
ELEMENTARY TREATMENT OF A QUADRATIC PARTITION OF PRIMES
p 1 (mod 7)

BY
KENNETH S. WILLIAMS

This paper is dedicated to the memory of the great American math-
ematiciau Leonard Eugene Dickson, who was born 100 years ago on
January 22,184 in Independence, I0wa, U.SA., and who served as
a professor of mathematics at the University of Chicago for 41 years.

1. Introduction

Let e be an integer > 1, p a prime congruent to 1 (mod e), and g a primitive
root (mod p). The cyclotomic number (h, k) is the number of solutions s,
of the trinomial congruence g+ - 1 -- g+ (mod p), where the values of

s,and are each selected from 0, 1, f 1, where ] (p 1)/e. A
central problem in the theory of cyclotomy is to obtain formulae for the
numbers (h, k) in terms of the solutions of certain diophantine systems. For
example [1] when e 3 the cyclotomic numbers of order 3 can be given in
terms of the solutions a, b of the single diophantine equation 4p a - 27b,
with a 1 (mod 3), and when e 5 the cyclotomic numbers of order 5 can
be given in terms of the solutions x, u, and w of the pair of diophantine equa-
tions

16p x - 50u 50 125w, xw v 4u u with x 1 (mod 5).

Recently P. A. Leonard and the author [3] evaluated the cyclotomic numbers
of order 7 in terms of the solutions (Xl, x, xs, x4, xs, xs) of the triple of diophan-
tine equations

(1.1) 72p 2x + 42 (x - x - x) W 343 (x - 3x),
12x 12x - 147x -441x - 56xl x8

(1.2)

(1.3)

-t- 24x2 x8 24x2 x4 - 48xa x -t- 98x5 x6 0,

12x 12x + 49x 147x -[- 28xl x - 28xl x
W 48x xa - 24x x 24xa x 490x x 0.

(Another application of this system has been given in [4].) Clearly all solu-
tions (x, x) of (1.1)- (1.3) satisfy x +/- 1 (mod 7). Moreover if
(x, x) is a solution so is (-x, -xs). Thus without any loss of
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generality we restrict our attention to those solutions satisfn
(1.4) x ------ +1 (mod 7),

The nature of the solutions of the system (1.1)-(1.4) was obtained from the
work of Dickson [1] by P. k. Leonard and the author [5], using a number of
results from algebraic number theory, for example, that the ring Z],

exp (2/7), is a unique factorization domain, the form of the prime
factorizations of p and certain Jacobi sums in ZIg’I, etc. It is the aim of this
paper to give a completely elementary, self-contained treatment of the sys-
tem (1.1)-(1.4) without reference to the theory of algebraic numbers.
As p is a prime 1 (rood 7 ) there are integers and u such that p = -}- 7u.
is uniquely determined if we require - 1 (rood 7), in which case u is de-

termined up to sign. Then (-6t, 2u, :2, 2u, 0, 0) give two solutions
of (1.1)-(1.4). We call these the tHva solutions of (1.1)-(1.4), any solution
of the system different from these two will be called a non-trivial solution.
In order to give explicit expressions for the non-trivial solutions of (1.1)-(1.4)
it is convenient to introduce the Jacobsthal sums (n) defined for any integer
n by

where the symbol (h/p) is the Legendre symbol giving the quadratic charac-
ter of h with respect to p.

THEOREM 1.
(1.1)-(1.4).

There are exactly six distinct non-trivial solutions (zx, z)
These are given by

x 1 + (4),

7x (4g’*) (4g’* ),

) (4a ),

49z (4g") + (4g’’) 2(4g’’) (4") + (4g’’)
+ (4gO’),

49x (4g") (4") (4g’’) + (4g’’),
where i 1, 2, 3, 4, 5, 6 d i* denotes the que teger stisfg ii* 1
(modT),l i* 6.

Theorem 1 will be proved by proving two theorems from which it follows
immediately.

Tmoa 2.

x 1 + (4),
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then all non-trivial solutions are given by

000
001
-100
010
000
000

0 0

Theorem 2 is proved by using results due to Whiteman [6] and Theorem 3 is
proved following a method of Dickson [1].

2. Cyclotomy and Jacobsthal sums
We will make use of the following results concerning the cyclotomic numbers

and Jacobsthsl sums of order 7 which we state here for convenience. For
proofs and references the reader is referred to Whiteman [6].

(2.1) (h,k)= (hT7l, kW7m), (h,k)= (k,h)= (7-h,k-h),

(2-.2) qn(4g’) 7{ ’-o (1, k 1) f},

(2.3)
.-o(h,k)=f-- 1 if k =0,

=f if

-7,
(2.5) -0{(4g)} 42p -t- 7,
(2.6) ’=o (4g)4 (4g+’) 7p + 7 (s 1, 2, 3),

where " exp (2ri/7) and indg(a) (a 0 (mad p)) denotes the unique
integer b such that a -= ga (mad p), 0 _< b < p 2.

3. Existence of non-trivial solutions--proof of Theorem 2
By (2.1) the 49 cyclotomic numbers (h, k) (h, k 0, 1, 2, 3, 4, 5, 6) re-

duce to the 12 cyclotomic numbers
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A (0,

(3.1) E (0, 4)7,

I (1,3)7,

Hence by (2.2) we have

(3.2)

(3.3)

(3.4) (4g)
(3.5) (4ga)
(3.6) (4g)
(3.7) (4g)
(3.8) (4g)
Using (3.3)- (3.8) we obtain

(3.9)

and

(3.10)

B (0,1), C-- (0,2), D--- (0,3),
F (0,5), G (0,6), H-- (1,2),

J (1,4), g-- (1,5), L (2,4).

(4) 7{A + 2H + 2J - 2L -/},

(4g) 7{2B +D +2I-k2L--f},

7{2C -t- G -[- 2I + 2J -f},

7{C+2D +2H+2K--
7{2E + F + 2H + 2I- f},

7{B + 2F + 2J + 2K- f},

7{E -{- 2G + 2K - 2L --f}.

(49) 7 (4g) (4g) + (4g)
7{B-- 2C+ D+E- 2FTG- 4J+4L}

(4g) + (4g) 2(4ga) 2 (4g) + (4g) + (4g)
7{3B-- 3D-- 3ET3G-8H+4J+4L].

Now from (2.3) we have (taking k 1, 2, 3):

(3.11) BWG-2H-I- J-K=f,

(3.12) C+F-H+I-I-K-2L =f,

(3.13) D+E+I+2J+K+L =f,

so that forming (3.11) 2 (3.12) + (3.13) and 3 (3.11) 3 (3.13) we obtain

(3.14) B-- 2C+D +E- 2F+G+3J- 3L 0

and

(3.15) 3B 3D 3E -{- 3G + 6H 3J 3L 0.

Using (3.14) and (3.15) in (3.9) and (3.10) we deduce

(3.16)

and

(3.17)

(4g) (4g) (4g) + (4g) 49 (L J)

(4g) + (4g) 2 (4ga) 2 (4g) -k (4g) - 4 (4g)
49(-2H -k J - L).
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Equations (3.2)- (3.8), (3.16) and (3.17) show that we can define integers
xl, x by

x 1 -I- 4(4),

7 ,(4) (4),
7x (4) ,(4),

(3.18)
7x (g’) (g’),

49x (4g) + (4g) (4g) 2(4g) T (4g) + (4g),
49x0 (4g) (4g) (4g) +

Mth x 1 (mod 7). Now from (2.4) and (3.18) we obtain

(4) -1 W
l(4g) -12 2x 42x T 49xa T 147x,

l(4g2) -12 2Xl + 42x W 49xa 147x,

(3.19) 12(4g) -12 2Xl + 42x 98xa,

1(4g) 12 2x 42x 98x,

l(4g) -12 2x 42x 49x 147x,

l(4g) -12 2x 42x W 49x T 147x,

d substitutg these vues into (2.5) and (2.6), the latter intform

(){(+) (+)} o,
Z (a){(+’) ,(+’)} o,

we obta (1.1), (1.2), (1.3), shog that (3.18) gives a solution of the
ophantine system. that remains to be done, is to show that the solu-
tion ven by (3.18) is a non-triM solution. Suppose not; then

x -6t, x 2u, xa 2u, x 2u, x 0, xo 0,

and (3.19) giv

(4) -1

(3.20) (4g) (4g) (4g’) 1 + 7u,

(43’) (43’) (4a) -1 +
We define a seventh power character x by

x(x)-- ia() if x0
(3.21)

0 if x---0

(rood p),

(rood p).
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For any integers m, n we define the Jacobi and Gauss sums by

These sums have the following smple properties (see for example [2])-

(,)-- ()()/() if m0 (mode),
(3.3)

()(-) if 0 (mode).

Hence from (3.23) we have

pJ(1, 2) G(3)G(4). G(.1)G(2..) G(1)G(2)G(4)
a(a)

V(1) G(2)"
G() e() e(i)"

that is

(3.24) pJ(1, 2) J(1, 1)J(2, 2)J(4, 4).

From (2.7), (3.20), (3.21), (3.22) we have

J (, ) --o’ x ()x( ) Z::--0 (4g’)/7 u/-- 7,

and similarly J (2, 2) J (4, 4) :i: u/- 7. Thus from (3.24) and
p $ + 7u we obtain

J(1, 2) (t :i= u’-7)*/p (-3t u/-7) - (4ta/p =l= (4tu/’-7)/p).
Clearly 4t/p, 4tu/p are not rational integers so that J (1, 2) is not an integer
of Q (/-7). This is a contradiction as J (1, 2), being an element of Q(/-7)
and an integer of Q (’) Q (/-7 ), must be an integer of Q (/-7 ).

4. Necessary and sufficient conditions for trivial solutions
In this section we derive convenient conditions for identifying trivial solu-

tions of (1.1)-(1.4). Condition (E) of Lemma 2 will be used in the proof of
Theorem 2.

LEMMA 1. The only integral solution (x, y) of the diophantine equation

(4.1) x* + 9xy xy"-- y’ 0

(, y) (o, o).

Proof. Let (x, y) be an integral solution of (4.1). If y 0 then clearly
(4.1 ) implies x 0. If y 0 we can define a rational number z by

z (x- 3y)/2y.

From (4.1) we deduce that z satisfies z 7z -b 7 0. This is a contradic-
tion as, by Eisentein’s criteria, z 7z -t- 7 is irreducible over the rationals.
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LEMMA 2. The solution (xl, x., xs, x4, xs, x) of (1.1)-(1.4) is one of the two
trivial solutions (--6t, :i:2u, 4-2u, 2u, 0, 0), where p -k 7u and 1
(mod 7), if and only if any one of the following is satisfied:
( o,
(n) =.=-x,
(C) xl -6t, x- xs- x :i=6u,

)(D) x+7(x-t-xs-- x4 0 (modp),
(E) 42x. ew{-2x W 7x5 63x} (mod p),

42x8 --- ew{-2x- 35xa-k 21x} (rood p),
43x4 ew{2xl- 28xa- 42x} (mod p),

where :i: 1 and w is afixed solution of w --7 (rood p).

Proof. Clearly if (x, x, xa, x, x, x) is trivial then (A), (B), (C), (D),
(E) are satisfied.

(A) If x x 0 then (1.2) and (1.3) give

(4.2) x x + 2x. x 2x x -J- 4x x 0,

(4.3) x x] + 4x + 2x x + 2x x 0.

Subtracting (4.3) from (4.2) we obtain

(4x.- 2x)x x 2x x- x.

Using this in (4.2) we obtain after some simplification

(x- ,)( + 9x x- x x x) 0.

If x T 9 xa x x xa 0, by Lemma 1, we must have x x 0,
and hence

X Xa X4 X X 0
so that (1.1) gives 72p 2x, which is impossible.
Hence we must have x xa and so from (4.3) we obtain x x, -x.
Then (1.1) gives 36p x[ T 63x] implyg that x 6t, x 2u. Ts
proves that (x, x, xa, x, x, x) is the trivial solution (-6t, 2u, 2u, 2u,
0, 0).

(B) Next, if x xa x then (1.3) (1.2) and (1.2) give

8x, x 7(T 18x x 3x), 8x, x 7(-3xi 2x x + 9x]),
so that

x (-3x 2x x, + 9x) x, (x 8x x, 3x),

wch reduces to x + 9x] xa x x 0. Hence by Lemma 1 we have
xa x 0 and (A) shows that (x, x) is the tribal solution.

(C) Nowifx -6t, x+x- x 6u,
then (1.1) gives

0 12( T x + x xa 6ux 6uxa + 12u) + 49(x + 3x),
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that is

0 6( : 2) - 6( : 2) 6( 2) 49( 3),
so that

and the solution is tribal by (A) or (B).
(D) Ifz+7(z+x- x 0 (modp)

we define n teger h by z 7 (x W x x) hp. Now ew of the
tribal equity b 2ab, for any re numbers a nd b, we hv

0 hp x T 7x T 7x T 7x T 14x x- 14x x- 14xs

36p,

so that 0 h 36. Now from (1.1) we have that x T 3x is even so that
xl + 3 0 (mod4), givg

0 xTxW xTx (mod2),

so that x + 7 (x W x, x) is even and hence

xW7(x+xa- x)0 (mod4).

Thus we may set h 4g, th 0 g g 9, and we have, th y x T x x,

(4.4) x + 7y= 4gp.

We now show that none of the possibilities g 0, 1, 8 c occur. If
g 0 then z 0 and (1.1) implies that 72p 0 (mod 7) wch is impoi-
ble. If g 1, 4, 7, 8 then (4.4) ves z 0, 2, or 4 (rood 7), wch is ira.
possiblez 1 (modT). Ifg 2then (4.4) givesz (t 7u).
Substitutg ts vue into (1.1) we obta 0 (rood 7) wch clearly
impossible, g 3, 5 and 6 are impossible for otherse z W 7y wod have
a pme q, such that (-7/q) -1, dg it to the first power. Hence
we must have g 9 and so z + 7 (z + z z) 36p, gig

z x+x-x0 (rood6),

y z -6t, x W x x 6u, th p W 7u.
(C) then proves that the solution (x, z, x, x, z, x) ist.
(E) Finally, if we have

42x ew{-2x, -t- 7x 63x}

42x ew{-2x, 35x - 21x,}

42x, = .w{2x,- 28xa- 42x}

(mod p),

(mod p),

(rood p),
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then 42 (x - x8 x4) --6ewzl (rood p), that is

x =-- ew(x - x, x4) (rood p),
or

x -}- 7 (x -[- x, x) 0 (mod p),

and the triviality of the solution (x, x, xs, x, x, x) follows from (D).

5. Congruence conditions for non-trivial solutions
Let r be an integer of exponent 7 (rood p), that is, r --- 1 (rood p), r 1

(mod p), so that

(5.1) 1-t-r-t-r+r*-l-r-rTr--0 (modp).

We set

(5.2) R r -l- r, S r + r, T r W r.
Appealing to (5.1) we see that R, S, T satisfy

(5.3) R+S-T=-I, RS + ST T TR -2, RST I,

(5.4) RS - T + R, ST R -t" S, TR =- S -t- T,
(5.5) R-- -2R-S-2T, S"-2R-2S-T, T-R-2S-2T,
where all congruences (here and, unless stated otherwise, thereafter) are
taken modulo p. We prove

LZM 3. I] (x, x, x, x, x, x) is a non-trivial solution of (1.1)-(1.4)
then it satisfies one of the six triples of congruences:

(5.6) 294x - ew{ (10R 2S - 6T)xl - (49R -t- 49S 147T)xa- (147R -[- 147S -}- 147T)x,},

294xa ew{6R - 10S 2T)x - (147R T 49S -k 49T)xa- (147R- 147S- 147T)x},

294x ew{ (2R 6S 10T)x - (98R -{- 98T)x T (294)x},

(5.7) 294x ew{ (-2R -[- 6S + 10T)x -t- (49R 147S -{- 49T)xa

+ (147R -k 147S - 147T)x},

294x, - ew{ (10R 2S -[- 6T)x - (49R + 49S -[- 147T)x

-t- (- 147R 147S -k 147T)x},

294x ew{ (-6R 10S - 2T)x - (98S -}- 98T)x -t- (294R)x},

(5.8) 294x - ew{ (6R -t- 10S 2T)x - (-147R -t- 49S - 49T)x- (147T - 147S -}- 147T)x},
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294 -- l (--2 - 0 10T) (49 - 14 - 49)(-- 142 - 14 14)1,

294x4 wl (--10 2 6)xl (98 - 98)5 - 294)x1,

where :h 1 and w is afixed solution of w 7 (rood p).

Proof. Let (xl, x, x,, x4, xs, x) be a non-trivial solution of (1.1)-(1.4).
Now it is easy to verify using (5.4) and (5.5) that

(-6R- 10S- 12T)(2x, + 343x / 1029x)
-}- (--7S 21T)(147x 441x - 56x x -t- 98x

-t- (14S T 21T)(49x 147x -{- 28x x - 28x x - 490xa x)

{(2R 2T)x - (35R -k 42S -t- 70T)xa -[- (-21R 84S 42T)xl

and

-7 (-6R 10S 12T)(-42x 42 42x)
-t- (-7S 21T) (-12x W 12x 24x,. x8 -t- 24x x 48xa

+ (14S + 21T)(-12x + 12x 48x,. x8 24x x4 24x8 x4)}- {(42S + 42T)x + (-42R 42S 42T)x8 + (-42T)x4},
so that as (xl, x, x,, x4, x, xo) is a solution of (1.1)-(1.3) it must satisfy

:i:w (2R 2T)xl + (35R + 42S + 70T)xa

(5.9) + (-21R 84S 42T)xo}- (42S + 42T)x + (-42R 42S 42T)x, + (-42T)x,,

where w is a fixed solution of w" -7 (mod p). Replacing r by r (or r5)
(resp., r by r (or r) ), which has the effect of sending R --, S, S -- T, T -- R(resp,, R --+ T, S - R, T -- S), in (5.9), we obtain the system

42{(S + T)x- (R + S + T)x- Tx}

Xw (2R 2T)x, + (352 + 42S + 70T)x

+ (-21R 84S 42T)xo},

42{(R + T)x- (R + S + T)x8

(5.10) w{ (-2R + 2S)x, + (70R + 35S + 42T)xa
-}- (-42R 21S 84T)x},

42{(R -t- S)x.- (R + S + T)x, Sx}- no (-2S + 2T)x + (42R + 70S + 35T)x,

+ (-84R 42S 21T)x},
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where,-- +/-1, +/-1, +/-1. Note there are8 23 choices for (h,,
). We canrule out the two possibilities (),, #, ) e(1, 1, 1), where 1,
since in this case (5.10) ves (using (5.3, (5.4), (5,5))

42x w{-2x + 7x 63x},

42x ew{-2x 35x T 21x},

42x ew {2x- 28x- 42x},

wch is impossible by Lemma 2 (E) as (x, x, x, x, x, x) is a non-trivial
solution. Tang (k, , ) (1, 1, -1) (resp., (1, -1, 1), (-1, 1, 1))
in (5.10) and lving the congruences for x, xa, x using (5.3), (5.4) (5.5),
we obtain (5.6) ffesp., (5.7), (5.8)). We note that (5.7) is obtained from
(5.6) by the mapping R T, S R, T S, equivalently r ra, and (5.8)
is obtaed from (5.6) by the mapping R S, S T, T R, equivalently

6. Number of non-trivial solutions--proof of Theorem 3
Let (x, x, xa, x, x, xe) be any non-trivial solution of (1.1)-(1.4). By

Lemma 3 it must satisfy (5.6), (5.7) or (5.8). By replacg r by r or r if
necessary we may suppose it satisfies (5.6). Fuher by replacing (x, x, xa,
x, x, x) by the solution (x, -x, -xa, -x, xa, xe) if necessary we may sup-
pose it satisfies (5.6) th 1. Now let (y, y, y, y, y, ye) be another
non-tribal solution of (1.1)- (1.4). By Lemma 6 it must satisfy one of the s
triples of congruences given by (5.6), (5.7), and (5.8). We 1 show that
if (y, y, ya, y, y, ye) satisfies

(i) (5.6) th +1 then (y, y, ya, y, y, ye) (x, x, x, x, x, x),
(ii) (5.6)thc -lthen

(y, y, y, y, y, y) (x, -x, -, -x, x, x),

(fii) (5.7) th c W 1 then

(y,. y, y,. y,. y, y,) (x,, -x. x. -,, -(x 3x,). - (x + )),

(iv) (5.7) with c 1 then

(y,, y, y,, y,, y,. y,) (x,. x,, -x. x,. - (x 3x,), -( + )),

(v) (5.8)thc Tlthen

(y,, y. y,. y,. y, y,) (,, ,, -z,. -x, -. (x + 3x). ( x,)).

() (5.8)the -lthen

(y,, y, y,, y,, y, y,) (,, -., ., , -( + an), ( )),

completing the proof of the theorem. As cases (i)-() are very sitar we
oy give the details for case (i). In this ce we have from (5.6), with

=
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2058 {2xl yl -{- 42 (x y. + x8 y8 - x4 y4) - 343 (x5 y5 -{- 3xe ye)}

4116x y 7 (10R 2S -[- 6T)x - (49R -{- 49S 147T)x

-k (147R -[- 147S - 147T)xe} (lOR 2S -]- 6T)y

-{- (49R - 49S 147T)y -k (147R + 147S -k 147T)yel

7{(6R -{- 10S 2T)xl - (147R T 49S -[- 49T)x

+ (147R 147S- 147T)xe}{(6R -[- 10S- 2T)y- (147R -t- 49S -t- 49T)y -{- (147R 147S 147T)y6}

7{(2R 6S- 10T)x + (98R + 98T)x5-k (294S)xel

(2R 6S 10T)y -[- (98R + 98T)ya

-{- 705894x y -k 2117682xe y6 0 (mod p),

appealing to equations (5.3)- (5.5), so that

(6.1) A 2x yl -{- 42 (x. y + x y -t- x y) -k 343 (x y5 T axe ye)

satisfies

(6.2) A 0 (modp), say A Bp.

Next as xl y 1 (mod 7) we have from (6.1) and (6.2),

(6.3) B - 2 (mod 7).

Also taking (1.1), (1.2), (1.3) modulo 3 it is easy to show that

x -= -x (mod 3)

(similarly Yl --Ya (mod 3)) so that

(6.4) B-- 0 (mod3).

Again from (1.1), (1.2), (1.3) working modulo 8 we find

xl =- x-t- xa+ x (mod2), x5 x- 3x+ 2x (mod4),

xe x. + x8 (mod 2),

with similar congruences for yl, y, ye in terms of y, y4, y, so that

(6.5) B 0 (mod4).

Equations (6.3), (6.4), (6.5) give B - 72 (mod 84), say B 84C W 72.
Finally the inequality

12xl y + 42 (x. y -t- x y W x y) -{- 343 (x5 y - axe
_< {(2x d- 42 (x -k- x. d-x) d- 343 (x -I- 3x))(2y d- 42 (y -k- y d- y])

-I- 343 (y -+- 3y



gives
IB[ 184C - 721 72,

so that C 0, or -1, that is, A 72p or A -12p. We next rule out the
possibility A -12p. To do this we consider a number of cases depending
on the residue of p (rood 49) and on the residues of xa 5z4 and y3 5y4
(rood 7). In view of the symmetry in the x and y there are 7 X 28 196
cases. We give just one of these. Suppose that p --- 43 (mod 49) and
x. 5z -- 2 (rood 7), y3 5y --- 4 (rood 7). Then, as (xl, x6) and
(yl, y6) are solutions of (1.1)- (1.4) we have

so that

giving

x. -I- 2xa -I- 3x --: 0 (rood 7), y3 -I- 2y, -I- 3y 0 (mod 7),

x, -- 3x4 -I- 6 (mod 7), y --- 3y -I- 5 (mod 7),

x y + x y -I-" x y -= 3 (mod 7),

x -I- x -I- x 5 (mod 7), y -t- y -I- y 6 (mod 7).

Then from (1.1) we deduce

x--- 36 (rood49), y--- 1 (mod49), xy-= 36 (mod49),

so that A - 2 (rood 49). Generally we find that

A 9, 16, 23, 44 (mod 49)

A 9, 23, 30, 37 (rood 49)

so that as

A -= 2, 23, 37, 44 (rood 49)

A 2, 9, 16, 37 (rood 49)

A --- 2, 16, 23, 30 (mod 49)

A --- 16, 30, 37, 44 (rood 49)

A 2, 9, 30, 44 (mod 49)

if p= 1 (rood49),

if p-= 8 (rood49),

if p-= 15 (rood49),

if p 22 (rood 49),

if p 29 (rood 49),

if p 36 (mod49),

if p 43 (rood 49),

-12p - 37, 2, 16, 30, 44, 9, 23 if p - 1, 8, 15, 22, 29, 36, 42 (mod 49)

respectively, we cannot have A -12p.
Thus A 72p and the identity

(72p) A -t- 84 (xx y3 x y3) -I- 84 (x ya

-t- 686 (x y x y) -t- 2058 (xx y

-I- 1764 (x3 y x y3) -I- 1764 (x y

-t- 14406 (x y x y,.)" -!- 43218 (x ye

-I- 1764(x y4 x ya)3 -t- 14406(x ya



QUADRATIC PARTITION OF PRIMES 621- 43218 (x8 ye xe ys) + 14406 (x4 y5 y5 y4)- 43218 (x y x y) - 352947 (xa y x y),
then gives xl y x yl x ye x y O. Now as

x---- y---- 1 (mod7) we have x 0, y 0,
so that

(6.6) x,/x, y,/y, (i 2, 3, 4, 5, 6).

Hence from ( 1.1 ) we have

72p/x 2 + 42((x/x) T (x/x) -(x/x)) - 343 ((xs/xl) - 3(x/xl))
2 + + + 3(y,/y,)

7 p/u ,
so that x y. As x --- y - 1 (mod 7) we must have x y and so from
(6.6) we also have x y (i 2, 3, 4, 5, 6), proving that

(x,, ...,x,) (y,, ...,y)
as required.

This completes the proof of Theorem 2.
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