beta+\chi} v_{4}^{\gamma+\beta+\chi} \tau j \xi^{2}\left\langle v_{1}, v_{2}\right\rangle .
$$

On the other hand

$$
\left(\xi^{2}\right)^{\rho^{2}} \epsilon v_{4}^{\chi} \pi j \xi^{2}\left\langle v_{1}, v_{2}\right\rangle
$$

Hence $\beta=\chi=\gamma$ and

$$
[j, \tau]=v_{1}^{\chi}, \quad[j, \xi]=v_{1}^{\alpha} v_{2}^{x} v_{3}^{\chi}, \quad\left[j, \xi^{2}\right]=v_{1}^{\chi} v_{2}^{\chi}
$$

As $C_{V}(\sigma, j)=\left\langle v_{1}, v_{3}\right\rangle$ we have $[j, \sigma]=v_{1}^{\epsilon} v_{3}^{\delta}$. So

$$
v_{1}^{\alpha} v_{2}^{\chi} v_{3}^{\chi}=[j, \xi]=[j, \sigma \tau]=v_{1}^{\chi+\epsilon} \imath_{2}^{\delta} v_{3}^{\delta}
$$

which implies $\chi+\varepsilon=\alpha$ and $\delta=\chi$. If we replace j by $v_{2}^{\alpha+x} j$ and denote it now by j we have

$$
[j, \tau]=v_{1}^{\chi}, \quad[j, \xi]=v_{1}^{\chi} v_{2}^{\chi} v_{3}^{\chi}, \quad\left[j, \xi^{2}\right]=v_{1}^{\chi} v_{2}^{\chi}, \quad[j, \sigma]=v_{3}^{\chi}
$$

For $\chi=0$ we get case (i) of (4) and $\chi=1$ implies (ii). As an immediate corollary we have:
(4') If V is elementary of order 2^{4} and $G / V \simeq \Sigma_{6}$ and G does not split over V an S_{2}-subgroup of G is uniquely determined.
(5) Denote by H the centraluzer of v_{1} in G and set $A=O_{2}(H)$. Then A possesses a H-admissible subgroup X of index 2 such that $A=X\left\langle v_{2 n}\right\rangle$ and $1=X \cap\left\langle v_{2 n}\right\rangle$ and

$$
A / D(A)=\left\langle v_{2 n}\right\rangle D(A) / D(A) \times X / D(A)
$$

is an H / A-invariant decomposition where $D(A)$ denotes the Frattini subgroup of A.

Further one of the following cases is true:
(i) X is the direct product of an extra special group Y of width $2 n-2$ and type $(+)$ with a group $\langle w\rangle$ of order 2 . If $V_{0}=\left\langle v_{1}, \cdots, v_{2 n-1}\right\rangle$ then $V_{0} \subseteq Y$, $Z(Y)=\left\langle v_{1}\right\rangle$ and $Z(X)=\left\langle v_{1}, w\right\rangle$ is elementary abelian of order 4.
(ii) $X=Y\langle w\rangle$ where Y is extra special of width $2 n-2,|w|=$ $4,[Y,\langle w\rangle]=1, Y \cap\langle w\rangle=\left\langle v_{1}\right\rangle$ and $Z(X)=\langle w\rangle$.

Proof. A / V is elementary abelian of order $2^{2 n-1}$ and H / A acts faithfully on A / V and centralizes $\left\langle\tau_{2 n, 1}\right\rangle V / V$. Choose involutions $w_{1} \in \tau_{21} V, w_{2} \in \tau_{31} V$, $\cdots, w_{2 n-1} \epsilon \tau_{2 n, 1} V$. Then $A=\left\langle v_{1}, \cdots, v_{2 n}, w_{1}, \cdots, w_{2 n-1}\right\rangle$. Certainly, $A^{\prime} \subseteq V$. Set $V_{0}=\left\langle v_{1}, \cdots, v_{2 n-1}\right\rangle$. Then $V_{0} \triangleleft H$. No element in $A-V$ commutes with any element in $v_{2 n} V_{0}$. Therefore if $a \in A$, then $a^{2} \in V_{0}$. But clearly $V_{0} \subseteq A^{\prime}$ and so $A^{\prime}=D(A)=V_{0}$ and $Z(A)=\left\langle v_{1}\right\rangle$. We use the "bar convention" for groups and elements in A modulo $Z(A)$. Obviously $\bar{V}_{0} \subseteq Z(\bar{A})$. Further

$$
C_{A / A^{\prime}}(H / A)=\left\langle v_{2 n}, w_{2 n-1}\right\rangle A^{\prime} / A^{\prime}
$$

Using (4) for $\bar{x} \epsilon\left(w_{1} V_{0}\right)^{-}$one of the following statements is true:
(i) $\left[\bar{x}, \bar{w}_{2 n-1}\right]=1$.
(ii) $\left[\bar{x},\left(v_{2 n} w_{2 n-1}\right)^{-}\right]=1$.

As $\left(w_{2 n-1} V_{0}\right)^{-}$and $\left(v_{2 n} w_{2 n-1} V_{0}\right)^{-}$are H / A-invariant cosets and H / A acts transitively on $A / V\left\langle w_{2 n-1}\right\rangle$ we may assume that for each involution $\bar{x} \epsilon \bar{A}-\bar{V}$ one of the following statements is true:
(i) $\left[\bar{x}, \bar{w}_{2 n-1}\right]=1$.
(ii) $\left[\bar{x},\left(v_{2 n} w_{2 n-1}\right)^{-}\right]=1$.

In case (i) we set $\bar{w}=\left(w_{2 n-1}\right)^{-}$in case (ii) we set $\bar{w}=\left(v_{2 n} w_{2 n-1}\right)^{-}$. So

$$
Z(\bar{A})=Z_{2}(A) /\left\langle v_{1}\right\rangle=\left(V_{0}\langle w\rangle\right)^{-}
$$

and (4) implies that for $\bar{a} \in \bar{A}$ either $\bar{a}^{2}=1$ or $\left(\left(v_{2 n} a\right)^{-}\right)^{2}=1$.
For each pair of involutions $\bar{a}, \bar{b} \in \bar{A}-(V\langle w\rangle)^{-}$such that $\mid\langle\bar{a}, \bar{b}\rangle(V\langle w\rangle)^{-} /$ $(V\langle w\rangle)^{-} \mid=4$ there is an element ρ of order 3 in H such that ρ permutes the elements in

$$
\langle\bar{a}, \bar{b}\rangle^{*}(V\langle w\rangle)^{-} /(V\langle w\rangle)^{-} .
$$

Hence $\bar{a}^{\rho} \epsilon \bar{b}\left(V_{0}\langle w\rangle\right)^{-}$and $\bar{a}^{\rho^{2}} \epsilon(a b)^{-}(V\langle w\rangle)^{-}$. Assume $(a b)^{-}$is not an involution, i.e. $[\bar{a}, \bar{b}] \neq 1$. As $\bar{a}^{\rho^{2}}$ is an involution we have $\bar{a}^{\rho^{2}} \epsilon\left(a b v_{2 n}\right)^{-}\left(V_{0}\langle w\rangle\right)^{-}$by the above. So $\left(a b v_{2 n}\right)^{-}$has order 2 and therefore

$$
1=[\bar{a}, \bar{b}]\left[(a b)^{-},\left(v_{2 n}\right)^{-}\right]
$$

Therefore if $\bar{a}, \bar{b} \in \bar{A}-(V\langle w\rangle)^{-}$are noncommuting involutions, then

$$
[\bar{a}, \bar{b}]=\bar{v}_{2 n}^{(a b)-} \bar{v}_{2 n}
$$

Assume \bar{b} and \bar{c} are commuting involutions in \bar{A} such that

$$
(V\langle w\rangle)^{-} \neq(b V\langle w\rangle)^{-} \neq(c V\langle w\rangle)^{-} \neq(V\langle w\rangle)^{-}
$$

Assume further that \bar{a} does not commute with \bar{c}; then using that \bar{A} has class 2 we conclude

$$
[\bar{a}, \bar{b} \bar{c}]=[\bar{a}, \bar{b}][\bar{a}, \bar{c}]
$$

and

$$
\begin{aligned}
{\left[\bar{a},(b c)^{-}\right] } & =\bar{v}_{2 n}\left(\bar{v}_{2 n}\right)^{(a b c)^{-}} & & \text {if }\left[\bar{a},(b c)^{-}\right] \neq 1 \\
& =1 & & \text { if }\left[\bar{a},(b c)^{-}\right]=1
\end{aligned}
$$

and

$$
\begin{aligned}
{[\bar{a}, \bar{b}][\bar{a}, \bar{c}] } & =\bar{v}_{2 n}\left(\bar{v}_{2 n}\right)^{(a c)-} \bar{v}_{2 n}\left(\bar{v}_{2 n}\right)^{(a b)-}- & & \text { if } \quad[\bar{a}, \bar{b}] \neq 1 \\
& =\bar{v}_{2 n}\left(\bar{v}_{2 n}\right)^{(a c)-} & & \text { if }[\bar{a}, \bar{b}]=1 .
\end{aligned}
$$

So we may conclude, if $\bar{a} \in \bar{A}-(V\langle w\rangle)^{-}$is an involution and there is an involution $\bar{b} \in \bar{A}-\langle\bar{a}\rangle(V\langle w\rangle)^{-}$which does not commute with \bar{a} then no involution in $\bar{A}-\langle\bar{a}\rangle(V\langle w\rangle)^{-}$will commute with \bar{a}. Assume this is the case. Let $\bar{a} \in \bar{A}-(V\langle w\rangle)^{-}$and $\bar{b} \in \bar{A}-(V\langle w, a\rangle)^{-}$be involutions; then $\left[\bar{v}_{2 n} \bar{a}, \bar{v}_{2 n} \bar{b}\right]=1$ and it follows that $\bar{A}_{0}=\left\langle Z(\bar{A}),\left(v_{2 n} w_{1}\right)^{-}, \cdots,\left(v_{2 n} w_{2 n-2}\right)^{-}\right\rangle$is an abelian subgroup of index 2 in \bar{A} and \bar{A}_{0} is of type ($2,4,4, \cdots, 4$). Let A_{0} be the counter image of \bar{A}_{0} in A. Then A_{0} has class 2 and $Z\left(A_{0}\right) \subseteq\left\langle v_{1}, w\right\rangle$. Now choose $a \in A_{0}$ of order 4. Then for every $b \in A_{0}$ we have $\left[a^{2}, b\right]=[a, b]^{2}=1$. So $\bar{X}=\left\langle\bar{x}^{2} \mid \bar{x} \in \bar{A}_{0}\right\rangle \subseteq\left(Z\left(\bar{A}_{0}\right)\right)^{-}$. But as $a^{2} \epsilon v_{2 n} v_{2 n}^{a}\left\langle v_{1}\right\rangle$ for each a of order 4 it follows $\left|X \cap V_{0}\right| \geq 4$, a contradiction.

We have shown that every pair of involutions in $\bar{A}-\bar{V}\langle\bar{w}\rangle$ commutes. It follows that $\bar{X}=\left\langle Z(\bar{A}), \bar{w}, \bar{w}_{1}, \bar{w}_{2}, \cdots, \bar{w}_{2 n-2}\right\rangle$ is elementary abelian of order $2^{4 n-3}$. Let X be the complete counter image of X. Then $X^{\prime}=D(X)=$ $\left\langle v_{1}\right\rangle$ and $Z(X)=\left\langle v_{1}, w\right\rangle$.

Set $Y=\left\langle V_{0}, w_{1}, \cdots, w_{2 n-2}\right\rangle$. Then Y is extra special of type $(+)$ as $V_{0} \subseteq Y . \quad$ (An extra special group X of order $2^{2 n+1}$ is called of type (+) if it contains an elementary abelian group of order 2^{n+1}.) Finally \bar{X} char \bar{A} : As for every $\bar{x} \epsilon \bar{v}_{2 n} Z(\bar{A})$ we have $C_{\bar{A}}(\bar{x})=\langle\bar{x}\rangle Z(\bar{A})$ it follows that an automorphism α of \bar{A} has the property $\bar{X}^{\alpha} \cap \bar{v}_{2 n} Z(\bar{A})=\varnothing$

As $\bar{A}-\left(\bar{v}_{2 n} Z(\bar{A}) \cup \bar{X}\right)$ is the set of elements of order 4 we have shown that X is H-admissible.

The following fact is an easy consequence of the result of Pollatsek [7] and (1).
(6) Let v be a $(2 n+1)$-dimensional F_{2} vector space and assume there is a subgroup $\mathfrak{X} \simeq S_{2 n}(2)$ of $G L(\mathcal{V})$ such that \mathfrak{X} centralizes $v \in \mathcal{V}^{*}$ and acts faithfully on $\mathcal{V} /\langle v\rangle$. Suppose there is no \mathfrak{X}-admissible complement of $\langle v\rangle$ in v. Then \mathcal{V} has a basis $v, v_{1}, \cdots, v_{2 n}$ such that $\left\{v_{i}+\langle v\rangle, v_{2 n+1-i}+\langle v\rangle\right\}$ are hyperbolic pairs with respect to the action of \mathfrak{X} on $\mathfrak{V} /\langle v\rangle$ for $1 \leq i \leq n$. If $\mathfrak{x} \in \mathfrak{X}$ is represented on $v /\langle v\rangle$ in respect to the basis $v_{i}+\langle v\rangle(1 \leq i \leq 2 n)$ by the matrix $X=\left(x_{i j}\right)$
then the matrix of \mathfrak{x} with respect to the basis of \mathcal{v} has the form

$$
\left[\begin{array}{ll}
1 & 0 \\
K(X) & X
\end{array}\right] \text { where } K(X)=\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{2 n}
\end{array}\right) \text { and } \alpha_{i}=\sum_{j=1}^{n} x_{i j} x_{i, 2 n+1-j}
$$

Now (5) implies the existence of an H-admissible subgroup $X \subset A$ such that $X=Y\langle w\rangle$ and we have either $X=Y \times\langle w\rangle$ and $|w|=2$ or $X=Y\langle w\rangle$, $\langle w\rangle \cap Y=Z(Y),|w|=4$ where Y is in both cases an extra special 2-group of width $n-1$ and type $(+)$. We consider $v=X /\left\langle v_{1}\right\rangle$ as a F_{2} vector space. If we define $q(\alpha)=a^{2}$ where $\alpha \in \mathcal{V}$ and $a \in \alpha$ and $(\alpha, \beta)=[a, b]$ for $\alpha, \beta \in \mathcal{V}$ and $a \epsilon \alpha, b \epsilon \beta$, then q is a quadratic form on V and (,) is the symplectic bilinear form belonging to q. We have to distinguish two cases according to the structure of X.
(i) $|w|=2, Y \cap\langle w\rangle=1$. Then v is a orthogonal vectorspace such that $\operatorname{rad} v=\left\langle w\left\langle v_{1}\right\rangle\right\rangle, v /\left\langle w\left\langle v_{1}\right\rangle\right\rangle$ is a regular orthogonal vector space of maximal index and dimension $4 n-4$.
(ii) $|w|=4, Y \cap\langle w\rangle=Z(X)$. Then v is a (4n-3)-dimensional, regular orthogonal vector space.

According to (6) and the proof of (5) we have to study the following situation (here $n=m+1$):

Given a $(4 m+1)$-dimensional F_{2} vector space v with a basis w, w_{1}, \cdots, $w_{2 m}, v_{1}, \cdots, v_{2 m}$ and an orthogonal form q and a bilinear form (,) such that either

$$
\begin{gather*}
q(w)=0, \quad q\left(v_{i}\right)=q\left(w_{i}\right)=0 \text { for } 1 \leq i \leq 2 m \tag{i}\\
(w, v)=0 \text { for all } v \in \mathcal{V}, \\
\left(v_{i}, w_{j}\right)=\delta_{i j} \text { for } 1 \leq i, j \leq 2 m \\
\left(v_{i}, v_{j}\right)=\left(w_{i}, w_{j}\right)=0 \text { for } 1 \leq i, j \leq 2 m \\
q\left(\sum_{i} a_{i} v_{i}+\sum_{j} b_{j} w_{j}+c w\right)=\sum_{i=1}^{2 m} a_{i} b_{i}
\end{gather*}
$$

or

$$
\begin{gather*}
q(w)=1, \quad q\left(v_{i}\right)=q\left(w_{i}\right)=0 \text { for } 1 \leq i \leq 2 m \tag{ii}\\
(w, v)=0 \text { for all } v \in \mathcal{V}, \\
\left(v_{i}, w_{j}\right)=\delta_{i j} \text { for } 1 \leq i, j \leq 2 m \\
\left(v_{i}, v_{j}\right)=\left(w_{i}, w_{j}\right)=0 \text { for } 1 \leq i, j \leq 2 m \\
q\left(\sum a_{i} v_{i}+\sum_{j} b_{j} w_{j}+c w\right)=\sum_{i} a_{i} b_{i}+c
\end{gather*}
$$

By (5) it is clear that $H / X \simeq S_{2 n-2}(2) \times Z_{2}$. Thus there is a subgroup $\mathfrak{X} \simeq S_{2 m}(2)$ of $G L(V)$ such that \mathfrak{X} normalizes $v_{1}=\left\langle v_{1}, \cdots, v_{2 m}\right\rangle$ and respects the form q and the scalar product (,). Note that only in the case $m \geq 3$ the group \mathfrak{X} corresponds to a unique subgroup of H / X.

Furthermore the structure of H tells us that \mathfrak{X} acts reducibly but not completely reducibly on V / V_{1} and centralizes in particular $w+V_{1}$. In any case we may assume that we have chosen v_{i}, w_{i} for $1 \leq i \leq 2 m$ in such a way, that if $\mathfrak{x} \epsilon \mathfrak{X}$ induces the matrix X on $V /\left\langle\mathcal{V}_{1}, w\right\rangle$ with respect to the basis $w_{1}+\left\langle\nu_{1}, w\right\rangle, \cdots, w_{2 m}+\left\langle\nu_{1}, w\right\rangle$ that the matrix induced by \mathfrak{x} with respect to the basis $w, v_{1}, \cdots, v_{2 m}, w_{1}, \cdots, w_{2 m}$ of v has the form

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & S(X) & 0 \\
K(X) & Y(X) & X
\end{array}\right]
$$

There $K(X)$ denotes the function described in (6). As $\left(v_{i}, w_{j}\right)=\delta_{i j}$ for $1 \leq i, j \leq 2 m$ we have $S(X)=\left(X^{-1}\right)^{t}$ and Y is function such that

$$
\begin{equation*}
Y(X Z)=Y(X)\left(Z^{-1}\right)^{t}+X Y(Z) \tag{A}
\end{equation*}
$$

As we have $\left(w_{i}, w_{j}\right)=0$ for $1 \leq i, j \leq 2 m$ it follows that

$$
\begin{equation*}
Y(X) X^{t}=X(Y(X))^{t} \tag{B}
\end{equation*}
$$

If we set $Y(X)=\left(y_{i j}\right), X=\left(x_{i j}\right)$ and $K(X)=\left(k_{i}\right)$ for $1 \leq i \leq 2 m$ implies

$$
\begin{align*}
0 & =\sum_{l=1}^{2 m} y_{i l} x_{i l} & & \text { for case (i) } \\
& =\sum_{l=1}^{2 m} y_{i l} x_{i l}+k_{i} & & \text { for case (ii). } \tag{C}
\end{align*}
$$

In other words the diagonal elements of $Y(X) X^{t}$ are 0 in case (i) and equal k_{i} in case (ii).

We now determine the function Y in case (i) as well as case (ii). Therefore we set of $1 \leq i, j \leq 2 m$,

$$
\begin{gathered}
K_{j i}=Y\left(t_{i j}\right), \\
K_{i j}=\left(k_{r s}^{i j}\right) \text { for } \\
\boldsymbol{\tau}_{i j}=r, s \leq 2 m \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & t_{i j} & 0 \\
K\left(t_{i j}\right) & K_{i j} & t_{j i}
\end{array}\right]}
\end{gathered}
$$

Using $\tau_{i j}^{2}=1$ it follows that $0=K_{i j} t_{i j}+t_{j i} K_{i j}$. Further $K_{i j} t_{i j}=$ $t_{j i}\left(K_{i j}\right)^{t}$.

These equations imply for $i+j \neq 2 m+1$,

$$
\begin{gathered}
k_{s l}^{i j}=k_{l s}^{i j} \text { for all } 1 \leq s, l \leq 2 m \\
k_{i l}^{i j}=k_{2 m+1-j, l}^{i j}=0 \text { for all } 1 \leq l \leq 2 m, l \neq j, 2 m+1-i \\
k_{i, 2 m+1-i}^{i j}=k_{2 m+1-j, j}^{i j}
\end{gathered}
$$

Finally using equation (C) we have

$$
\begin{gathered}
k_{l l}^{i j}=0 \text { for } 1 \leq l \leq 2 m \text { and } l \neq j, 2 m+1-j, \\
k_{i j}^{i j}=k_{j j}^{i j}, \quad k_{2 m+1-j, 2 m+1-i}^{i j}=k_{2 m+1-i, 2 m+1-i}^{i j} .
\end{gathered}
$$

If $i+j=2 m+1$ we have again

$$
K_{i, 2 m+1-i}=\left(K_{i, 2 m+1-i}\right)^{t}
$$

and

$$
\begin{gathered}
k_{i l}^{i, 2 m+1-i}=0 \quad \text { for all } 1 \leq l \leq 2 m, \quad l \neq 2 m+1-i \\
k_{i, 2 m+1-i}^{i, 2 m+1-i}=k_{2 m+1-i, 2 m+1-i}^{i, 2 m+1-i}+\varepsilon
\end{gathered}
$$

where $\varepsilon=0$ in case (i) and $\varepsilon=1$ in case (ii).
Using the equation $\left[\tau_{i j}, \tau_{r s}\right]=1$ for $\{r, s\} \cap\{i, j, 2 m+1-i, 2 m+1-j\}=$ \varnothing we get by (A) the equation

$$
K_{i j} t_{r s}+t_{j i} K_{r s}=K_{r s} t_{i j}+t_{s r} K_{i j}
$$

which implies

$$
k_{r s}^{i j}=0 \text { for all }\{r, s\} \cap\{i, j, 2 m+1-i, 2 m+1-j\}=\varnothing
$$

and $r+s \neq 2 m+1$. Furthermore we have for $\{r, s\} \cap\{i, j, 2 m+1-i$ $2 m+1-j\}=\varnothing$ always $k_{r, 2 m+1-r}^{i j}=k_{s, 2 m+1-8}^{i j}$.

Using $\left[\tau_{r s}, \tau_{i, 2 m+1-i}\right]=1$ for all $\{r, s\} \cap\{i, 2 m+1-i\}=\varnothing$ we get

$$
K_{r s} t_{i, 2 m+1-i}+t_{s r} K_{i, 2 m+1-i}=t_{2 m+1-i, i} K_{r s}+K_{i, 2 m+1-i} t_{r s}
$$

and it follows that

$$
k_{r s}^{i, 2 m+1-\imath}=0 \text { for all }\{r, s\} \cap\{i, 2 m+1-i\}=\varnothing
$$

and $r+s \neq 2 m+1$. Furthermore we have $k_{r, 2 m+1-r}^{i j}=k_{s, 2 m+1-s}^{i j}$ for $\{r, s\} \cap\{i, 2 m+1-i\}=\varnothing$.

Therefore we can write for $r+s \neq 2 m+1$,

$$
\begin{aligned}
K_{r s}= & \sum_{l \neq s} \alpha_{l}(r, s)\left(E_{s l}+E_{l s}\right)+\sum_{l \nLeftarrow 2 m+1-r} \beta_{l}(r, s)\left(E_{2 m+1-r, l}\right. \\
& \left.+E_{l, 2 m+1-r}\right)+\alpha_{r}(r, s) E_{s s}+\beta_{2 m+1-s}(r, s) E_{2 m+1-r, 2 m+1-r} \\
& +\gamma(r, s) \sum_{k \neq r, s, 2 m+1-s, 2 m+1-r} E_{k, 2 m+1-k}
\end{aligned}
$$

Note that the entry for the index $(2 m+1-r, s)$ and $(s, 2 m+1-r)$ is $\alpha_{2 m+1-r}(r, s)+\beta_{s}(r, s)$. We will later denote this entry by $\varepsilon(r, s)$. Further for all $1 \leq r \leq 2 m$,

$$
\begin{aligned}
K_{r, 2 m+1-r}= & \sum_{k \neq 2 m+1-r} \alpha_{k}(r, 2 m+1-r)\left(E_{2 m+1-r, k}+E_{k, 2 m+1-r}\right) \\
& +\tilde{\alpha}_{r}(r, 2 m+1-r) E_{2 m+1-r, 2 m+1-r} \\
& +\gamma(r, 2 m+1-r) \sum_{k \neq r, 2 m+1-r} E_{k, 2 m+1-k}
\end{aligned}
$$

Here $\tilde{\alpha}_{r}(r, 2 m+1-r)=\alpha_{r}(r, 2 m+1-r)$ in case (i) and

$$
\tilde{\alpha}_{r}(r, 2 m+1-r)=\alpha_{r}(r, 2 m+1-r)+1 \quad \text { in case (ii). }
$$

The equation $\left[\tau_{r s}, \tau_{r j}\right]=1$ for $j \neq 2 m+1-r, s$ implies

$$
\begin{equation*}
\beta_{r}(r, j)=\gamma(r, j)+\alpha_{2 m+1-j}(r, s) \tag{1.1}
\end{equation*}
$$

and $\left[\tau_{r s}, \tau_{j_{s}}\right]=1$ for $j \neq 2 m+1-s, r$ gives us

$$
\begin{equation*}
\beta_{2 m+1-s}(j, s)=\beta_{2 m+1-s}(r, s) \tag{2.1}
\end{equation*}
$$

The equation $\left[\tau_{r s}, \tau_{r, 2 m+1-r}\right]=1$ leads to

$$
\begin{equation*}
\alpha_{r}(r, s)+\alpha_{r}(r, 2 m+1-r)=\gamma(r, 2 m+1-r) \tag{3.1}
\end{equation*}
$$

and since $\left[\tau_{r, 2 m+1-s}, \tau_{s, 2 m+1-s}\right]=1$ it follows that

$$
\begin{equation*}
\alpha_{s}(s, 2 m+1-s)+\beta_{s}(r, 2 m+1-s)=\gamma(s, 2 m+1-s) \tag{4.1}
\end{equation*}
$$

For $m \geq 3$ and $j \neq r, s, 2 m+1-r, 2 m+1-s$ the equation $\left[\tau_{r s}, \tau_{j, 2 m+1-j}\right.$] $=1$ implies

$$
\begin{gather*}
\alpha_{r}(j, 2 m+1-j)=\alpha_{j}(r, s) \tag{5.1}\\
\alpha_{2 m+1-s}(j, 2 m+1-j)=\beta_{j}(r, s) \tag{5.2}
\end{gather*}
$$

The equation $\left[\tau_{j, 2 m+1-j}, \tau_{r, 2 m+1-r}\right]=1$ for $j \neq 2 m+1-r$ gives us

$$
\begin{equation*}
\alpha_{r}(j, 2 m+1-j)=\alpha_{j}(r, 2 m+1-r) \tag{6.1}
\end{equation*}
$$

For $j+s \neq 2 m+1 \neq r+s$ and $j \neq r$ we have $\left[\tau_{r s}, \tau_{s j}\right]=\tau_{r j}$ which implies

$$
K_{r s} t_{s j} t_{r s}+t_{s r} K_{s j} t_{r s}+t_{s r} t_{j s} K_{r s}=K_{r j} t_{s j}+t_{j r} K_{s j}
$$

Computing both sides of this equation yields

$$
\begin{gather*}
\varepsilon(r, s)+\varepsilon(r, j)+\varepsilon(s, j)+\beta_{s}(r, j)+\alpha_{2 m+1-j}(s, j)=\gamma(r, s) \tag{7.1}\\
\alpha_{r}(r, s)+\alpha_{r}(s, j)=\alpha_{s}(r, j) \tag{7.2}\\
\alpha_{2 m+1-j}(r, s)+\beta_{r}(s, j)=\gamma(r, j) \tag{7.3}\\
\beta_{2 m+1-j}(r, s)+\beta_{2 m+1-s}(r, j)=\beta_{2 m+1-j}(r, j) \tag{7.4}
\end{gather*}
$$

To obtain these equations we must have $m \geq 3$. If $m \geq 4$, then we also obtain $\gamma(r, j)=0$. The equation $\left[\tau_{i k}, \tau_{k, 2 m-1-k}\right]=\tau_{i, 2 m-1-k} \tau_{i, 2 m-1-i}$ implies $K_{i k} t_{k, 2 m+1-k} t_{i k}+t_{k i} K_{k, 2 m+1-k} t_{i k}+t_{k i} t_{2 m+1-k, k} K_{i k}$

$$
\begin{aligned}
= & K_{i, 2 m+1-k} t_{i, 2 m+1-i} t_{k, 2 m+1-k}+t_{2 m+1-k, i} K_{i, 2 m+1-i} t_{k ; 2 m+1-k} \\
& +t_{2 m+1-k, i} t_{2 m+1-i, i} K_{k, 2 m+1-k} .
\end{aligned}
$$

And therefore we have

$$
\begin{align*}
& \varepsilon(i, k)+\alpha_{2 m+1-k}(i, k)+\varepsilon(i, 2 m-1-k)+\tilde{\alpha}_{k}(k, 2 m+1-k) \tag{8.1}\\
& =\beta_{k}(i, 2 m+1-k)+\alpha_{2 m+1-k}(i, 2 m+1-i)+\alpha_{k}(i, 2 m+1-i) \\
& \quad+\alpha_{i}(k, 2 m+1-k)+\alpha_{k}(k, 2 m+1-k)+\gamma(i, 2 m+1-i)
\end{align*}
$$

$$
\begin{align*}
\alpha_{i}(i, k)+\alpha_{k}(i, 2 m+1 & -k) \tag{8.2}\\
& =\alpha_{i}(k, 2 m+1-k)+\gamma(i, 2 m+1-i)
\end{align*}
$$

$$
\begin{align*}
& \varepsilon(i, k)+\tilde{\alpha}_{k}(k, 2 m+1-k)+\varepsilon(i, 2 m+1-k)+\alpha_{2 m+1-k}(i, k) \tag{8.3}\\
& \quad+\alpha_{i}(i, 2 m+1-k)+\alpha_{i}(i, 2 m+1-i) \\
& =\gamma(k, 2 m+1-k)+\alpha_{2 m+1-k}(i, 2 m+1-i) \\
& \begin{array}{r}
\alpha_{i}(i, k)+\alpha_{k}(k, 2 m+1-k)+\alpha_{i}(k, 2 m+1-k) \\
+\beta_{k}(i, 2 m+1-k)+\alpha_{k}(i, 2 m+1-i) \\
\end{array} \quad=\gamma(k, 2 m+1-k) . \tag{8.4}
\end{align*}
$$

Also if $m \geq 3$ we obtain $\gamma(i, 2 m+1-i)=\gamma(i, 2 m+1-k)$. First we assume $m \geq 3$. Using our fixed basis we define $\varphi \in \operatorname{Aut}$ (v) by

$$
\varphi=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & I_{2 m} & 0 \\
0 & S & I_{2 m}
\end{array}\right]
$$

S is a $2 m \times 2 m$ matrix with entries $s_{i j}=\alpha_{i}(j, 2 m+1-j)$ for $i \neq j$ and $i+j \neq 2 m+1$. Further set $s_{i i}=s_{i, 2 m+1-i}=0$. By (6.1), S is well defined. We replace $\tau_{i j}$ by $\varphi^{-1} \tau_{i j} \varphi$ and denote these elements again by $\tau_{i j}$. (This operation is nothing else then replacing the basis $w, v_{1}, \cdots, v_{2 m}, w_{1}$, $\cdots, w_{2 m}$ by $w^{\varphi}, v_{1}^{\varphi}, \cdots, v_{2 m}^{\varphi}, w_{1}^{\varphi}, \cdots, w_{2 m}^{\varphi}$ which has the same properties as the old one.) We have

$$
\begin{aligned}
K_{i, 2 m+1-i}= & \alpha_{i}(i, 2 m+1-i)\left(E_{2 m+1-i, i}+E_{i, 2 m+1-i}\right) \\
& +\tilde{\alpha}_{i}(i, 2 m+1-i) E_{2 m+1-i, 2 m+1-i} \\
& +\gamma(i, 2 m+1-i) \sum_{k \ngtr i, 2 m+1-i} E_{k, 2 m+1-k}
\end{aligned}
$$

Using (5.1) and (5.2) we have

$$
\begin{aligned}
K_{r s}= & \alpha_{r}(r, s)\left(E_{s r}+E_{s s}+E_{r s}\right) \\
& +\beta_{2 m+1-s}(r, s)\left(E_{2 m+1-r, 2 m+1-s}+E_{2 m+1-s, 2 m+1-r}+E_{2 m+1-r, 2 m+1-r}\right) \\
& +\varepsilon(r, s)\left(E_{s, 2 m+1-r}+E_{2 m+1-r, s}\right) \\
& +\gamma(r, s) \sum_{k \neq r, s, 2 m+1-r, 2 m+1-s} E_{k, 2 m+1-k}
\end{aligned}
$$

If $m \geq 4$ then at once $\gamma(k, 2 m+1-k)=\gamma(r, s)=0$, but also (7.3) does imply this equation. Combining (7.2), (7.4), and (8.4) we get finally

$$
\begin{align*}
K_{i, 2 m+1-i} & =\tilde{\alpha}_{i}(i, 2 m+1-i) E_{2 m+1-i, 2 m+1-i} \\
K_{i k} & =\varepsilon(i, k)\left(E_{2 m+1-i, k}+E_{k, 2 m+1-i}\right) \tag{+}
\end{align*}
$$

Looking in the proof of (5) and using the terminology of (5) we have

$$
H / X \simeq S_{2 n-2}(2) \times Z_{2}
$$

where Z_{2} corresponds to the coset $v_{2 n} X$. So in the case of $m \leq 2$ we may choose $\mathfrak{X} \simeq S_{2 m}(2)$ suitably such that $\gamma(k, 2 m+1-k)=0$ by using $\left(t_{k, 2 m+1-k} t_{2 m+1-k, k}\right)^{3}=1$. So we get the equations $(+)$ in the case
$m=1$. In the case $m=2$ again we may assume

$$
\begin{aligned}
K_{i, 2 m+1-i}=\alpha_{i}(i, 2 m+1-i)\left(E_{2 m+1-i, i}\right. & \left.+E_{i, 2 m+1-i}\right) \\
& +\tilde{\alpha}_{i}(i, 2 m+1-i) E_{2 m+1-i, 2 m+1-i}
\end{aligned}
$$

The equation $\left(\tau_{r s} \tau_{s r}\right)^{3}=1$ implies

$$
\varepsilon(r, s)+\varepsilon(s, r)=\alpha_{5-s}(r, s)=\alpha_{5-r}(s, r) \quad \text { and } \quad \beta_{5-r}(s, r)=\beta_{5-s}(r, s)
$$

Then (6.1), (3.1), (4.1), (8.2), and (8.4) again imply finally the equations (+). Now set

$$
\gamma=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & I_{2 m} & 0 \\
0 & \Delta & I_{2 m}
\end{array}\right] \epsilon \text { Aut (V) }
$$

where $\Delta^{t}=\Delta$ and $\Delta=\sum_{l=1}^{2 m} a_{l, 2 m+1-l} E_{l, 2 m+1-l}$. Choose $a_{i, 2 m+1-i}$ in such a way that $a_{2 m, 1}+a_{s, 2 m+1-s}=\varepsilon(2 m, s)$ for $m+1 \leq s \leq 2 m-1$.

We replace now $\tau_{i j}$ by $\tau_{i j}^{\gamma}$ and denote these elements again by $\tau_{i j}$. So we may assume that $\varepsilon(2 m, s)=0$ for $m+1 \leq s \leq 2 m-1$.
(I) Assume that we are in case (i). We have $\tilde{\alpha}_{i}(i, 2 m+1-i)=$ $\alpha_{i}(i, 2 m+1-i)=0$ and so $K_{i, 2 m+1-i}=0$. Using equation (8.3) we have $\varepsilon(i, k)=\varepsilon(i, 2 m+1-k)$. With (7.1) we get $\varepsilon(s, \mu)=\varepsilon(2 m, s)+\varepsilon(2 m, \mu)$ $=0$ if $2 \leq s, \mu \leq 2 m-1$. For $2 \leq k \leq 2 m-1$ we have further

$$
\begin{aligned}
0 & =\varepsilon(2 m, k)=\varepsilon(2 m+1-k, 1)=\varepsilon(2 m+1-k, 2 m+1-1) \\
& =\varepsilon(2 m+1-k, 2 m)
\end{aligned}
$$

So for all possible k, r we have $\varepsilon(r, k)=0$
(II) Assume that we are in case (ii). We have $\tilde{\alpha}_{i}(i, 2 m+1-i)=1$ and (8.3) implies $\varepsilon(i, k)=\varepsilon(i, 2 m+1-k)+1$. Hence $\varepsilon(2 m, l)=1$ for $2 \leq l \leq m$. (7.1) implies $\varepsilon(s, \mu)=\varepsilon(2 m, s)+\varepsilon(2 m, \mu)$. Hence $\varepsilon(s, \mu)=1$ for

$$
\begin{aligned}
(s, \mu) \epsilon\{2, \cdots, m\} \times\{m+1, \cdots & , 2 m-1\} \\
& \mathbf{u}\{m+1, \cdots, 2 m-1\} \times\{2, \cdots, m\}
\end{aligned}
$$

Finally $\varepsilon(2 m, k)=\varepsilon(2 m+1-k, 1)=\varepsilon(2 m+1-k, 2 m)+1$ and so

$$
\begin{aligned}
\varepsilon(j, 2 m) & =1 \text { for } 2 \leq j \leq m \\
& =0 \text { for } m+1 \leq j \leq 2 m-1
\end{aligned}
$$

If we summarize the results of (I) and (II) we can state:
(7) There is a subgroup K of H of index 2 with $K \cap A=X$. If we are in case (i) of (5) then there is an elementary group W of A such that $W V=A$, $W \cap V=Z(X)$ and W is K / A-admissible.

If we are in case (ii) of (5) K / X acts reducibly but not completely reducibly on X / X^{\prime}. The action of K / X on $V /\left\langle v_{1}\right\rangle$ is uniquely determined.
(8) If we are in case (i) of (5) H and G splits over V.

Proof. First we assume that we are in the situation of case (i) of (5). Keeping the same notation we have $A=\left\langle v_{2 n}\right\rangle X$ where X is a H / X-admissible group which is isomorphic to the direct product of a group $\langle w\rangle$ of order 2 with an extra special 2 -group Y of width $n-1$ and type (+).

As every involution in $H / A \simeq S_{2 n-2}(2)$ has a pre-image which is an involution too (see for instance (3)), we have by [4] a subgroup $H_{0} \subset H$ such that $H_{0} A=H$ and $H_{0} \cap A=X . \quad X /\langle w\rangle$ is an extra special group and the situation of (7) applies further to X / X^{\prime}. Hence there is an elementary abelian group $W \subseteq A$ such that $V_{0} W=X, V_{0} \cap W=Z(X)$ and W is H_{0} / X-admissible where V_{0} has the same meaning as in the proof of (5). By the structure of $G L(2 n-1,2)$ we can find a subgroup H_{1} of H_{0} such that $H_{1} X=H_{0} H_{1} \cap A=$ W and H_{1} / W acts on W in such a way that $\left\langle v_{1}\right\rangle$ has a H_{1} / X-invariant complement W_{0}, with $W_{0} \times\left\langle v_{1}\right\rangle=W$. On the other hand there is a subgroup H_{2} of H such that $H_{2} X=H_{0}$ and $H_{2} \cap X=V_{0}$.

Hence with the modular law

$$
H_{1}=H_{1} \cap H_{0}=H_{1} \cap H_{2} W=\left(H_{1} \cap H_{2}\right) W
$$

Hence $H_{1} \cap H_{2}=Z(X)$ and $\left(H_{1} \cap H_{2}\right) / Z(X) \simeq S_{2 n-2}(2)$. As every involution in $\left(H_{1} \cap H_{2}\right) / Z(X)$ has a pre-image which is an involution we have subgroup $H_{3} \subset H_{1} \cap H_{2}, H_{3} \simeq S_{2 n-2}, H_{3} A=H$ and H_{3} normalizes W_{0}. So $W_{0} H_{3} \cap V=1$ and hence we get the assertion for the case (i) by a result of Gaschütz [6; I, 17.4].

From now on we have only to handle the situation described in case (ii) of (5). For $1 \leq i, j \leq 2 n$ and $i+j \neq 2 n+1$ we choose involutions $t_{i j}$ which act as it is suggested by the notation (use (3)). For $1 \leq i \leq 2 n$ choose elements $t_{i, 2 n+1-i}$ of order 4 such that $t_{i, 2 n+1-i}$ acts on V in the way suggested by the notation. By (3) it follows $\left(t_{i, 2 n+1-i}\right)^{2}=v_{2 n+1-i}$.

For $1 \leq i \leq 2 m$ we set $H_{i}=C_{G}\left(v_{i}\right)$ and $A_{i}=O_{2}\left(H_{i}\right)$. With this notation we have

$$
\begin{aligned}
H_{i}=\left\langle t_{r s}\right| 1 \leq r, s \leq 2 n ;\{s, r\} \cap\{i, 2 n+1-i\} & =\varnothing\rangle . V \\
\left\langle t_{r i}\right| & 1 \leq r \leq 2 n ; i \neq r\rangle
\end{aligned}
$$

and

$$
A_{i}=V\left\langle t_{r i} \mid 1 \leq r \leq 2 n ; i \neq r\right\rangle
$$

In the course of the following argument we are going to modify the $t_{i j}$ by elements in V step by step. We say the k-th component of $t_{i j}$ is determined if we do not change $t_{i j}$ in the course of the argument by v_{k} any more. We always make use of the action of H_{i} / X_{i} on X_{i} / X_{i}^{\prime} as it was developed in the proof of (7) where X_{i} corresponds to the subgroup X of A. As we will not change the
order of the $t_{i j}$ the i - and the $(2 n+1-j)$-component of these elements are already determined.

First we consider $H_{2 n}$. We may assume that we have choosen $t_{1,2 n}, t_{2,2 n}, \cdots$, $t_{2 n-1,2 n}$ in such a way that $\left\langle v_{2}, t_{2,2 n}\right\rangle, \cdots,\left\langle v_{2 n-1}, t_{2 n-1,2 n}\right\rangle$ are dihedral groups of order 8 and $\left\langle t_{1,2 n}\right\rangle$ is of order 4 and $X_{2 n}$ is the central product of these groups, where $X_{2 n}$ corresponds to the group X of (5).

As $\left\langle t_{1,2 n}\right\rangle$ commutes with all the dihedral groups, it follows that all components with exception of the $2 n$-component of $t_{1,2 n}$ are determined.

Further there is a skew symmetric matrix $\varnothing=\left(\varphi_{i j}\right)$ with $2 \leq i, j \leq 2 n-1$ and numbers $\alpha(i, j ; k, 2 n)$ for $j \neq k, 1 ; i \neq 2 n+1-k, 2 n$ such that

$$
\left[t_{i j}, t_{k, 2 n}\right]=v_{j}^{\varphi_{k i}} v_{2 n+1-i}^{\varphi_{k, 2 n+1-j} v_{2 n}^{\alpha(i, j ; k, 2 n)}}
$$

for $k \neq 1,2 n$ and $i+j \neq 2 n+1$ and $\left[t_{i, 2 n+1-i}, t_{k, 2 n}\right]=v_{2 n+1-i}^{\varphi_{k i i}} v_{2 n}^{\alpha(i, 2 n+1-i ; k, 2 n)}$
The proof of (7) tells us that we have if necessary to change $t_{i j}$ by v_{1} to obtain these equations. Therefore the 1-component for $t_{i j} 2 \leq i, j \leq 2 n-1$ is determined. Moreover we replace $t_{k, 2 n}$ by $v_{2}^{\varphi_{k, 2}} \cdots v_{2 n-1-1}^{\varphi_{k, 2 n-1}} t_{k, 2 n}$ for $2 \leq k \leq$ $2 n-1$ and denote again this element by $t_{k, 2 n}$. By the proof of (8) it follows that $X_{2 n}$ is still the central product of $\left\langle t_{1,2 n}\right\rangle,\left\langle v_{2}, t_{2,2 n}\right\rangle, \cdots,\left\langle v_{2 n-1}, t_{2 n-1,2 n}\right\rangle$. In this way all components of $t_{k, 2 n}$ for $1 \leq k \leq 2 n-1$ but the $2 n$-component are determined and $\varphi_{i j}=0$ for $2 \leq i, j \leq 2 n-1$.

We have, by the above, numbers $\alpha(i, j ; i, 2 n)$ with

$$
\left[t_{i j}, t_{i, 2 n}\right]=v_{2 n}^{\alpha(i, j ; i, 2 n)}
$$

As $t_{i j}, t_{i, 2 n} \in A_{2 n+1-i}$ there exist elements in $t_{i j} V$ and $t_{i, 2 n} V$ of the same order as $t_{i j}$ and $t_{i, 2 n}$ respectively which do commute. Hence $\alpha(i, j ; i, 2 n)=0$.

Further we have numbers $\gamma(i, 2 n+1-i, 2 n)$ and $\gamma(i, j, 2 n)$ such that

$$
\left[t_{i, 2 n+1-i}, t_{2 n+1-i, 2 n}\right]=v_{2 n+1-i} v_{2 n}^{\gamma(i, 2 n+1-i, 2 n)} t_{i, 2 n} t_{1,2 n} \quad \text { for } \quad 2 \leq i \leq 2 n-1
$$

If $i+j \neq 2 n+1$

$$
\begin{aligned}
{\left[t_{i j}, t_{j, 2 n}\right] } & =v_{2 n+1-i} v_{2 n}^{\gamma(i, j, 2 n)} t_{i, 2 n} \\
& \text { for } 2 \leq i, j \leq n \\
& \text { or } n+1 \leq i, j \leq 2 n-1 \\
& =v_{2 n}^{\gamma(i, j, 2 n)} t_{i, 2 n}
\end{aligned} \quad \begin{array}{ll}
\text { for } 2 \leq i \leq n ; n+1 \leq j \leq 2 n-1 \\
& \text { or } n+1 \leq i \leq 2 n-1 ; 2 \leq j \leq n
\end{array}
$$

We proceed now by induction and assume that we have shown the following for $k \geq 1$.
(i) $\left\langle t_{i, 2 n+1-l}\right| 1 \leq i \leq 2 n$; $\left.i \neq 2 n+1-l\right\rangle$ is an abelian group of type $(4,2, \cdots, 2)$ for $1 \leq l \leq k$.

$$
\begin{align*}
& t_{k, 2 n}, \cdots, t_{3,2 n}, t_{2,2 n} \tag{ii}\\
& t_{k, 2 n-1}, \cdots, t_{3,2 n-1} \\
& \vdots \\
& t_{k, 2 n-k+2}
\end{align*}
$$

are completely determined in all components. The $t_{i, 2 n+1-l}$ for $i \neq 2 n+1-l$ are either completely determined if they are an element listed above or they are completely determined up to their $(2 n+1-l)$-component for $1 \leq l \leq k$.
(iii) For $1 \leq l \leq k$ the following relations hold: There are numbers
$\alpha(i, j ; k, 2 n+1-l), \quad \gamma(i, 2 n+1-i, 2 n+1-l), \quad \gamma(i, j, 2 n+1-l)$ such that

$$
\left.\left[t_{i j}, t_{k, 2 n+1-l}\right]=v_{2 n+1}^{\alpha(i, j ; j, l}{ }^{\alpha}, 2 n+1-l\right)
$$

for

$$
\left.\begin{array}{c}
j \neq k, \quad 2 n+1-i \neq k, \quad l \neq j, \quad l \neq 2 n+1-i . \\
{\left[t_{i, 2 n+1-i}, t_{2 n+1-i, 2 n+1-l}\right]=v_{2 n+1-i} v_{2 n+1}^{\gamma(i, 2 n+1-i, 2 n+1-l)} t_{i, 2 n+1-l} t_{l, 2 n+1-l}}
\end{array}\right] \begin{aligned}
{\left[t_{i j}, t_{j, 2 n+1-l}\right]=v_{2 n+1-i} v_{2 n+1-l}^{\gamma(i,, 2 n+1-l)} t_{i, 2 n+1-l} } & \text { for } i, j \leq n \\
=v_{2 n+1-l}^{\gamma(i, j n+1-l)} & \text { for } i \leq n \text { and } j>n
\end{aligned}
$$

(iv) $\alpha(i, 2 n+1-l ; r, 2 n+1-f)=0$ for all $1 \leq l<f \leq k$ and all possible $i, r . \quad \alpha(i, j ; i, 2 n+1-l)=0$ for all possible i, j and $1 \leq l \leq k$. $\alpha(r, s ; i, 2 n+1-l)=0$ for all possible r, s and $1 \leq i, l \leq k$.
(v) If $t_{i j}$ is not an element listed under (ii) then the l-component of $t_{i j}$ is determined for $1 \leq l \leq k$ and $l \neq j, 2 n-1-i$.

We have $A_{2 n-k}=\left\langle t_{i, 2 n-k} \mid 1 \leq i \leq 2 n\right\rangle V$. By (iii) we know for $i \leq k$ and $j \neq 2 n+1-i$ that $\left[t_{i, 2 n-k}, t_{j, 2 n-k}\right]=1$. By changing if necessary $t_{2 n+1-i, 2 n-k}$ by v_{i} and $t_{i, 2 n-k}$ by $v_{2 n+1-i}$ we may assume

$$
\left[t_{j, 2 n-k}, t_{i, 2 n-k}\right]=1 \quad \text { for } \quad 1 \leq i \leq k \quad \text { and all } j
$$

In this way all components of $t_{k+1,2 n+1-l}(1 \leq l \leq k)$ are determined and we will see that $t_{k+1,2 n+1-l}(1 \leq l \leq k)$ is not being changed in the course of the argument.

Changing $t_{j, 2 n-k}(k+1 \leq j \leq 2 n)$ by elements in $\left\langle v_{k+2}, \cdots, v_{2 n}\right\rangle$ we may assume that (i) is true.

We have further by (iii) and (iv),

$$
\left[t_{s, 2 n+1-l}, t_{i, 2 n-k}\right]=v_{2 n+1-l}^{\alpha(i, 2 n-k ; 8,2 n+1-l)} \quad \text { for } \quad 1 \leq l \leq k \quad \text { and } \quad i \neq k+1
$$

and $\left[t_{s, 2 n+1-l}, t_{k+1,2 n-k}\right]=1$. $\quad \operatorname{Set} \alpha(i, 2 n-k ; s, 2 n+1-l)=\varphi_{i s}$.
We only have to change $t_{r s}$ for $r \geq k+2$ and $s \leq 2 n+2-k$ by v_{k+1} if necessary in order to get with help of (7) the fact

$$
\begin{gathered}
{\left[t_{r s}, t_{i, 2 n-k}\right]=v_{s}^{\varphi_{i r}} v_{2}^{\varphi_{i}, 2 n+1-r}{ }_{2}{ }_{2} v_{2 n-k}^{\alpha(r, s ; i, 2 n-k)},} \\
{\left[t_{r, 2 n+1-r}, t_{i, 2 n-k}\right]=v_{2 n+1-r}^{\varphi_{i r}} v_{2 n-k}^{\alpha(r, 2 n+1-r ; i, 2 n-k)}}
\end{gathered}
$$

for $r \neq 2 n-k, 2 n+1-i ; i \neq s \neq k+1$.
In this way the $1-, \cdots,(k+1)$-components of $t_{r s}$ are determined. More-
over by (iv), $\alpha(i, 2 n-k ; s, 2 n+1-l)=0(1 \leq l \leq k)$ if $1 \leq i \leq k$. So $\varphi_{i s}=0$ for $i \leq k$ and all s.

If $1 \leq i \leq k$ then the determination of the $(k+1)$-component of $t_{r s}$ forces $\alpha(r, s ; k+1,2 n+1-i)=0$ and so

$$
\left[t_{r s}, t_{i, 2 n-k}\right]=1
$$

We now replace $t_{i, 2 n-k}$ by $v_{1}^{\varphi_{1}^{i 1}} \cdots v_{2 n}^{\varphi_{i, 2 n}} t_{i, 2 n-k}$. As $\varphi_{i s}=\varphi_{s i}=0$ for all s and $i \leq k$, it follows that $t_{i, 2 n-k}$ stays unchanged for $1 \leq i \leq k$ and $t_{i, 2 n-k}$ is only changed in the t-component where $t \geq k+2$ as desired.

In this way we have determined all components of $t_{s, 2 n-k}$ but the $(2 n-k)$ component for $s \geq k+2$.

Moreover we have for $1 \leq l<s \leq k+1 ; l \neq 2 n+1-j$, s : $i \neq 2 n+1-j, s$,

$$
\left[t_{i, 2 n+1-l}, t_{j, 2 n+1-s}\right]=1
$$

and as $t_{i j}, t_{i, 2 n-k} \in A_{2 n+1-i}$ we have

$$
\left[t_{i j}, t_{i, 2 n-k}\right]=1
$$

By (7) we have furthermore numbers $\gamma(i, 2 n+1-i, 2 n-k), \gamma(i, j$, $2 n-k)$ such that

$$
\begin{aligned}
{\left[t_{i j}, t_{j, 2 n-k}\right]=v_{2 n+1-i} v_{2 n-k}^{\gamma(i, j, 2 n-k)} t_{i, 2 n-k} } & \text { for } 1 \leq i, j \leq n \\
& \text { or } n+1 \leq i, j \leq 2 n \\
=v_{2 n-k}^{\gamma(i, j, 2 n-k)} & \text { for } 1 \leq i \leq n ; n+1 \leq j \leq 2 n \\
& \text { or } n+1 \leq i \leq 2 n ; 1 \leq j \leq n
\end{aligned}
$$

And for $i \neq 2 n-k, 2 n+1-s ; j \neq s, k+1$ we have

$$
\left[t_{i j}, t_{s, 2 n-k}\right]=v_{2 n-k}^{\alpha(i, j ; s, 2 n-k)}
$$

where

$$
\begin{gathered}
\alpha(i, j ; i, 2 n-k)=0 \text { for all } i \text { and } j \\
\alpha(i, 2 n+1-l ; s, 2 n-k)=0 \text { for all } i, s \text { and } 1 \leq l \leq k,
\end{gathered}
$$

and finally

$$
\alpha(r, s ; f, 2 n+1-d)=0 \quad \text { for all } r, s \quad \text { and } \quad 1 \leq f, \quad d \leq k+1
$$

As we have not changed results obtained by the induction step $i \rightarrow i+1$ for $i \leq k$ it follows that (i)-(v) are verified for the induction step $k \rightarrow k+1$.

Therefore we end up finally with
(i) For $1 \leq i, j \leq 2 n, t_{i j}$ is completely determined in all its components if $i+j \neq 2 n+1$.
(ii) $t_{i, 2 n+1-i}$ is completely determined in all its components but the $(2 n+1-i)$-component for $1 \leq i \leq 2 n$.
(iii) $\left(t_{i, 2 n+1-i}\right)^{2}=v_{2 n+1-i}, t_{i j}^{2}=1$ for $1 \leq i, j \leq 2 n$ and $i+j \neq 2 n+1$.
(iv) $\left[t_{i j}, t_{r s}\right]=1$ if $\{i, j\} \cap\{r, s, 2 n+1-r, 2 n+1-s\}=\emptyset$ or $i=r$ or $j=s$ and $1 \leq i, j \leq 2 n$.

$$
\left[t_{i, 2 n+1-i}, t_{2 n+1-i, s}\right]=v_{2 n+1-i} v_{s}^{\gamma(i, 2 n+1-i, s)} t_{i s} t_{2 n+1-s, s}
$$

for $1 \leq i, s \leq 2 n$ and $i+s \neq 2 n+1$.

$$
\begin{aligned}
& {\left[t_{i j}, t_{j s}\right]=v_{2 n+1-i} v_{s}^{\gamma(i, j, s)} t_{i s} \text { for } 1 \leq i, j \leq n} \\
& \text { or } n+1 \leq i, j \leq 2 n \\
& =v_{s}^{\gamma\left(i, j^{8}\right)} t_{i s} \quad \text { for } 1 \leq i \leq n ; n+1 \leq j \leq 2 n \\
& \text { or } 1 \leq j \leq n ; \quad n+1 \leq i \leq 2 n
\end{aligned}
$$

where $i+j \neq 2 n+1 \neq j+s$.
Using that $t_{i j}=t_{2 n+1-j, 2 n+1-i}$ and $t_{j s}=t_{2 n+1-s, 2 n+1-j}$ we conclude that

$$
\begin{array}{rlrl}
{\left[t_{i j}, t_{j s}\right]} & =v_{2 n+1-i} t_{i s} & & \text { if } \quad 1 \leq i, j \leq n ; n+1 \leq s \leq 2 n \\
& =v_{2 n+1-i} v_{s} t_{i s} & \text { if } \quad 1 \leq i, j, s \leq n \\
& =t_{i s} & & \text { if } \quad n+1 \leq i, s \leq 2 n ; 1 \leq j \leq n \\
& =v_{s} t_{i s} & & \text { if } \quad 1 \leq j, s \leq n ; n+1 \leq i \leq 2 n \\
& =t_{i s} & & \text { if } \quad 1 \leq i, s \leq n ; n+1 \leq j \leq 2 n \\
& =v_{2 n+1-i} v_{s} t_{i s} & \text { if } & n+1 \leq i, j, s \leq 2 n
\end{array}
$$

Clearly $\left(t_{i j} t_{j i}\right)^{3} \in V$ and $t_{i j} t_{j i}$ commutes with every $t_{r s}$ for

$$
\{r, s\} \cap\{i, j, 2 n+1-i, 2 n+1-j\}=\varnothing
$$

So

$$
\left(t_{i j} t_{j i}\right)^{3} \in\left\langle v_{i}, v_{j}, v_{2 n+1-i}, v_{2 n+1-j}\right\rangle=B_{i j}
$$

But as $t_{i j} t_{j i}$ acts fixed-point-free on $B_{i j}$ we conclude

$$
\left(t_{i j} t_{j i}\right)^{3}=1 \quad \text { for all } 1 \leq i, j \leq 2 n
$$

Therefore we have determined our multiplication table up to the ($2 n+1-i$)component of $t_{i, 2 n+1-i}$ and the numbers $\gamma(i, 2 n+1-i, j)$. If we set $\varepsilon(i, j)=$ 0 for $1 \leq i, j \leq n$ or $n+1 \leq i, j \leq 2 n$ and $i+j \neq 2 n+1, i \neq j$ and $\varepsilon(i, j)=1$ for $1 \leq i \leq n, n+1 \leq j \leq 2 n$ or $1 \leq j \leq n, n+1 \leq i \leq 2 n$ and $i+j \neq 2 n+1$ we can set

$$
\left[t_{i j}, t_{j s}\right]=v_{s}^{\varepsilon(2 n+1-s, 2 n+1-j)} v_{2 n+1-i}^{\varepsilon(i, j)} t_{i s} .
$$

Further

$$
\left[t_{i, 2 n+1-i}, t_{2 n+1-i, s}\right]=v_{2 n+1-i} v_{s}^{\gamma(i, 2 n+1-i, s)} t_{i s} t_{2 n+1-8, s}
$$

and

```
\(t_{s r}^{\left[t_{i, 2 n+1-i}, t_{2 n+1-i, s}\right]}\)
    \(=v_{2 n+1-i}^{1+\varepsilon(2 n+1-i, s)} v_{r}^{\gamma(i, 2 n+1-i, r)+e(2 n+1-s, i)+\varepsilon(2 n+1-r, 2 n+1-i)} v_{s}^{1+\varepsilon(2 n+1-i, s)+\varepsilon(2 n+1-s, i)}\)
                        - \(t_{i r} t_{s r} t_{2 n+1-s, r} t_{2 n+1-r, r}\)
```

and

$$
t_{s r}^{q}=v_{r}^{\gamma(2 n+1-s, s, r)+\varepsilon(2 n+1-r, 2 n+1-s)+\gamma(i, 2 n+1-i, s)} v_{2 n+1-i}^{e(i, s)} v_{s} t_{i r} t_{s r} t_{2 n+1-s, r} t_{2 n+1-r, r}
$$

where $q=v_{2 n+1-i} v_{s}^{\gamma(i, 2 n+1-i, s)} t_{i 8} t_{2 n+1-s, 8}$. This implies

$$
\text { (*) } \begin{aligned}
\gamma(i, 2 n+1-i, r)= & \gamma(2 n+1-s, s, r)+\gamma(i, 2 n+1-i, s) \\
& +\varepsilon(2 n+1-s, i) \\
& +\varepsilon(2 n+1-r, 2 n+1-i) \\
& +\varepsilon(2 n+1-r, 2 n+1-s)
\end{aligned}
$$

By changing $t_{i, 2 n+1-i}$ if necessary by $v_{2 n+1-i}$ we may assume that

$$
\begin{aligned}
\gamma(i, 2 n+1-i, 1) & =0 \text { for } 2 \leq i \leq 2 n-1 \\
\gamma(1,2 n, 2) & =\gamma(2 n, 1,2)=0
\end{aligned}
$$

Then (*) determines all other $\gamma(i, 2 n+1-i, j)$.
So we can state:
(9) If G is a nonsplit extension of V by $S_{2 n}(2)$, then G is uniquely determined. Moreover G is generated by elements $t_{i j}$ for $1 \leq i, j \leq 2 n, i+j \leq$ $2 n+1, i \neq j$ which satisfy the relations listed above.

Using (9) and (8) and a result of Griess [5] it follows that if G is a nonsplit extension, that G is uniquely determined and that there are such nonsplit extensions.

References

1. Emil Artin, The orders of the classical simple groups, Comm. Pure Appl. Math., vol. 8 (1955), pp. 455-472.
2. Ulrich Dempwolff, On second cohomology of $G L(n, 2)$, Austral. J. Math., vol. 16 (1973), pp. 207-209.
3. -- On extensions of an elementary abelian group of order 2^{5} by $G L(5,2)$, Rend. Sem. Padova, vol. 63 (1972), pp. 359-364.
4. Robert Griess Jr., Schur multipliers of the known finite simple groups, Bull. Amer. Math. Soc., vol. 78 (1972), pp. 68-71.
5. -, Automorphisms of extra special groups and nonvanishing degree 2-cohomology,
6. Bertram Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
7. Harriet Pollatsek, First cohomology groups of some linear groups over fields of characteristic two, Illinois J. Math., vol. 15 (1971), pp. 393-417.
The Ohio State University
Columbus, Ohio

[^0]: Received January 22, 1973.
 ${ }^{1}$ This work was supported by the FAZIT-Stiftung.

