ELEMENTARY TREATMENT OF A QUADRATIC PARTITION OF PRIMES
p = 1(mod7)

BY
KenNETH S. WIiLLIAMS!

This paper is dedicated to the memory of the great American math-
ematician Leonard Eugene Dickson, who was born 100 years ago on
January 22, 1874 in Independence, Iowa, U.S.A., and who served as
a professor of mathematics at the University of Chicago for 41 years.

1. Introduction

Let ¢ be an integer > 1, p a prime congruent to 1 (mod ¢), and g a primitive
root (mod p). The cyclotomic number (h, k), is the number of solutions s,
t of the trinomial congruence ¢*** + 1 = ¢°*** (mod p), where the values of
s and t are each selected from 0, 1, ---,f — 1, where f = (p — 1)/e. A
central problem in the theory of cyclotomy is to obtain formulae for the
numbers (k, k), in terms of the solutions of certain diophantine systems. For
example [1] when ¢ = 3 the cyclotomic numbers of order 3 can be given in
terms of the solutions a, b of the single diophantine equation 4p = o + 27b°
with @ = 1 (mod 3), and when ¢ = 5 the cyclotomic numbers of order 5 can
be given in terms of the solutions z, u, v and w of the pair of diophantine equa-
tions

16p = a* + 506 + 500° + 125w%, aw = v* — 4uv — w* with z =1 (mod 5).

Recently P. A. Leonard and the author [3] evaluated the cyclotomic numbers
of order 7 in terms of the solutions (i1, 22, 3, %1, &5, &5 ) of the triple of diophan-
tine equations

(1.1) 720 = 225 + 42(2% + o} + 1) + 343 (a5 + 35),
1225 — 1224 + 1472% — 441z% + 562 7%
+ 24a, x5 — 24 x4 + 4823 x4 + 98x5 x5 = 0,
1245 — 12% + 4925 — 147x5 + 282, 25 + 281 76
+ 48xs x5 + 24we x4 + 24x5 x4 + 49025 25 = O.

(Another application of this system has been given in [4].) Clearly all solu-
tions (z1, ---, zs) of (1.1)-(1.3) satisfy @ = =1 (mod 7). Moreover if
(21, - -+, @) is a solution so is (—a1, +++, —%). Thus without any loss of
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(1.3)
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generality we restrict our attention to those solutions satisfying
(14) 2= +1 (mod7):

The nature of the solutions of the system (1.1)-(1.4) was obtained from the
work of Dickson [1] by P. A. Leonard and the author [5], using a number of
results from algebraic number theory, for example, that the ring Z[¢],
¢ = exp (2m4/7), is a unique factorization domain, the form of the prime
factorizations of p and certain Jacobi sums in Z[¢], ete. It is the aim of this
paper to give a completely elementary, self-contained treatment of the sys-
tem (1.1)-(1.4) without reference to the theory of algebraic numbers.

Aspisaprime = 1 (mod 7) there are integers ¢ and u such that p = £ + 7u’.
¢ is uniquely determined if we require { = 1 (mod 7), in which case u is de-
termined up to sign. Then (—6¢, +2u, =+2u, F2u, 0, 0) give two solutions
of (1.1)-(1.4). We call these the #rivial solutions of (1.1)-(1.4), any solution
of the system different from these two will be called a non-trivial solution.
In order to give explicit expressions for the non-trivial solutions of (1.1)-(1.4)
it is convenient to introduce the Jacobsthal sums ¢, (n) defined for any integer
n by

(15) gu(n) = T4 (g) (";ﬁ ).

where the symbol (h/p) is the Legendre symbol giving the quadratic charac-
ter of h with respect to p.

TrarOREM 1. There are exactly six distinct non-trivial solutions (21, - -+ , s)
of (1.1)-(1.4). These are given by

n=14+¢4),
Ty = dr(4g") — &1 (4g"™"),
Tos = (49" — +1(4g™"),
(1.8) Tz =1 (49"") — &1 (4¢""),
4905 = d1(4g™) + &1 4g"™") — 201 (46"") — 21 (46"") + 41 (4™")
+ ¢ (4g""),
4925 = ¢1(4g") — ¢1(46"") — &1 (46"") + &1 (4g™"),

where 5 = 1, 2, 3, 4, 5, 6 and ¢* denotes the unique integer satisfying #* = 1
(mod7),1 <4* < 6.

Theorem 1 will be proved by proving two theorems from which it follows
immediately.

TeEOREM 2. If
=1+ ¢7(4)7
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To = ¢1(4g) — ¢1(49°),
o = ¢1(49°) — &1(49°),
Tes = ¢1(49°) — $1(4g"),
4925 = d1(4g) + ¢ (49°) — 20 (49°) — 21(44") + &1 (46") + #1(49"),
492 = ¢1(49) — &1 (49") — & (4g°) + 1 (49°),
then (21, 2, 3, 24, X5, ¥5) 18 @ non-trivial solution of (1.1)-(1.4).

THEOREM 3. If (21, 22, 23, X4, T5, 2s) 18 @ non-trivial solution of (1.1)-(1.4)
then all non-trivial solutions are given by

1 0 0O 0 0
0 0 01 0 0
(@1, 2y 2y 2 2y )| 0 L 90 0 0
Rt A s 0 010 0 0
0 00 0 —3 3

0 000 —2 —3

wherek = 0, 1, 2, 3, 4, 5.

Theorem 2 is proved by using results due to Whiteman [6] and Theorem 3 is
proved following a method of Dickson [1].
2. Cyclotomy and Jacobsthal sums

We will make use of the following results concerning the cyclotomic numbers
and Jacobsthal sums of order 7 which we state here for convenience. For
proofs and references the reader is referred to Whiteman [6].

(2°l) (h) k)" = (h + 7la k + 7m)77 (h) k)T = (ka h)7 = (7 - h’; k — h)'b

(2:2) er(4g*) = {200 G, kb — U)r — f},
[ - f — . =

23) Do (k) =f—1 ff k=0,

=f if 1<k<6,
(2.4) 2ior(4g") = =17,
(2.5) Dkeo {$1(40°))" = 42p + 7,
(2.6) Dot (@) 4g"") = —Tp + 7 (s =1,2,3),
(2.7) 2—0¢1(4gb)§j/7 - 25:22 g.ind, (z(l—-z))’

where { = exp (2r¢/7) and ind,(a) (¢ % 0 (mod p)) denotes the unique
integer b such that a = g°* (mod p),0 < b < p — 2.
3. Existence of non-trivial solutions—proof of Theorem 2

By (2.1) the 49 cyclotomic numbers (b, k); (h, k = 0, 1, 2,3, 4, 5, 6) re-
duce to the 12 cyclotomic numbers
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4= (0,0), B= (0,1);, C = (0,2):, D = (0,3),
31) E=(0,4), F= (0,5 G=(0,6)y, H= (1,2),

I =@1,38y: J=@Q,4» K= (1,5}, L = (2,4).
Hence by (2.2) we have

]

3.2) $1(4) = (A + 2H + 2J + 2L — f},
(3.3) ¢1(4g) = 7{2B + D + 2I + 2L — f},

(3.4) $1(4g") = 7{2C + G + 2 + 2J — f},

(3.5) ¢:1(4g°) = 7{C + 2D + 2H + 2K — f},
(3.6) ¢1(4g") = 12E + F + 2H + 2I — f},
(3.7) ¢1(4g°) = 1B + 2F + 2J + 2K — f},
(3.8) #:(4¢°) = T{E + 2G + 2K + 2L — f}.

Using (3.3)-(3.8) we obtain
¢1(4g) — ¢1(49") — 1 (4g°) + ¢ (49°)

(3.9)

=7B—20+D+E—2F + G — 4J + AL}
and
5.10) $1(49) + &1 (49°) — 207 (4g°) — 261 (4g") + ¢ (49°) + 1 (4g°)

= 7{3B — 3D — 3F + 3G — 8H + 4J + 4L}.
Now from (2.3) we have (taking k = 1, 2, 3):

(3.11) B+G+2H+I+J+K =7,

(3.12) C+F+H+I+K+2L =}

(3.13) D+E+I+2/+K+1L=f

so that forming (3.11) — 2(3.12) + (3.13) and 3(3.11) — 3(3.13) we obtain
(3.14) B—2C+D+E—-2F+G+3/—-3L=0

and

(3.15) 3B — 3D — 3E + 3G + 6H — 3J — 3L = 0.

Using (3.14) and (3.15) in (3.9) and (3.10) we deduce
(3.16) ¢1(49) — ¢1(4g") — 1 (4g°) + &1 (4g°) = 49(L — J)

and
&1 (49) + ¢1(4g°) — 2¢1(45°) — 27 (4g") + &1 (4¢°) + ¢ (4g°)

= 49(—2H + J + L).

(3.17)



612 KENNETH 8. WILLIAMS
Equations (3.2)-(3.8), (8.16) and (3.17) show that we can define integers
Xy, ccc, s by
rn =1+ ¢ (4),
To, = ¢r(4g) — dr(49°),
Tos = ¢a(4g") — ¢ (44°),
Ty = ¢1(4g°) — (49",
4975 = ¢1(49) + 1 (49") — 26:(47°) — 21 (44") + &1 (40°) + 61 (49",
4920 = ¢1(49) — d1(49") — ¢ (4¢°) + &1 (49",
with 2y = 1 (mod 7). Now from (2.4) and (3.18) we obtain
¢n(d) = —1 4+ x,
12¢:(4g) = —12 — 2ay + 4225 + 4925 + 1472,
12¢7(4g°) = —12 — 22 + 4223 + 4925 — 14774,
(3.19) 12¢:(4g°) = —12 — 2x; + 42z, — 98,
12¢:(4¢*) = —12 — 22 — 42z, — 9815,
1247 (4¢°) = —12 — 2z — 422 + 4925 — 1472,
12¢7(4¢°) = —12 — 22y — 42, + 4925 + 1472,
and substituting these values into (2.5) and (2.6), the latter in the form
2ot (4" ) (4g*) — &1 (4g*")) = 0,
2o dr (4" (4" M) — (4" *')} = 0,

we obtain (1.1), (1.2), (1.3), showing that (3.18) gives a solution of the
diophantine system. All that remains to be done, is to show that the solu-
tion given by (3.18) is a non-trivial solution. Suppose not; then

(3.18)

7= —6f = +2u, =2, = F2u =0 =0,
and (3.19) gives
¢(4) = —1 — 6t,
(8.20) $1(dg) = ¢1(4g") = ¢ (4g') = =1+t = Tu,
#1(4g') = ¢1(4¢°) = 1 (4g") = —1 + ¢ F Tu.
We define a seventh power character x by
x@) = "% if z# 0 (modp),

(3.21) .
=0 if =0 (modp).
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For any integers m, n we define the Jacobi and Gauss sums by

(3.22) J(m,n) = 25 x"(@)x"(1 — z), Gm) = I x" ()"

These sums have the following simple properties (see for example [2]):

J(m,n) = Gm)Gn)/Gm +n) if m+n#0 (mod?7),
Gm)GT —m)=p if m=£0 (mod?7).

Henee from (3.23) we have

(3.23)

G(1)G(2)

pJ(1,2) = G(3)G(4) - N OR G(1)G(2)G(4)
_ G’ G(2) G4)
T GR) G4 GO’
that is
(3.24) pJ(1,2) =J(1,1)J(2, 2)J(4,4).
From (2.7), (3.20), (3.21), (3.22) we have
J(1,1) = 223 x@x( = @) = ZI5 N

= Dot (4g' ) /T =t £ uv— 1T,

and similarly J (2, 2) = J(4 4) = ¢ + u/— 7. Thus from (3.24) and
p = £ + 7u’ we obtain

J(1,2) = (t + uv/=7)/p = (=8t Fuv/—7) + (4&/p = @'uv/—7)/p).
Clearly 4*/p, 48*u/p are not rational integers so that J (1, 2) is not an integer
of Q(v/—17). Thisis a contradiction as J (1,2), being an element of @ (v/—7)
and an integer of Q (¢) D Q (v/—7), must be an integer of Q@ (+/—7).

4, Necessary and sufficient conditions for trivial solutions

In this section we derive convenient conditions for identifying trivial solu-

tions of (1.1)-(1.4). Condition (E) of Lemma 2 will be used in the proof of
Theorem 2.

Lemma 1. The only integral solution (x, y) of the diophantine equation
4.1) L+%y -t —4> =0
8 (z,y) = (0,0).

Proof. Let (z, y) be an integral solution of (4.1). If y = 0 then clearly
(4.1) implies z = 0. If y ¥ 0 we can define a rational number z by

= (z — 3y)/2y.

From (4.1) we deduce that z satisfies 2 — 7z + 7 = 0. This is a contradic-
tion as, by Eisentein’s criteria, 2 — 7z + 7 is irreducible over the rationals.



614 KENNETH S. WILLIAMS

LemMmA 2. The solution (21, 22, 3, 4, %5, ¢s) of (1.1)—(1.4) <s one of the two
trivial solutions (—6t, +=2u, +=2u, F2u, 0, 0), where p = £ + 7w’ and t = 1
(mod 7), if and only if any one of the following s satisfied:

A) z=a=0,

B) x=a= —um

(C) x = '—6t, Xo+ X3 — 24 = :|:6fu,

(D) a4+ 7@ + 25 — 2)* = 0 (mod p),

®E) 422, = cw{—2x + 725 — 635} (mod p),

4223 = ew{ —22, — 3515 + 21ag) (mod p),
432y = ew{2x — 28x5; — 42z6} (mod p),
where ¢ = 1 and w is a fized solution of w* = —7 (mod p).

Proof. Clearly if (21, %2, s, 24, 5, @) is trivial then (A), (B), (C), (D),
(E)) are satisfied.
(A) Ifxs = 25 = O then (1.2) and (1.3) give

“4.2) Ty — Ty 2w s — 2y k4 + bz 2y = O,
4.3) zh — 25 + dxp s + 225 x4 + 2z5 24 = O.
Subtracting (4.3) from (4.2) we obtain
(dae — 203)s = @3 — 222 5 — 5.
Using this in (4.2) we obtain after some simplification
(@2 — x3) (@3 + 925 25 — 2223 — 23) = O.

If 25 + 922 23 — a3 23 — 23 = 0, by Lemma 1, we must have 2, = 2 = 0,
and hence
Tp=23 == ¥ = ¥ = 0,

so that (1.1) gives 72p = 2}, which is impossible.
Hence we must have 2, = 3 and so from (4.3) we obtain z; = ;3 = —uza.
Then (1.1) gives 36p = 2; + 6327 implying that 2, = —6t, 2, = +2u. This
proves that (21, 2s, @3, @4, @5, &) is the trivial solution (—6t, +2u, +2u, F2u,
0,0).

(B) Next,if 23 = 23 = —a,then (1.3) — (1.2) and (1.2) give

8m a5 = T(+ar — 182525 — 325), Smias = 7(—3x5 — 25 25 + 92%),
so that
25 (—8a% — 2as x5 + 9x5) = 2 (25 — 1825 25 — 3235),

which reduces to x5 + 9zt 25 — 2 2t — «z = 0. Hence by Lemma 1 we have
xs = 25 = 0 and (A) shows that (zi, - - - , @) is the trivial solution.

(C) Nowif zy = —6t, 22 + 23 — 24 = £6u,
then (1.1) gives

0 = 12(a% + a3 + 2 25 F 6uxs F 6uzs + 120°) + 49 (25 + 343),
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that is

0=6(@F2u) + 6 F 2u)® + 6(x: + 25 F 2u)’ + 49(2% + 33),
so that
T = 23 = +2u, 24 = +2u, ¥ = x5 = 0,

and the solution is trivial by (A) or (B).

(D) Ifaf+ 7@+ a — 2)’ =0 (mod p)
we define an integer h by i + 7(z; + 2 — #:)’ = hp. Now in view of the
trivial inequality a® + b* > =-2ab, for any real numbers a and b, we have

0< hp o + Ty + Tas + Tas + 14ay 25 — 142y 24 — 140 24,
< ai + 21(ab + 25 + 21),
< 3228 + 42(af + 25 + %) + 343 (af + 3z%),

36p,

so that 0 < & < 36. Now from (1.1) we have that i + 32% is even so that
z; + 375 = 0 (mod 4), giving

0=dai+ 2+ o +2i (mod 2),
so that 21 + 7 (22 + 25 — 24)’ is even and hence
2+ 7@+ 25— )’ =0 (mod4).
Thus we may set h = 4¢g, with 0 < g < 9, and we have, withy = 2, + 23 — 4,
(44) o+ 7 = 4gp.

We now show that none of the possibilities g = 0, 1, ---, 8 can occur. If
g = 0 then o; = 0 and (1.1) implies that 72p = 0 (mod 7) which is impossi-
ble. Ifg = 1,4,7, 8 then (4.4) gives 27 = 0, 2, or 4 (mod 7), which is im-
possible as 1 = 1 (mod 7). If ¢ = 2 then (4.4) gives 21 = = ({ + Tu).
Substituting this value into (1.1) we obtain ¢ = 0 (mod 7) which is clearly
impossible. ¢ = 3, 5 and 6 are impossible for otherwise i + 73 would have
a prime ¢, such that (—7/¢) = —1, dividing it to the first power. Hence
we must have g = 9 and so 21 + 7 (2. + 23 — 2:)* = 36p, giving

nn=xn+2—2a=0 (mod6),

say @1 = —6t, 22 + ¥ — 2, = 6u, withp = &£ + 7u’.
(C) then proves that the solution (zy, #s, 23, ¥4, %5, ¥5) is trivial.
(E) Finally, if we have

42z, = cw{—22, + 725 — 632¢} (mod p),
4213 = ew{—2x; — 3525 + 21zs} (mod p),
42z, = ew{2x — 2825 — 42zg) (mod p),
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then 42 (z2 + 23 — 24) = —6ewz; (mod p), that is

= ew(x + v — z4) (modp),
or

1+ 7@+ 2 — ) =0 (modp),
and the triviality of the solution (21, 2, 2s, 4, 25, 23) follows from (D).

5. Congruence conditions for non-trivial solutions

Let r be an integer of exponent 7 (mod p), that is, 7’ = 1 (mod p), r # 1
(mod p), so that

(5.1) l+r+r7 4+ 4+ 4+ +r*=0 (modp).
We set
(5.2) R=r+7¢, S=F++¢ T=r+s

Appealing to (5.1) we see that R, S, T satisfy

(653) R+8+T=-1, RS+8T+TR=-2, RST=1,

(5.4) RS=T+R, ST=R+3S8 TR=S8+T,

(5.5) R*= —2R—-8—2T, 8= —2R—-28—T, T"= —R — 28 — 2T,

where all congruences (here and, unless stated otherwise, thereafter) are
taken modulo p. We prove

Lemma 3. If (21, %o, @3, &4, x5, 25) 18 a non-irivial solution of (1.1)-(1.4)
then it satisfies one of the six triples of congruences:

(5.8) 2042, = ew{ (10R — 28 + 6T)z + (49R + 498 — 147T)zs
+ (147R + 1478 + 147T )z},
204, = ew{6R + 108 — 2T)z + (147R + 498 + 497T)zs
+ (147R — 1478 — 147T)zs},
204x, = ew{ 2R — 68 — 10T)zy + (98B + 98T)zs + (2948},

(5.7) 29422 = ew{ (—2R + 68 + 10T )z, + (49R — 1478 + 49T )5
+ (147R + 1478 + 1477 )},
294x; = ew{ (10R — 28 + 6T)a1 + (49R + 498 + 147T )5

+ (—147R — 1478 + 147T)as},
2942, = cw{ (—6R — 108 + 2T )a; + (988 + 987 )as + (294R )},

(5.8) 204z, = ew{ (6R + 108 — 2T)a1 + (—147R + 498 + 49T)2s
+ (47T + 1478 + 147T )},
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294x; = ew{ (—2R + 68 + 10T )21 + (49R + 1478 + 49T )5
+ (—147R + 1478 — 1477 )z},
2942, = cw{ (—10R + 28 — 6T )z1 + (98R + 988S)xs + 2947 e},
where ¢ = 1 and w s a fized solution of w' = —7 (mod D).

Proof. Let (x1, a3, s, 4, @5, ¥) be a non-trivial solution of (1.1)-(1.4).
Now it is easy to verify using (5.4) and (5.5) that

(—6R — 108 — 12T) (223 + 343z% + 10292%)
+ (=78 — 217) (147xF — 44125 + 5621 26 + 985 25)
+ (148 + 217T) (492% — 147x% + 282 25 + 2821 25 + 49075 25)
= {(2R — 2T)ay + (35R + 428 + 70T )ws + (—21R — 848 — 42T )z}’
and
—7{(—6R — 108 — 12T)(—422; — 42z; — 42z%)
+ (=78 — 217) (—1225 + 1204 — 24w, 75 + 24, 24 — 4873 7,)
+ (148 + 217) (— 1225 + 120¢ — 482 23 — 2423 24 — 2473 )}
= { (428 + 42T)2 + (—42R — 428 — 42Tz + (—427T)xy)’,
so that as (zy, s, s, T4, Ts, ¥s) is a solution of (1.1)-(1.3) it must satisfy
+w{ (@R — 2T)x, + (35R + 428 + 707 )xs
(5.9) + (—21R — 848 — 42T )as}
= (428 + 42T7)ay + (—42R — 428 — 42T)xs + (—427T)z,,

where w is a fixed solution of w* = —7 (mod p). Replacing r by #* (or 7°)
(resp., r by * (or 7*)), which has the effect of sending R — S, S —» T, T — R
(resp,, R— T,8 — R, T — 8),in (5.9), we obtain the system

2{S+T)s— R+ S+ T)xs — Ty
=\ {(@2R — 2T)2: + (35R + 428 + 707 )xs
+ (—21R — 848 — 42T)z},
2{R+ T)x— (BR+ S+ T)xs — Ry
(5.10) = pw { (—2R + 28)z1 + (70R + 358 + 42T )zs
+ (—42R — 218 — 84T )z},
2{(R+ 8)zs — R+ 8+ T)xs — Sxg
= v {(—28 + 2T )z + (42R + 708 + 35T )xs
+ (—84R — 428 — 21T )ag},
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where A = +1, 4 = =1, » = 1. Note there are 8 = 2* choices for (\, u,
v). We can rule out the two possibilities (\, u, ») = €(1,1,1), where ¢ = =1,
since in this case (5.10) gives (using (5.3, (5.4), (5.5))

422, = ew {—2x, + Tas — 63},
4273 = ew {—22 — 3525 + 21%};
42z, W {2131 — 285 — 42%};

which is impossible by Lemma 2 (E) as (1, @2, @3, &1, 5, %) i8 a non-trivial
solution. Taking (\, u, ) = ¢(1, 1, —1) (resp., (1, —1, 1), e(—1, 1, 1))
in (5.10) and solving the congruences for x», a3, x4 using (5.3), (5.4) (5.5),
we obtain (5.6) (resp., (5.7), (5.8)). We note that (5.7) is obtained from
(5.6) by the mapping R — T, § — R, T — 8, equivalently » — *, and (5.8)
is obtzained from (5.6) by the mapping R — S, S — T, T — R, equivalently

r—r.

6. Number of non-trivial solutions—proof of Theorem 3

Let (21, ¥z, 3, &4, &5, &) be any non-trivial solution of (1.1)-(1.4). By
Lemma 3 it must satisfy (5.6), (5.7) or (5.8). By replacing r by r* or * if
necessary we may suppose it satisfies (5.6). Further by replacing (x1, o», s,
24, T5, ¥3) by the solution (x1, —xs, —xs, — &4, X5, ) if Necessary we may sup-
pose it satisfies (5.6) with ¢ = 1. Now let (y1, ¥s, ¥s, ¥4, ¥5, ¥s) be another
non-trivial solution of (1.1)-(1.4). By Lemma 6 it must satisfy one of the six
triples of congruences given by (5.6), (5.7), and (5.8). We will show that
if (41, Y2, Ys, Y4, Ys, Yo ) satisfies

(i) (5-6) with € = +1 then (yla Y2, Ys; Y4, Ys,s yﬁ) = (xlx T2, X3, L4, Ts, xﬂ)’
(ii) (5.6) with e = —1 then

(Y1, Y25 Yss Y Yo, Ys) = (T2, — T2, — T3, — T4, Ts, Ts),
(iii) (5.7) with ¢ = +1 then
(W1, Y2, Ys, Ys, Ys, Yo) = (@1, —@s, T2, — 3, —3 (W5 — 3%), —3 (25 + 25)),
Giv) (5.7) with e = —1 then
(W1, Y2, Y3, Y, Ys, Yo) = (X1, To, — 22, T3, —3 (25 — 326), — 3 (@5 + ),
(v) (5.8) with ¢ = +1 then
(W1, Y2 Ys, Y, Ys, Yo) = (21, 23, — @4, — 3, —3 (@5 + 32), (25 — %)),
(vi) (5.8) with ¢ = —1 then
(Y1, Y2, Y3y Yy Ys, Ys) = (X1, — @8, T4, T2, — % (@5 + 320), 3 (25 — %)),

completing the proof of the theorem. As cases (1)-(vi) are very similar we
will only give the details for case (i). In this case we have from (5.6), with
e = +1,
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2058 {221 y1 + 42(x2 Y2 + @ ys + 22 ys) + 343 (x5 ys + 3% s )}
= 4116z, y1 — 7 { (10R — 28 + 6T )1 + (49R + 498 — 1477 )zs
+ (147R + 1478 + 147T)xs} { (10R — 28 + 6T )y
+ (49R + 498 — 1477 )ys + (147R + 1478 + 1477 )ys}
— 7{(6R + 108 — 2T)ay + (147R + 498 + 49T )zs
+ (147R — 1478 — 1477 )xzs} { (6R + 108 — 2T )y
+ (147R + 498 + 49T )ys + (147R — 1478 — 1477 )ys}
— 7{(2R — 6S — 10T )z + (98R + 98T )xs + (2948 )as}
{(2R — 68 — 10T )y, + (98R + 98T )ys + (294 )ys}
+ 7058945 y5 + 2117682z ys = 0 (mod p),
appealing to equations (5.3)-(5.5), so that

(6.1) A =2n " + 42(.’172 Yo + a3 Y3 + 24 y4) + 343 (xﬁ Ys + 3w yﬁ)
satisfies

6.2) A =0 (mod p), say 4 = Bp.

Next as #; = y; = 1 (mod 7) we have from (6.1) and (6.2),

6.3) B =2 (mod 7).

Also taking (1.1), (1.2), (1.3) modulo 3 it is easy to show that
21 = —ux5 (mod 3)

(similarly y; = —ys (mod 3)) so that

6.4) B =0 (mod3).

Again from (1.1), (1.2), (1.3) working modulo 8 we find
¥ = 2+ 23 + 24 (mod 2), x5 = 22 + 3x3 + 2z, (mod 4),
2 + o3 (mod 2),
with similar congruences for y1, ¥s, ys in terms of ys, ys, ¥, S0 that
(6.5) B =0 (mod4).

Equations (6.3), (6.4), (6.5) give B = 72 (mod 84), say B = 84C + 72.
Finally the inequality

|2z 91 + 42 (22 y2 + T ys + Tays) + 343 (25 ys + 326 ys) |
< (@4 + 42(5h + 25 +2i) + 343(c5 + 348)) (2% + 42(u3 + o} + i)
+ 343 (43 + 3y8))*"

i

Xg
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gives
|4 <72, |B|=|84C+ 72| <72

so that C = 0, or —1,thatis, 4 = 72por 4 = —12p. We next rule out the
possibility A = —12p. To do this we consider a number of cases depending
on the residue of p (mod 49) and on the residues of x; — 5z4 and y. — 5y4
(mod 7). In view of the symmetry in the z; and y; there are 7 X 28 = 196
cases. We give just one of these. Suppose that p = 43 (mod 49) and
X — 51y = 2 (mod 7), y2» — 5ys = 4 (mod 7). Then, as (3, ---, 25) and
(y1, -+, ys) are solutions of (1.1)-(1.4) we have

2+ 203+ 32 =0 (mod 7), 2+ 2ys + 3y: = 0 (mod 7),
so that
. x3 = 324 + 6 (mod 7), ys = 3ys+ 5 (mod 7),
gving
Tays + Tsys + Tays = 3 (mod 7),
o+ a3+ 2t =5 (mod7), y+ys+yi=06 (mod?).
Then from (1.1) we deduce
2, =36 (mod 49), =1 (mod 49), z1y = 36 (mod 49),
so that A = 2 (mod 49). Generally we find that
A =09,16,23,44 (mod 49) if = 1 (mod 49),
A =09,23, 30,37 (mod49) if p = 8 (mod 49),
A =22337,44 (mod 49) if p = 15 (mod 49),
A = 2,9, 16, 37 (mod 49) if p = 22 (mod 49),
A =216,23,30 (mod49) if p = 29 (mod 49),
A = 16, 30, 37,44 (mod 49) if p = 36 (mod 49),
if

A= 2,9, 30,44 (mod 49) p = 43 (mod 49),
so that as

—12p = 37, 2, 16, 30, 44, 9, 23 if p = 1, 8, 15, 22, 29, 36, 42 (mod 49)

respectively, we cannot have 4 = —12p.
Thus A = 72p and the identity

(12p) = A*+ 84(t1yp — @)’ + 84 (@ ys — @)’ + 84 @y — watp)’
+ 686 (2195 — 25 91)" + 2058 (w1 9 — s 3)’
+ 1764 (22 s — @5 3)" + 1764 (22 ys — 2a )’
+ 14406 (22 ys — @5 y2)* + 43218 (22 ys — s y2)°
+ 1764 (v ys — 24 ys)” + 14406 (23 ys — 25 ¥s)”
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+ 43218 (xs Yo — %o ys)® + 14406 (2 ys — Y5 ya)’
+ 43218 (2sys — Zsya)® + 352947 (w5 ys — 26 ¥s)%,
then gives 2192 — Zeth = -+ = T5ys — ®ys = 0. Now as

zn=y1=1(mod7) wehave 2 %0, 4y =0,
so that
(6.6) zi/a = y/yn (@ =2,8,4,5,6).
Hence from (1.1) we have
72p/3% = 2 + 42((2o/21)* + (2s/21)" + (28/21)*) + 343 ((@ws/21)" + 3 (26/21)")
=2+ 42((o/1:)" + Wa/91)* + Wa/11)") + 343((ws/11)" + 3 (we/11)")
= 72p/4i,

so that 23 = y? As = y, = 1 (mod 7) we must have 2, = 3, and so from
(6.6) we also have o; = y; (¢ = 2, 3, 4, 5, 6), proving that

(xl, ,xﬁ) = (ylr ’yﬂ)
as required.

This completes the proof of Theorem 2.
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