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1. Introduction
Dubins has shown in [2] that if {X,} is an L,.-martingale and if {B} is

Brownian motion with the same initial distribution as the martingale then
there exist stopping times {s(n)}, having finite expectations, such that
0 s (0)

_
s (1)

_
and such that X} and {Bo)I have the same joint

distributions. This strengthens a similar result of Skorohod in which the
stopping times s (n) were "randomized" in the sense that they depended upon
an independent random variable. The essence of the result of Dubins can
be stated more concretely: if is a probability measure on R with center of
mass at the origin and finite second moment and if/B,} is Brownian motion
starting at the origin, then there exists a stopping time s having finite expecta-
tion such that the distribution of B, is . We note that if s is to have a finite
expectation then must have a finite second moment (equal to the expecta-
tion of s). Doob has shown (see [4]) that if s is not required to have a finite
expectation then the problem is trivial in the sense that any probability
measure can be realized by stopping Brownian motion. Dubins remarks,
however, that his construction yields a natural stopping time s for arbitrary
with center of mass at the origin, even though need not have a finite second
moment.

Let be a probability measure on I, p _> 1. Let S () denote the set of
all measures obtained as the distribution of B,, where {BI is Brownian
motion with initial distribution , and s is some stopping time. Let FS ()
denote the set of measures obtained in the same way using stopping times s
with finite expectations. Let RS() denote those obtained using ran-
domized stopping times s, and let FRS() denote those obtained using
randomized stopping times s with finite.expectations. Clearly FS (#) is the
smallest of these four sets of measures, and RS() is the largest.

In the present paper we shall prove the following theorem:

THEOREM 1. Let and , be probability measures on I(, p >_ 1. Let U’ and
U" be the potentials of and , (defined in Section 2). Suppose"

(i) U, U" are finite a.e. with respect to Lebesgue measure,
fi ) U >_ U" on I,

(iii) lim [U"(x) U’(x)] 0,
(iv) U is continuous on I(.
Then , e S( ). If , has a finite second moment so does , and , FS( ).

If p > 2, conditions (i) and (iii) can be dropped.
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We note that condition (i) always holds for p >_ 3, and holds for all p when
# and have compact support. Also, for any p, if and have compact sup-
port and condition (ii) holds then one can show U U outside a compact
set so condition (iii) is automatically satisfied.

In the case p 1, one can show easily that if the first moment of exists
then U is finite and continuous on R1. Also, if and have the same center
of mass then condition (iii) holds. Finally if is a point mass concentrated
at the center of mass of then condition (ii) holds, by a trivial argument.
Thus the result of Dubins is included in this particular case of the theorem.

It is not clear whether condition (iii) is necessary in the case p _< 2. Condi-
tion (iv) also may be unnecessary, although some restriction on Up, like
finiteness, is clearly needed. Continuity appears in the statement of the
domination principle (Lemma 3 of Section 2) but this could certainly be
avoided if there was a reason to do so. The only actual use of condition (iv)
is in the proof in Section 3, where the continuity of U ensures the exixtence
of an open ball upon which balayage takes place.
Our results have points of contact with the work of Rost [5] and that of

Cartier, Fell and Meyer [1]. By combining the work of Dubins with that of
Cartier, Fell and Meyer, one obtains the result of our theorem for p 1, but
only in the case that # and have compact support.
Rost deals with a general Markov process. We shall only describe his re-

sults in the context of Brownian motion. Let {P} denote the semigroup of
transition probabilities for Brownian motion, and let P () e-P for all
a _> 0. Let H (a) denote the set of bounded excessive functions with respect
to the semigroup {P(a)}, where an excessive function f with respect to
P(a)} is defined to be a non-negative measurable function such that
P()$

_
f for all and such that P()f converges point-wise to f as goes to

0. Rost shows that the following two statements are equivalent"

(1) RS(),
(2) lim.,..[sup{fgd-- fgdlgeH(a),g <_ 1}] 0.

For R and 1 equation (2) does not simplify, but for 1, p >_ 3 it becomes

(3) f gd >_ f gdforallginH(O).
Equation (3) can then be shown to be equivalent to condition (ii) of Theorem
1.
As expressed in equation (1), the stopping time constructed by Rost is

randomized. We conjecture that, because of the smoothness of the transi-
tion probabilities for Brownian motion, the stopping time constructed by
Rost will in fact be a true stopping time, in the special case that and
have disjoint support. However, we have no proof of this conjecture.

Rost does not give conditions under which the expectation of the stopping
time which he constructs would be finite. It is possible that the methods used
to prove that the stopping time constructed in the present paper has a finite
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expectation when has a finite second moment could also be applied to the
stopping time constructed by Rost. We have no proof of this conjecture
either.
The next section contains some definitions and lemmas from potential

theory. Theorem I is proved in Section 3.

2. Potential theory

We define the potential kernel k on R as follows:

k(x) x[,p 1, k(x) -log[xl, p 2,
(1)

k (x) Ix [-+", P > 2.

For a finite Borel measure t on R we define the potential U of by

(2) Ut’ (z ) f k (x y) (dy )

when the integral exists.

For two finite Borel measure and , let

(3) <t, ’} f k(x y)t(dy)v(dx)

when the integral exists with respect to the product measure # X . In
this case Fubini’s theorem applies, and

<,,, f f ,

(t, ) is called the mutual energy of # and . Let k+ k X/0, k- -k/k 0.
Thenk k+forp > 2. Let

(5) "U"(x) f k’(x x)tt (dy) and 6t, ,)* f k"(x y)tt (dy)t, (dz).

All these quantities are either finite or + oo.
For this paper, let us call a function good if it is bounded, measurable, and

has compact support. A measure with a good density will be called a good
measure. It is easy to see that for any finite measure with bounded density
f and any constant c > 0 we have

f k+(x) dx + c # Ii on R.(6) +U --< Ilfll ,>o

Here f is sup norm and tz is total mass.
continuous on R for any finite measure # with bounded density.
any good measure %

(7) lim,, +U(x) 0.

It follows that +U is
Also, for
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Hence u, )+ exists and is finite for any finite measure . We conclude
that +U (x) is finite a.e. dx.

It is easy to check that

(8) ik-(x)-k-(Y)l -< Ix-Yi for x, yinl.
Hence

(9) -U’(y) ix y l(R) <_ -U’(x) <_ -U’(y) + Ix
Thus -U is either finite for all x or infinite for all x, and if it is finite it is

continuous. Let M denote the collection of finite measures for which-U"
is finite. For p > 2, M contains all finite measures. For any p, M contains
all finite measures with compact support. For any in M and every x in
R, U (x) exists as a finite number or -b oo. It is a straightforward matter to
verify that U is lower semicontinuous and superharmonic.

Let be in M and let be a finite measure with compact support. Since
clearly (, )- < o, we see that (#, ) exists as a finite number or
Hence by (7), (, /) exists and is finite for any measure in M and any good
measure .

Let #. be a uniformly bounded sequence in M such that

(10) lim.. (#., ) exists for all good measures %

Then there exists a finite measure such that

(11) lim-. f fd f f d# for all f in 0(R)

where 0(R) is the collection of all continuous functions on R with compact
support. This is clear because any smooth function in 0 (R) can be written
as U U.

(11) does not quite imply (10). If (11) holds, and #. is a uniformly
bounded sequence in M, then

(12) lim.. (,, ,)+ (, )+ for any good measure .
This is clear by (7). It is easy to see from (8) that if (, g)- is bounded in n
for one non-ero measure then -U* is uniformly bounded on any bounded
set in R for all n, and # is in M. One can.. show that if (11) holds and
is a uniformly bounded sequence in M and if u,, )- converges for one non-
zero measure with compact support then-U" converges uniformly on any
bounded set in R. Furthermore there exists a constant c >_ 0 such that

(13) lirr.-U" -U + c on R.
L.MMX 1. Let and v be two probability measures in M. Suppose

U" + c <_ U on R’where c >_ O. Then c O.

Proof. Let D be a ball of radius r centered at the origin. Let xo
xv v v, x) et t, x, cv v. Let ), and be the harmonic measures on
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0D for #1 and vl respectively.

or

or

Then

u(o) + u’(o) + c _< u(o) + u’(o)

c < u (o) u" (o) + u’ (o) u" (o)

c < k,(,(D) (D)) + u".(0) u’.(0).

where k, k(x), xl r. Since g and r are in M, u"’O) --, 0
and U’(0)--o0asr--+ oo. Forp > 2, kr--0asr-- 0o. Thusc 0in
this case. (We note that the fact that g and r have the same total mass is
not needed for p > 2.) For p < 2,

k,6,(D) (D))

Thus again c 0 so Lemma 4 is proved.

r> 1

COROLLARY 1. The same proof shows that U and U must be eual outside
any ball containing their supports. (Since then U (0) U (0), and hence
V V.)
COROLLARY 2. The same proof also shows that if and, t, are any measures

inM with U > U onR, p > 2, then (R ) >_ (R ).

By combining Lemma 1 with the previous remarks on convergence we see
that if g and r are probability measures in M such that (10) holds, and also
U" > U" on Rv, then there exists a probability measure g in M such that

(14) for all good 3’.

LEMMA 2. Let #, be probability measures in M. Suppose U’* >_ U"
on R and lim,,... U’ (x ) exists a.e. dx. Then there ezists a probability measure
tt in M such that (14) holds, and such that lim** U"*(z)

Proof. A good measure q will be called an especially good measure if there
exists a set A such that U" is un’formly bounded on A and f (At) 0. For
any e > 0, and any good measure % we can find an especially good measure
q such that II !1 < e and (using (6)) such that I+U +UI < e
on R. The lemma then follows easily.
Lemma 2 is the. convergence result we will need later. We now note a

"domination principle".

LEM 3. Let k be a measure in M with Ux continuous on R.
continuous superharmonic function on R such that

(i) W > Ux on the support of and
(ii) lira infl.t_,.,o (W (z) Ux (z)) _> O.
Then W >_ Ux on Rv. If p > 2 then (ii) can be replaced by
(iii) lira inft,l** W (z) _> 0.

Let W be a
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Proof. The first statement is a trivial consequence of the minimum princi-
ple. As to the second statement, we note first that ), can be assumed to have
compact support. But then the first statement applies. (For a stronger
domination theorem, cf. [3, page 184]. )
We will require a well-known result, connecting stopping times and second

moments, which we state as:

LEMMA 4. Let be a probability measure in M. Let {B} be Brownian mo-
tion with initial distribution #. Let s be a stopping time with finite expectation.
Let v be the distribution of Ba. Then f xv(dz) f x (dx) + E (s). Also
v is in M and U < U on Rp.

LEMMA 5. Let and v be measures in M.
(R v (R’ ). Then

(15)

Suppose U >_ Uon R and

where c, is a constant (= Laplacian x/flux of a unit mass).

Proof. The idea of the proof is to approximate -x by functions each of
which differs from a potential by at most a constant. This is done by con-
sidering the potential of a uniform mass density on a sequence of bounded
balls. We give the proof for p 2. The other cases are similar and simpler.
Choosea > 0. Letfa(x) 2/r for xl _< a,f,(x) 0for xl > a.

Letra =fadx. LetVa U"-a+2aloga. We findV,(x) -x*for
x -< a and V, (x) -2a" log x a* + 2a log a for x > a. It follows

that Va (x) is a decreasing function of a for fixed x, converging to -x as a
goes to

J + J
Letting a go to the lemma follows, with c 2/(= 4/2).

LEMA 6. Let # be a probability measure in M. Let {B} be Brownian
motion with initial distribution #. Let s be a stopping time with finite expecta-
tion. Let v be the distribution of B,. Then

() c, I (v"(z) u’())

Proof. Follows readily from Lemmas 8 and 9.
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3. Proof of the theorem

Let/ and be probability measures on R. If p > 2 let (ii) and (iv) of
Theorem 1 hold. If p < 2 let (i), (ii), (iii) and (iv) of Theorem 1 hold.
Let {B} be Brownian motion with initial distribution . We shall construct
a stopping time r such that distribution B, and such that

E(r) c J (U(x) U(x)) dx.

This will prove the theorem.
r will be constructed by a method of exhaustion, as a limit of stopping times

s (n). First let g be a fixed continuous function on R, such that g > 0 on 1,
such that if m g dx then (a, m) exists for all ainM, and such that if (a (n),)
converges for some uniformly bounded sequence a(n) in M and all good
measures % then (a (n), m) converges. Such a function g can be seen to exist,
by considering (7) and (8). The measure m will serve as a gauge, to measure
the progress made in constructing r.

Let $ denote the collection of stopping times s having finite expectation such
that if distribution B, then U >_ U on R.

Let s(0) 0, a(0) . Having defined s(0), s(n), a(0), a(n),
(1), a(n), let

(1) a(n -k 1) sup {(a(n), m) (,

where the supremum is over all distribution B, for s in $ with s > s (n).
Choose s (n A- 1 ) in $, s (n A- 1 ) > s (n), such that if (n A- 1 distribution
B,(+) then

(2) (a(n), m)- (a(n-t- 1), m) >_ a(n-{- 1)- 1/(n-t- 1).

This defines s (n), a (n) for n >_ 0 and a (n) for n _> 1. Clearly

(,, >

Hence

(3)

Let r limn_. s (n).

lim. a(n) O.

Let h distribution B. For p > 2 it is clear that

(4) lim. f f dtr(n) f f d), for all f

If p g 2, we note that (a (n), t) converges and hence is bounded for any
good measure ,/. If r held with positive probability a sequence of stop-
ping times (n) would exist such that (n) < s (n) and B.() "-* with
positive probability. But then ( (n), ,) < (y (n), ) --* -oo, a contradic-
tion. Thus r is finite almost everywhere. Hence (4) holds for p < 2 also.
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It follows from Lemma that is a probability measure on R and
lim(R) U () () a.e. . Hence U _> U on R.

Let Il U() U()I. Since U U is lower semicontinuous
is open. We claim

(5) X(G) 0.

If (5) does not hold then there must exist an open ball Q

_
G and a number

c such that Ux > c > U on a neighborhood of , and , (Q) > 0. Let (n)
first time of exit from Q after s(n). Let a(n) distribution B(.).

Let s first time of exit from Q after r. Let distribution B,. Clearly

(6) <x, >
But also U-’( _> U’ on R, so (n) is in . Hence

(n- 1) >_ ((n),m)- ((k),m) for allk >_ n.

Thus

(7) a(n-t- 1)_> <a(n),m>-- <a,m> for all n.

Since (a (n), m > > <, m > for all n, (6) and (7) contradict (3). Thus (5)
must hold.

Let F R G. F supports and Uxl Ulis continuous. It
follows easily from the theorem of Evans and Vasilesco (el. [4, page 117])
that U is everywhere continuous. By Lemma 3 we can now conclude that
U_> UonR. HenceU-- U,so-- . Since

E(r) lim(R) E(s(n)) lim c f (U() U"‘’ ()) d
c, f (V’(x) U’(x)) dx

the theorem is proved.
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