CONTINUOUS SPECTRA OF AN EVEN ORDER DIFFERENTIAL OPERATOR

BY
Don Hinton

We consider here a differential operator l of order $2 n$ defined by

$$
\begin{equation*}
l(y)=(1 / w)\left\{(-1)^{n}\left(r y^{(n)}\right)^{(n)}-q y\right\} . \tag{1}
\end{equation*}
$$

The coefficients w, r, and q are real continuous functions defined on a ray $[a, \infty)$ and w and r are positive. Associated with l is the Hilbert space H of all complex-valued, measurable functions f satisfying

$$
\int_{a}^{\infty} w|f|^{2} d x<\infty
$$

We recall that l determines a certain minimal closed operator L_{0} in H in the following way. Let \mathfrak{D} be the set of all $y \in H$ such that (i) $y, y^{\prime}, \cdots, y^{(n-1)}$, $\left(r y^{(n)}\right)^{\prime}, \cdots,\left(r y^{(n)}\right)^{(n-1)}$ are absolutely continuous on compact subintervals of $[a, \infty)$ and (ii) $l(y) \in H$. Define \mathscr{D}_{0}^{\prime} as the set of all $y \in \mathscr{D}$ which have compact support interior to (a, ∞), and let L and L_{0}^{\prime} be the restrictions of l to D and $\mathfrak{D}_{0}^{\prime}$, respectively. Then L_{0}^{\prime} is a densely defined symmetric operator in H; hence admits a closure L_{0} with domain \mathscr{D}_{0}. As in [8, Section 17], it may be shown that $L_{0}^{*}=L$.

Since each of the equations $l(y)= \pm i y$ has at most $2 n$ linearly independent solutions in H, the theory of symmetric operators [8, Section 14] yields that the dimension of D modulo D_{0} is finite. Furthermore, if T is a symmetric extension of L_{0}, then the continuous spectrum $C(T)$ of T is equal to $C\left(L_{0}\right)$. Thus the continuous spectrum of all self-adjoint operators generated by l in H is $C\left(L_{0}\right)$. In this paper we give conditions for $C\left(L_{0}\right)$ to be $(-\infty, \infty)$ or $[0, \infty)$.

Our basic tool for determining $C\left(L_{0}\right)$ will be to use a theorem from the theory of symmetric operators. For each complex number λ we define n_{λ} to be the dimension of the orthogonal complement (in H) of the range of $L_{0}-\lambda I$, where I denotes the identity transformation. Since $L_{0}^{*}=L$, an alternate calculation of n_{λ} is

$$
\begin{equation*}
n_{\lambda}=\operatorname{dim}\{y \mid L y=\bar{\lambda} y\} \tag{2}
\end{equation*}
$$

As in $[8$, Sections 14,17$]$ where $w \equiv 1$, it may be shown that n_{λ} is actually the same for all non-real λ and that $n_{\lambda} \geq n$ when $\operatorname{im} \lambda \neq 0$. The cases $\lambda= \pm i$ are called the deficiency indices of L_{0}. Furthermore, L_{0} can have no eigenvalues since all of $y, y^{\prime}, \cdots, y^{(n-1)},\left(r y^{(n)}\right), \cdots\left(r y^{(n)}\right)^{(n-1)}$ have value 0 at a
for all $y \epsilon \mathscr{D}_{0}$. The result of symmetric operators [8, pp. 42-43] we apply is: If for some real $\lambda, n_{\lambda}<n$, then λ is in the continuous spectrum of L_{0}.

The approach used for showing $n_{\lambda}<n$ will be to apply the asymptotic theory given in [5]. By contrast, constructive methods have recently been applied in the case $n=1$ and $C\left(L_{0}\right)=(-\infty, \infty)$ [2], [7]. These constructive methods use directly the definition of continuous spectrum, but they appear cumbersome for higher order equations. A different approach using asymptotic methods for finding $C\left(L_{0}\right)$ is given in [8, p. 229]; however, a weight function is not present, and greater monotonicity is required of the coefficients r and q than we require here. We note also that M. V. Fedorjuk has developed asymptotic formulae in [3] for solutions of the $(n+1)$-term even order equation

$$
\sum_{k=0}^{n} \varepsilon^{2 k}(-1)^{k}\left(P_{n-k}(x) y^{(k)}\right)^{(k)}=0
$$

When these results are applied to the 2 -term equation (1) with $w=1$, the conditions on the coefficients are very similar to those required in [5]. However, in applying his asymptotic theory to yield conditions for

$$
C\left(L_{0}\right)=(-\infty, \infty)
$$

[3, Th. 5.3], Fedorjuk requires the coefficient r in (1) to satisfy $r(x) \rightarrow 1$ as $x \rightarrow \infty$; again the effect of a weight function is not considered.

Some comprehensive asymptotic formulae for the fourth order equation

$$
\left[\left(r y^{\prime \prime}\right)^{\prime}-p y^{\prime}\right]^{\prime}+q y=\sigma y
$$

have recently been given by P. W. Walker [9], [10]. It is likely that these formulae give extensions of Theorems 1 and 2 below for the case $n=2$. The even order equation studied by Fedorjuk has also been investigated by A . Devinatz in [1] where asymptotic solutions are given. These solutions may too yield extensions of the results here.

Lemma 1. Suppose f is a continuously differentiable positive function on $[a, \infty)$ such that $f^{\prime}(t) / f^{2}(t) \rightarrow 0$ as $t \rightarrow \infty$. If $\varepsilon>0$ and $K>0$, then there is a number B such that if t and s are $\geq B$ and $|t-s| \leq K / f(s)$, then

$$
\left|f(t) f^{-1}(s)-1\right|<\varepsilon
$$

This is a special case of Lemma 2 of [6].
Lemma 2. If f is as in Lemma 1 except that $f^{\prime}(t) / f^{2}(t)=0(1)$ as $t \rightarrow \infty$, then $\int_{a}^{\infty} f d t=\infty$.

Proof. Let $M>0$ and t_{0} be such that $f^{\prime}(t) / f^{2}(t) \geq-M$ for $t \geq t_{0}$. An integration then yields

$$
1 / f\left(t_{0}\right)-1 / f(t) \geq-M\left(t-t_{0}\right)
$$

and hence

$$
f(t) \geq 1 /\left(M\left(t-t_{0}\right)+f^{-1}\left(t_{0}\right)\right)
$$

which implies $\int_{a}^{\infty} f d t=\infty$.
Theorem 1. Suppose in (1) that r, q, and w are positive and twice continuously differentiable, and the following conditions hold.
(i) $w / q \rightarrow 0$ as $t \rightarrow \infty$.
(ii) $\quad(q / r)^{-1 / 2 n}(q / w)\left(\left|q^{\prime}\right| / q+\left|r^{\prime}\right| / r+\left|w^{\prime}\right| / w\right)=0(1)$ as $t \rightarrow \infty$.
(iii) $\int_{a}^{\infty}(q / r)^{-1 / 2 n} \Gamma\left(q^{\prime} / q\right)^{2}+\left(w^{\prime} / q\right)^{2}+\left(r^{\prime} / r\right)^{2}+\left|r^{\prime \prime} / r\right|+\left|q^{\prime \prime} / q\right|+$ $\left.\left|w^{\prime \prime} / q\right|\right] d t<\infty$.
Then $C\left(L_{0}\right)=(-\infty, \infty)$. Moreover, for $n=1$ and λ real, $n_{\lambda}=0$; hence every self-adjoint extension of L_{0} has a purely continuous spectrum.

Proof. Let λ be a real number. By (2), n_{λ} is the number of linearly independent solutions y in H of $l(y)=\lambda y$. Let $Q=q+\lambda w$; then $l(y)=\lambda y$ can be written as

$$
\begin{equation*}
\left(r y^{(n)}\right)^{(n)}+(-1)^{n-1} Q y=0 \tag{3}
\end{equation*}
$$

By (i), Q is eventually positive, say on [b, ∞), and Theorem 1 of [5] is applicable if r and Q satisfy $\int_{b}^{\infty}(Q / r)^{1 / 2 n} d t=\infty$ and each of

$$
\left[(Q / r)^{-1 / 2 n} r^{\prime} / r\right]^{\prime}, \quad\left[(Q / r)^{-1 / 2 n} Q^{\prime} / Q\right]^{\prime}, \quad\left[(Q / r)^{-1 / 2 n}\left(r^{\prime} / r\right)^{2}\right]
$$

and

$$
\left[(Q / r)^{-1 / 2 n}\left(Q^{\prime} / Q\right)^{2}\right]
$$

is in $\mathscr{L}(b, \infty)$.
For $f_{1} \equiv(q / r)^{1 / 2 n}$, it follows that

$$
f_{1}^{\prime} / f_{1}^{2}=(1 / 2 n)(q / r)^{-1 / 2 n}\left(q^{\prime} / q-r^{\prime} / r\right)
$$

which by (i) and (ii) tends to 0 as t tends to infinity; hence Lemma 2 gives

$$
\int_{b}^{\infty}(q / r)^{1 / 2 n} d t=\infty
$$

Since $(q / r)^{1 / 2 n}=(Q / r)^{1 / 2 n}[1+o(1)]$, we have $\int_{b}^{\infty}(Q / r)^{1 / 2 n} d t=\infty$. We also have

$$
\begin{gathered}
(Q / r)^{-1 / 2 n}\left(Q^{\prime} / Q\right)^{2}=(q / r)^{-1 / 2 n}\left(q^{\prime} / q+\lambda w^{\prime} / q\right)^{2}[1+o(1)] \\
(Q / r)^{-1 / 2 n}\left(r^{\prime} / r\right)^{2}=(q / r)^{-1 / 2 n}\left(r^{\prime} / r\right)^{2}[1+o(1)] \\
{\left[\left(\frac{Q}{r}\right)^{-1 / 2 n} \frac{r^{\prime}}{r}\right]^{\prime}=\left(\frac{q}{r}\right)^{-1 / 2 n}\left[\frac{r^{\prime \prime}}{r}-\left(\frac{r^{\prime}}{r}\right)^{2}\right][1+o(1)]} \\
\\
-\left(\frac{1}{2 n}\right)\left(\frac{q}{r}\right)^{-1 / 2 n}\left(\frac{r^{\prime}}{r}\right)\left\{\frac{q^{\prime}+\lambda w^{\prime}}{q}[1+o(1)]-\frac{r^{\prime}}{r}[1+o(1)]\right\},
\end{gathered}
$$

and
$\left[\left(\frac{Q}{r}\right)^{-1 / 2 n} \frac{Q^{\prime}}{Q}\right]^{\prime}$

$$
\begin{aligned}
= & \left(\frac{q}{r}\right)^{-1 / 2 n}\left\{\frac{q^{\prime \prime}+\lambda w^{\prime \prime}}{q}[1+o(1)]-\left(\frac{q^{\prime}+\lambda w^{\prime}}{q}\right)^{2}[1+o(1)]\right\} \\
& -\left(\frac{1}{2 n}\right)\left(\frac{q}{r}\right)^{-1 / 2 n}\left(\frac{q^{\prime}+\lambda w^{\prime}}{q}\right)\left\{\frac{q^{\prime}-\lambda w^{\prime}}{q}[1+o(1)]-\frac{r^{\prime}}{r}[1+o(1)]\right\} .
\end{aligned}
$$

Application of (iii) now yields that the left hand side of each of the above equations is in $£(b, \infty)$; hence Theorem 1 of [5] applies to yield solutions $y_{\tau}(\tau=1, \cdots, 2 n)$ of (3) satisfying as $t \rightarrow \infty$,

$$
\begin{equation*}
y_{\tau}(t)=\left\{Q(t)^{(1-2 n) / 4 n} r(t)^{-1 / 4 n} \exp \left[\lambda_{\tau} \int_{b}^{t}(Q / r)^{1 / 2 n}\right]\right\}\{1+o(1)\} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
\lambda_{\tau} & =\exp [\pi i(\tau-1) / n], & & n \text { even } \\
& =\exp [\pi i(2 \tau-1) / 2 n], & & n \text { odd }
\end{aligned}
$$

Note that in either case, $\pm i$ are two such λ_{r}.
For $f_{2}=(w / Q)(Q / r)^{1 / 2 n}$, we have

$$
f_{2}^{\prime} / f_{2}^{2}=(Q / w)(Q / r)^{-1 / 2 n}\left[w^{\prime} / w-Q^{\prime} / Q+(1 / 2 n)\left(Q^{\prime} / Q-r^{\prime} / r\right)\right]
$$

which by (i) and (ii) is $O(1)$ as $t \rightarrow \infty$; hence by Lemma 2 ,

$$
\begin{equation*}
\int_{b}^{\infty}(w / Q)(Q / r)^{1 / 2 n} d t=\infty \tag{5}
\end{equation*}
$$

From (4), we have for $\operatorname{Re} \lambda_{\tau} \geq 0$,

$$
w|y \tau|^{2} \geq(w / Q)(Q / r)^{1 / 2 n}[1+o(1)]
$$

hence (5) implies that $\int^{\infty} w|y \tau|^{2} d t=\infty$ if $\operatorname{Re} \lambda_{\tau} \geq 0$. Since the set $\left\{y_{\tau} \mid \operatorname{Re} \lambda_{\tau} \geq 0\right\}$ consists of $n+1$ linearly independent solutions of $l(y)=\lambda y$, we will have shown $n_{\lambda} \leq n-1$, and thus $\lambda \epsilon C\left(L_{0}\right)$, if we show that no linear combination of the $y_{\tau}\left(\operatorname{Re} \lambda_{\tau} \geq 0\right)$ is in H.

Let z_{1} and z_{2} be the two solutions (4) where λ_{T} is i and $-i$ respectively. We first prove no linear combination $c_{1} z_{1}+c_{2} z_{2}$ is in H. Since z_{1} and z_{2} are not in H, it is sufficient to suppose $c_{1} \neq 0$ and $c_{2} \neq 0$. Writing

$$
z=c_{1} z_{1}+c_{2} z_{2}=c_{2} z_{2}\left[1+c\left(z_{1} / z_{2}\right)\right] ; \quad c=c_{1} / c_{2}
$$

and noting that $\left|z_{1} / z_{2}\right| \rightarrow 1$ as $t \rightarrow \infty$, we have that $|c| \neq 1$ implies $z ¢ H$. Consider now $|c|=1$, say $c=-e^{-2 i \theta}(0 \leq \theta<\pi)$. Since $\int_{b}^{\infty}(Q / r)^{1 / 2 n}=\infty$, we can choose increasing sequences $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}(n \geq 1)$ so that

$$
\begin{aligned}
\int_{b}^{t}(Q / r)^{1 / 2 n} & =\pi n+\theta-\pi / 4, \quad t=t_{n} \\
& =\pi n+\theta+\pi / 4, \quad t=s_{n}
\end{aligned}
$$

Then for $s_{n} \leq t \leq t_{n+1}$,

$$
3 \pi / 2 \geq 2\left[\int_{b}^{t}(Q / r)^{1 / 2 n}-\theta\right] \geq \pi / 2 \quad(\bmod 2 \pi)
$$

and

$$
\left|1+c z_{1}(t) / z_{2}(t)\right|=\left|1-[1+o(1)] \exp 2 i\left[-\theta+\int_{b}^{t}(Q / r)^{1 / 2 n}\right]\right|>1
$$

for all sufficiently large n. Thus $z \notin H$ if

$$
\begin{equation*}
\sum_{n=2}^{\infty} \int_{s_{n}}^{t_{n+1}} w\left|z_{2}\right|^{2} d t=\sum_{n=2}^{\infty} \int_{s_{n}}^{t_{n+1}}(w / Q)(Q / r)^{1 / 2 n}[1+o(1)] d t=\infty \tag{6}
\end{equation*}
$$

As shown above, $f_{1}=(q / r)^{1 / 2 n}$ satisfies $f_{1}^{\prime} / f_{1}^{2} \rightarrow 0$ as $t \rightarrow \infty$. Applying Lemma 1 and $(Q / r)^{1 / 2 n}=(q / r)^{1 / 2 n}[1+o(1)]$ yields a B such that if $s, t \geq B$ and $|t-s| \leq 20(Q(s) / r(s))^{-1 / 2 n}$, then

$$
\begin{equation*}
\left|[Q(t) / r(t)]^{1 / 2 n}[Q(s) / r(s)]^{-1 / 2 n}-1\right|<1 / 4 \tag{7}
\end{equation*}
$$

Define $\Delta_{n}=\left(Q\left(s_{n}\right) / r\left(s_{n}\right)\right)^{-1 / 2 n}$. Now for $t_{n} \geq B, t_{n+1}-s_{n}<10 \Delta_{n}$ since otherwise (7) gives

$$
\pi / 2=\int_{s_{n}}^{t_{n+1}}(Q / r)^{1 / 2 n} \geq \int_{s_{n}}^{s_{n}+10 \Delta_{n}}(Q / r)^{1 / 2 n} \geq\left(10 \Delta_{n}\right)\left(3 / 4 \Delta_{n}^{-1}\right)=15 / 2
$$

which is a contradiction. Similarly, $s_{n}-t_{n}<10 \Delta_{n}$ for $t_{n} \geq B$.
The function $f_{2}=(w / Q)(Q / r)^{1 / 2 n}$ satisfies, as shown above, $f_{2}^{\prime}=O\left(f_{2}^{2}\right)$; let M be a bound for $\left|f_{2}^{\prime} f_{2}^{-2}\right|$ on $[b, \infty)$. By (i) there is a $B^{\prime} \geq B$ such that $w(t) / Q(t)<1 / 100 M$ for $t \geq B^{\prime}$.

For $t_{n} \geq B^{\prime}$, consider f_{2} on $\left[t_{n}, t_{n+1}\right]$. Let the maximum and minimum values of f_{2} occur at t^{\prime} and $t^{\prime \prime}$ respectively. Then

$$
\begin{align*}
\left|f_{2}\left(t^{\prime \prime}\right) / f_{2}\left(t^{\prime}\right)-1\right| & =\left|\int_{t^{\prime}}^{t^{\prime \prime}} f_{2}^{\prime}(t) / f_{2}\left(t^{\prime}\right) d t\right| \\
& \leq \int_{t_{n}}^{t_{n+1}} M f_{2}^{2}(t) / f_{2}\left(t^{\prime}\right) d t \\
& \leq M\left(20 \Delta_{n}\right) f_{2}\left(t^{\prime}\right) \tag{8}\\
& =20 M\left(\Delta_{n}\left[Q\left(t^{\prime}\right) / r\left(t^{\prime}\right)\right]^{1 / 2 n}\right)\left(w\left(t^{\prime}\right) / Q\left(t^{\prime}\right)\right) \\
& <20 M(5 / 4)(1 / 100 M) \\
& =1 / 4
\end{align*}
$$

where the last inequality uses (7).
Also by (7), it follows that
(9) $\frac{1}{2}=\frac{(\pi / 2)}{\pi}=\frac{\int_{s_{n}}^{t_{n+1}}(Q / r)^{1 / 2 n}}{\int_{t_{n}}^{t_{n+1}}(Q / r)^{1 / 2 n}} \leq \frac{(5 / 4)\left(t_{n+1}-s_{n}\right) \Delta_{n}^{-1}}{(3 / 4)\left(t_{n+1}-t_{n}\right) \Delta_{n}^{-1}}=\frac{5\left(t_{n+1}-s_{n}\right)}{3\left(t_{n+1}-t_{n}\right)}$.

Finally, from (8) and (9) we conclude that

$$
\frac{\int_{s_{n}}^{t_{n+1}}(w / Q)(Q / r)^{1 / 2 n}}{\int_{t_{n}}^{t_{n+1}}(w / Q)(Q / r)^{1 / 2 n}} \geq \frac{f_{2}\left(t^{\prime \prime}\right)\left(t_{n+1}-s_{n}\right)}{f_{2}\left(t^{\prime}\right)\left(t_{n+1}-t_{n}\right)} \geq(3 / 4)(3 / 10)>0
$$

From this last inequality, (6), and $\int^{\infty} f_{2} d t=\infty$ we have $z \notin H$. This concludes proving no linear combination of z_{1} and z_{2} is in H.

Consider a general linear combination $z=\sum_{\operatorname{Re} \lambda_{\tau} \geq 0} c_{\tau} y_{\tau}$. Now either there is a unique $\tau=\tau_{0}$ so that $\operatorname{Re} \lambda_{\tau}, c_{\tau} \neq 0$, is a maximum or there are exactly two such τ 's. In the former case the asymptotic behavior (4) yields $z / y_{\tau_{0}} \rightarrow c_{\tau_{0}}$ as $t \rightarrow \infty$; thus $z \notin H$. In the latter case the two such λ_{r} 's are complex conjugates and the argument used above for z_{1} and z_{2} is applicable. The proof is now complete.

The moreover part of the theorem follows by the observation that if $n=1$, then we have shown $n_{\lambda}=0$.

As an example consider when the coefficients are powers of t. For $r(t)=t^{\alpha}$, $q(t)=t^{\beta}$, and $w(t)=t^{\delta}$, the conditions of Theorem 1 are simply $\beta>\delta$, $1+\delta \geq \beta+(\alpha-\beta) / 2 n$, and $\alpha-\beta<2 n$. For $\alpha=\delta=0$ and $n=1$, we obtain the familiar result: $0<\beta \leq 2$ implies $C\left(L_{0}\right)=(-\infty, \infty)$.

Theorem 2. Suppose in (1) that $r>0, w>0, r, q$, and w are twice continuously differentiable, and the following conditions hold.
(i) $q / w \rightarrow 0$ as $t \rightarrow \infty$.
(ii) $(w / r)^{-1 / 2 n}\left(\left|w^{\prime}\right| / w+\left|r^{\prime}\right| / r\right) \rightarrow 0$ as $t \rightarrow \infty$.
(iii) $\int_{a}^{\infty}(w / r)^{-1 / 2 n}\left[\left(q^{\prime} / w\right)^{2}+\left(w^{\prime} / w\right)^{2}+\left(r^{\prime} / r\right)^{2}+\left|r^{\prime \prime}\right| / r+\left|q^{\prime \prime}\right| / w+\right.$ $\left.\left|w^{\prime \prime}\right| / w\right] d t<\infty$.

Then $C\left(L_{0}\right)=[0, \infty)$. Moreover, for $n=1$, the spectrum $(0, \infty)$ is purely continuous for every self-adjoint extension of L_{0}.

Proof. For $\lambda>0$, we can proceed as in the proof of Theorem 1 to show $n_{\lambda} \leq n-1$. In this case

$$
Q=q+\lambda w=\lambda w[1+o(1)]
$$

and condition (ii) is used to show $f \equiv(w / r)^{1 / 2 n}$ satisfies $f^{\prime} / f^{2} \rightarrow 0$ as $t \rightarrow \infty$. In this case the functions corresponding to f_{1} and f_{2} coincide with $f=(w / r)^{1 / 2 n}$. We omit the details, but arguments similar to those above show $(0, \infty) \subset C\left(L_{0}\right)$.

Since $C\left(L_{0}\right)$ is closed, the proof of Theorem 2 is complete if we show $(-\infty,-\varepsilon) \cap C\left(L_{0}\right)=\varnothing$ for each $\varepsilon>0$. To establish this it is sufficient to prove that for each $\varepsilon>0$ there exists an $N>a$ such that L_{0}^{\prime} is bounded below by $-\varepsilon$ when restricted to those $y \in \mathscr{D}_{0}^{\prime}$ with support in $[N, \infty$) (for $w \equiv 1$, see [4, p. 34]). Since $q / w \rightarrow 0$ as $t \rightarrow \infty$, we need only choose N so that
$|q(t) / w(t)| \leq \varepsilon$ for $t \geq N$. Then if $y \epsilon \mathscr{D}_{0}^{\prime}$ has support $[c, d]$ in $[N, \infty)$, we have by integrating by parts that

$$
\begin{aligned}
\int_{c}^{d} w\left(L_{0}^{\prime} y\right) y d t & =\int_{c}^{d}\left[(-1)^{n}\left(r y^{(n)}\right)^{(n)}-q y\right] y d t \\
& =\int_{c}^{d}\left[r\left(y^{(n)}\right)^{2}-q y^{2}\right] d t \\
& \geq \int_{c}^{d} w(-q / w) y^{2} d t \\
& \geq-\epsilon \int_{c}^{d} w y^{2} d t
\end{aligned}
$$

hence the lower bound for L_{0}^{\prime} is established.
As an example, for $r(t)=t^{\alpha}, q(t)=t^{\beta}$, and $w(t)=t^{\delta}$, the conditions of Theorem 2 are $\delta>\beta$ and $(\alpha-\delta) / 2 n<1$.

References

1. A. Devinatz, The deficiency index of a certain class of ordinary self-adjoint differential operators, Advances in Math., vol. 8 (1972), pp. 434-473.
2. M. S. P. Eastham and A. A. Ed-Deberky, The spectrum of differential operators with large coefficients, J. London Math. Soc. (2), vol. 2 (1970), pp. 257-266.
3. M. V. Fedorjuk, Asymptotic methods in the theory of one-dimensional singular differential operators, Translations of Transactions of Moscow Mathematical Society, vol. 15 (1966), pp. 333-386.
4. I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Israel program for scientific translation, Jerusalem, 1965.
5. D. B. Hinton, Asymptototic behavior of solutions of $\left(r y^{(m)}\right)^{(k)} \pm q y=0$, J. Differential Equations, vol. 4 (1968), pp. 590-596.
6. --, Some stability conditions for a nonlinear differential equation, Trans. Amer. Math. Soc., vol. 139 (1969), pp. 349-358.
7. --, Continuous spectra of second-order differential operators, Pacific J. Math., vol. 33 (1970), pp. 641-643.
8. M. A. Naimark, Linear differential operators, Part II, Ungar, New York, 1968.
9. P. W. Walker, Asymptotica of the solutions to $\left[\left(r y^{\prime \prime}\right)^{\prime}-p y^{\prime}\right]^{\prime}+q y=\sigma y$, J. Differential Equations, vol. 9 (1971), pp. 108-132.
10. ——, Asymptotics for a class of fourth order differential operators, J. Differential Equations, vol. 11 (1972), pp. 321-334.

The University of Tennessee
Knoxville, Tennessee

