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1. Introduction
In 1945, B. Jonsson [14] gave an example of a torsion free abelian group of

finite rank which has two non-isomorphic decompositions into direct sums of
indecomposable subgroups. Many later examples have appeared, showing
that direct decomposition of finite rank torsion free groups is highly non-
unique [8], [13], [15]. In 1959, Jonsson [16] introduced the notion of quasi-
isomorphism: two finite rank torsion free groups A and B are quasi-isomorphic
if there exist isomorphic subgroups S and T of A and B respectively, such that
A/S and BIT are bounded. He showed that if the concept of isomorphism is
replaced by that of quasi-isomorphism, one does have a Krull-Schmidt the-
orem for torsion free groups of finite rank. Further results were obtained by
Reid [17] and [18]. In another significant application of this concept, Beau-
mont and Pierce [4] found complete sets of invariants for torsion free groups
of rank two, up to quasi-isomorphism.
The concept of quasi-isomorphism was soon extended to include all abelian

groups. One extension was made by deleting the words "finite rank" from
the definition above. This concept was utilized extensively by Beaumont and
Pierce in their important work on torsion free rings [2], [3], [5], and in investi-
gations of p-groups [6] and [7]. Another extension was made by E. Walker
[19], who proved two finite rank torsion free groups are quasi-isomorphic if
and only if they are isomorphic in the quotient category (/ where a is the
category of abelian groups and 5 is the class of all bounded groups. This
generalization agrees with that of Beaumont and Pierce for torsion free groups,
but weakens the equivalence relation for torsion groups. This concept has
the advantage of a natural setting where tools of category theory and homologi-
cal algebra are available. Many results have been contained concerning
isomorphism of groups in a/5 [9], [12], [19].
In order to generalize theorems concerning decomposability and separability

of torsion free abelian groups, a different concept was needed. Both of the
generalizations above have the property that there are sequences {A} and
{B,I of groups for which A. and B. are quasi-isomorphic for each n, but the
direct sums --1 A, and -_1 B. fail to be quasi-isomorphic. Fuchs and
Viljoen [11] have given the following definition, which agrees with the definition
of quasi-isomorphism for finite rank torsion free groups.
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DEFINITION (Fuchs and Viljoen). Torsion free groups A and B are locally
quasi-isomorphic if there is an embedding of A and B as subgroups of a torsion
free divisible group D so that for every finite rank summand F of D, there exist
non-zero integers rn and n such that m(A F) B F and n(B F) A F.

Fuchs and Viljoen show that -,A is locally quasi-isomorphic to ,,B
whenever A and B are locally quasi-isomorphic for all i e I. They define
locally quasi-separable groups and prove that for certain types of local quasi-
decompositions, summands of locally quasi-separable groups are locally quasi-
separable and summands of locally completely decomposable groups are locally
completely decomposable. They also obtain isomorphic refinement theorems
for these special local quasi-decompositions, and they prove that countable
locally quasi-separable groups are completely locally quasi-decomposable.
The restriction they place on the decompositions stems from the rather awk-
ward fact that two groups can be locally quasi-equal but have different local
quasi-endomorphisms.
The purpose of this note is to remove this barrier, and subsequently remove

the restriction on the local quasi-decompositions in Fuchs and Viljoen’s
theorems. This will be done by constructing an additive category whose
objects are torsion free abelian groups, where isomorphism in the category is
the same as local quasi-isomorphism. The endomorphism ring of a torsion
free abelian group in this category contains Fuchs and Viljoen’s local quasi-
endomorphisms. Their various decomposition theorems will then follow
from general categorical theorems.

2. A categorical setting for local quasi-isomorphism
The definition of local quasi-isomorphism involves n embedding of the

groups into a divisible group. We first find a description of local quasi-iso-
morphism that involves only the groups themselves.

2.1. DFNTXON. Let A, B H, with H a torsion free group. Then A is
locally quasi-contained in B (written A B) if for every finite rank subgroup F
of A there exists a nonzero integer n for which nF B. The subgroups A and
B are locally quasi-equal if both A B and B A (written A -" B).

2.2 THEOREM. Let G and H be torsion free. Then G is locally quasi-iso-
morphic o H and if and only if there are subgroups A and B of G and H respec-
tively, such that A G, B "- H and A B.

Proof. Suppose G is locally quasi-isomorphic to H. Then there is a torsion
free divisible group D with embeddings H D and G D satisfying the con-
dition of the definition. Let A B G H. Let F be a finite rank sub-
group of H, and let R be the divisible hull of F inside D. Then P is a finite
rank direct summand of D, so there is a non-zero integer n fo which

n(nH) c nG.
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Now nF c H and also

nF n(nH) nG G,
so we have nF c H n G B. Now let F be a finite rank subgroup of G,
and by the same reasoning as above, there exists a non-zero integer m for
whichmFGnH A.

For the converse, suppose A and B are subgroups of G and H respectively,
satisfying the condition of the theorem. Let H c D with D torsion free
divisible and let E be a finite rank direct summand of D. Let f G --, D
be an extension of the isomorphism A -, B. Thenf is a monomorphism, since
Ker f n A 0 and A is an essential subgroup of G. Let H’ be the image of f.
Then G H’. Now E n H is a finite rank subgroup of H, so there is a non-
zero integer n for which n(E H) B H’. Thus

n(EnH) c EnH’.
Also f-l(E n H’) is a finite rank subgroup of G, so there is a non-zero integer m
for which m(f-l(E n H’)) c A, and thus m(E n H’) c B c H. Thus we
have

m(E n H’) c E n H,

and G and H are locally quasi-isomorphic.
For a torsion free group B, let F(B) denote the set of subgroups of B which

are locally quasi-equal to B. We need the following facts about F(B) in
order to define the categorical setting for local quasi-isomorphism. The proof
of the following lemma is very easy.

2.3 LEL. Let B be a torsion free group. The set F(B) has the following
properties.

(1) B eF(B).
(2) IrA e F(B) and A C B, then C F(B).
(3) If A, C F(B), then A C F(B).
(4) If f B ..o C is a homomorphism, with C torsion free, and A F(C),

then f-l(A) F(B).

The following construction is similar to the construction of quotient cate-
gories using Serre classes. It does not arise from a Serre class however, since
the quotient B/A does not determine whether or not A "- B.

2.4 DEFINITION. Let 2 have as obiects all torsion free groups.
B e.%

hom(A, B) inj lims,F() Homz(S, B).

For A,

If S eF(A),f S ---, B, write Ill for the equivalence class of fin hom(A, B).
For [f],hom(A, B) and [g] hom(B, C) define the composition [g][f] to
be [h] where h is obtained as the composition

f-l(Dom g) f Dom g -g C.
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It follows quickly from Lemma 2.3 that the definition above yields a cate-
gory. We will show that 3 is additive, has infinite sums, kernels, and finite
intersections.

2.5 L. Let [f], [g] hon(A, B). Then [ [g] if and only if $ and
g agree on the intersection of their domains.

Proof. If If] [g], there is an S Doraf n Dora g on which f and g agree,
with S A. But A/S is torsion. Thus, letting $’ and g denote the re-
strictions of f and g, respectively, to Dora f n Dom g, S Ker(] g) im-
plies Im($ g) is torsion. Thus f g 0. The converse is clear.

2.6 THEOR. Two torsion free groups are locally quasi-isomorphic if and
only if they are isomorphic in

Proof. Suppose G is locally quasi-isomorphic to H. Then by 2.2 there
are subgroups A and B of G and H respectively, with A -’- G, B H and
A B. Letf" A --, B and g B --, A be inverses of each other and i" A -- G,
j B --, H the inclusions. Then [jf] and [ig] are inverses of each other in
Now suppose G H. Let If] G --, H and [g] H --, G be inverses of each

other in , withf A --, H and g B -- G. Let A’ f-(B) and f’ $1 A’.
Then ’] []] and it follows from 2.5 that gf’ is the inclusion A’ -- G. Let
B’ Im f’. Then A’ --- B’ and A’ G. Now the restriction g’ of g to
g-(A) is one-to-one since the composition tg’ g-(A) -- A -- H is the in-
clusion map.
Since g-(A) is an essential subgroup of G, we also have g one-to-one. It

follows that B’ g-(A) and thus B’ -" H. Thus G is locally quasi-iso-
morphic to H.
An additive category is a category e together with an abelian group struc-

ture on each of its morphism sets, subject to the following condition:

(i) Composition is bilinear, i.e., if a, e home(A, B) and, home(B, C),
then( -t- f) ’ -[- and ( - ) -t- .

2.7 PROPOSTmN. The category J3 is additive.

2.8 PROPOSITmN. A map If] e hom(A, B) is rnonic if and only if$ is one-
to-one. The map If] is epic if and only if Cok f is torsion.

Proof. Suppose f is one-to-one and f: S --, B, g T --, A. Let

T’ g-( S), and g’ g IT’.
Then Jig’] [0] implies fg’ 0. Thus g’ 0 and [g] [g’] [0], implying
[f] is monic.
Suppose Kerf 0. Let g Ker f --* A be the inclusion. Then [g] [0]

but [f][g] [0], implying [f] is not monic.
Now suppose Cok f is torsion and [g][f] [0] with g:K C, K B.

Let S’ f-(K), and f’ f IS’. Then g]’ O. Thus g can be factored
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through K/Im $’. But since both SIS’ and Cok $ are torsion, we see that
K/Im f’ is also torsion. Since C is torsion free, we have g 0 and hence
[g] [0]. Thus [$] is epic.
Now suppose Cok f is not torsion. Let T/Im f $(B/Im f). Then

BIT is non-zero and torsion-free. Let g B ---, BIT be the quotient map.
Then [g] [0] but [g][f] [0]. Thus Ill is not epic.
We can see easily from this result that the inclusion Z --, ( is both monic

and epic in 2. It is not an isomorphism in 2, however, since Z and Q are not
quasi-isomorphic and hence not locally quasi-isomorphic. In particular, the
category is not abelian.

2.9 PROPOSTIOT. The category 2 has kernels, in fact ker[f] [ker f].

Proof. Let If] hom(A, B),f S --, B with S --" A. Let kerf Kerf--, A
be the inclusion map. Then [kerf] is monic, by 2.8. Suppose

[g] hon(G, A)

with [f][g] [0]. Theng:T---,A with T -" G. Let T’ g-(S) and
g’ g T’. Thenfg’ O. Thus there exists a homomorphism h T’ --, Kerf
for which (ker f)h g’. But T’ -’- G, so we have

[h]hom(G, Kerr) and [g] [g’]---[(kerr)hi ---[kerr][hi,

as desired.

2.10 PROPOSTmN. The category 2 has intersections.

Proof. Let If] A C and [g] B --, C be monics in 2. Thenf A’ --, C
and g B --, C with A --" A and B’ B. Let I ImfIm g with i I -, C
the inclusion. Then there are homomorphisms f and g for which the diagram

commutes. Suppose there is a commutative diagram in 2 of subobjects

[hi I
Let E’ h-(A’) r k-(B’) r Dom knDom h. Then E’ "- E and if
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h hiE’ and k k[E, we have fh gk. It follows that

Imfh ImgkImfnImg-- I,
so there is a homomorphism s E --* I for which is fh gk, i.e., I is the
greatest lower bound of A and B, or I A n B.

2.11 LE. Let {B,l,,r be a family of torsion free groups, A B, and
A Bfor each I. Then ,,A ,,B.

Proof. Let F be a finite rank subgroup of ,,B. Then there is a finite
subset J of I th F ,, B. Let F, be the image of the projection of
F into B. Then F ,, F,. There is a non-zero integer n for which
nFA. Letn H,n. Then

2.12 PaOOSTON. The cagory has arbitrary direct sums.

Proof. Let {A}, be a faly of torsion free groups, ,A their direct
sum, th injection maps ia Aa ,A,. We 1 show ,A th
the ps

is a direct sum in . Let B be a torsion-free group and l" A B a
faly of maps. Let S, Dom f. Then ,, S ,rA by 2.11.
There exists a homomorpsm f" ,, S, B such that fi f, for each
a e I, where i denotes the restriction of i to S. Ts gives us

][i,] [f][i:] [f,] for each

It follows easily from 2.5 that ] is uque. Thus we have a direct sum in
The definition of S-separable objects made in the next section requires the

notion of a small object. See [20] or any book on category theory for further
discussion of ts notion.

2.13 DXTON. An object S in a category is all if every map
S ,A, into a direct sum factors through a finite direct sum

Ts is equivalent to saying that the functor Home(S, commutes with
arbitrary direct sums. Note that in the category 2, a group is small if and
only if it has finite rank.

2.14 PaOOSTmN. For every object G 2 there is a ap P G
which is both monic and epic, with each P small and projective in

Proof. The additive group Z of integers is small since it has fite rank.
Let ]:A Bbeepic. Thenf:A’Bth A’ A, andB/f(A’) is
torgon. Let [g]" Z B. Then g" nZ B for some positive integer n.
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Moreover, mg(nZ) c f(A’) for some positive integer m. Since

g rang ----> f(A’),

and mnZ is projective as a group, there is a map h" mnZ A’ for which
fh q on mnZ. This gets [h] Z -- A for which [f][h] [g]. Thus Z is
projective in 2. It follows that all free groups are projective in 2. The prop-
osition now follows immediately from 2.8, since every torsion free group con-
tains aflee subgroup for which the quotient is torsion.

The following definition is due to Warfield [20]. It is akin to the idea of an
object being the least upper bound of its small subobjects.

2.15 DFNTON. An object M in an additive category is finitely approxi-
mable if for any object L and any morphism f L M, f is an isomorphism if
and only if (i) f is monic, and (ii) for any small object S and any morphism
g S -- M, there is a morphism h S L such that g fh.

2.16 POPOSTON. Every object in 2 is finitely approximable. If A and
B are small and f A M, g B -- M are maps, there is a small object C with
maps h C---, M,j A C, k B C such that hj f and hk g. If
A B and B is small, then A is small.

Proof. Let M e 2, [f]:L -- M, and suppose (i) and (ii) hold for If].
Let F be a finite rank subgroup of M. Then there is a map [hi F --. L such
that [g] [f][h] where, g :.F -- M is the inclusion. It follows that nF Imf
for some positive integer n and thus that Im f M. Thus [f] is an isomor-
phism. The remainder of the proposition is clear.
We observed above that a torsion free group has finite rank if and only if

it is a small object in 2. Actually a much stronger statement can be made.
Rank is an invariant in 2, that is, if G and H are locally quasi-isomorphic tor-
sion free groups, then they have the same rank. To see this, recall that locally
quasi-isomorphic groups G and H have isomorphic subgroups A and B with
A ---" G and B - H. Since, in particular, G/A and H/B are torsion, one has
rank G rank A rank B rank H.
The finitely generated groups are distinguished in . by the fact that they

are precisely the small proiectives. It is of interest to describe the class of
projectives. A group is l-free if every subgroup having fewer than 1
elements is free.

2.17 PROI)OSTON. A torsion free group G is locally quasi-isomorphic o a

free group if and only if G is -free. A group is projective in 2 if and only if
it is l-free.

Proof. Suppose G is locally quasi-isomorphic to a free group H. Then G
and H have isomorphic subgroups A and B with A G and B - H. Now A,
being isomorphic to a subgroup of a free group, is free. Let F be a finite rank
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subgroup of G. Then there is a nonzero integer n for which nF c A. Thus
nF is free. It follows that F is free, and thus that G is l-free.
Now suppose that G is rfree. Let S be a free subgroup of G for which

G/S is torsion. Let F be a finite rank subgroup of G. Then F is free and
hence finitely generated. Thus there is a nonzero integer n for which nF c S.
ThusS -" G.
Suppose G is projective in . Let f" F - G be an inclusion map with F

free and G/F torsion. Then [f] being epic, there is a map [g]:G --* F 4th
[]][g] [1]. Now g G’ --, F with G’ -" G, and fg 1, implies g is a one-
to-one and hence that G’ is free. It follows that G is rfree. The fact that
l-free groups are projective follows from the facts that Z is projective, and
direct sums of projectives are projective, together with the first statement of
this proposition.

The following elementary properties of local quasi-decompositions are use-
ful.

2.18 PROPOSITION. If G c ., Aa and G ,iA then

Proof. Let F be a finite rank subgroup of A. There is a nonzero integer
n for which nF G, and thus nF G n A.. Thus G n A - A. The prop-
osition now follows from 2.11.

2.19 PROPOSITION. Let be an additive category., then B and C are is(morphic in the category .
Proof. Let

pa Ps
A -AB B and

be the injection and projection maps, and

f A B-.A C and

identity maps, so fi. e and ge. i..
Thus

(p. gec) (vc fi.) p. gec vc fi. - p ge. rfi

If A B= A C in

AAC C

g’AC---AB

Now p ge, p, gfi. p, i. O.

p g(ecrc-t- e r.)fi. p. gfi. p.i. 1..

Similarly (rcfi.)(p. gec) lc.
Before leaving this section, we look at local quasi-endomorphisms. Let G

be a torsion-free group and let D be a divisible hull of G. Fuchs and Viljoen
define the local quasi-endomorphisms of a torsion free group G to be the set

LQE(G) {a End(D) G n a(G) "- a(G)}.
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To aid in the comparison we find a similar description for hom(G, G). If
G’ c G and --" , then G is an essential subgroup of G and hence also of
D. Since D is also torsion free, each homomorphism (] --, G c D has a unique
extension to an endomorphism of D. Thus to [a]e hom(G, G) we may as-
sociate the unique extension a" D -- D. Now G c a-l(G) n G G and
G G imply a-l(G) n G "- G. On the other hand, if a D --* D is any endo-
morphism of D for which -(G) n G G, we can associate with a the restric-
tion of a to G’ a-(G) G to get [a] hom(G, G). This shows that
horn(G, G) may be identified with the set

L(G) {a e End(D) -(G) n G -’- G}.

In the case G has finite rank, it is easy to see that LQE(G) L(G), but in
general we have only LQE(G) L(G). To verify this inclusion, let
a LQE(G). Then a(G) n G a(G). If F is a finite rank subgroup of G,
a(F) is a finite rank subgroup of a(G) so there is a positive integer n with
na(F) a(G) n G. Then

nf a-(na(f)) c -’(a(G), G) c

and thus nF a-l(G)n G. This shows a-(G)n G -" G and thus that
LQE(G) L(G). An example of Fuchs’ and Viljoen’s shows it may be a
proper subset.

In the case G has finite rank, however, all definitions agree. In fact,

L(G) LQE(G) QE(G) hom,(G, G)

homa/(G, G) -- Q @ Homz(G, G).

(The final isomorphism in this sequence is proved by E. A. Walker in [19].)
In the general case, it is true that

L(G) Us. LQE(S) inj lim- LQE(S).

The definition of local quasi-isomorphism can easily be extended to a cate-
gory with objects all abelian groups. Using the word rank to mean torsion

free rank, simply eliminate the words "torsion free" wherever they appear in
2.1, 2.3 and 2.4. This gets an additive category with kernels. This category
fails to have infinite sums. It is interesting to note, however, that two
p-groups are isomorphic in this category if and only if they are quasi-isomorphic
in the sense of Beaumont and Pierce [6].

3. -separable objects and locally quasi-separable groups
A torsion free group is completely decomposable if it is isomorphic to a direct

sum of rank one groups. A torsion free group is separable if every finite sub-
set of elements is contained in a completely decomposable summand. The two
most interesting facts about separable groups are that countable separable
groups are completely decomposable (Baer [1]) and summands of separable
groups are separable (Fuchs [10]). Fuchs and il]oen [11] give a definition of
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locally quasi-separable groups and prove the analogs of these two theorems.
We will make the definition of "S-separable" in an additive category, and prove
these theorems in a rather general setting. The notion of S-separable special-
izes to those of separable and locally quasi-separable for the appropriate cate-
gories and classes $ which will be described later.

Let e be an additive category which satisfies the following axioms.

(i) e has kernels and infinite direct sums.
(ii) For every object A there is a map a,x Pa -- A which is epic, with

each P a small projective. For each small object S there is an epic P -, S
wi’th P a small projective.

(iii) Every object in is finitely approximable.
(iv) If A and B are small, and f A --, M, g B -, M for some M in ,

then there is a small object S and maps h S --, M, j A -, S, k B -, S
with hj f and hk g.

(v) Subobjects of small objects are small.

3.1 DEFINITION. Let $ be a class of objects of . An object M of is
S-separable if every map P -, M, with P a small projective, factors through a
direct summand of M which belongs to $.

Consider the full (additive) subcategory of the category of abelian groups
with objects the torsion free groups, and let $ be the completely decomposable
groups. The S-separable objects in this setting are the separable torsion free
groups.

3.2 DEFINITION. An object $ of is countable if there is a map
-1P --* S which is epic, with each P. a small projective.

3.3 LEMMA. Let

Q f:;G and P-- g.)G

be maps with Q and P small projectives. Then there is a small projective R and
maps

R h j
--; G, Q .)R and P R

with hj f and hk g.

Proof. By axiom (iv) there is a small object S with maps

h’ j’S )G, Q ;S and P------S

such that hj $ and j’k’ g. By axiom (ii) there is a small projective R
with an epic R --* S. Since is epic and Q and P are projective there are
maps j Q --, R and k P --* R for which tj j’ and tk k. Let h h’t
Then hj h’tj hj f, and similarly, hk g.
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3.4 LErMA. Let G T H with T small, and let P G be a map with
P a small projective. Suppose G is S-separable. Then G has a summand S in
$ containing T, with the map P ----> G factoring through S.

Proof. Let Q - T be epic with Q a small projective. There is a small pro-
jective R with a commutative diagram

Q--G--P

Then O has a summand S in $ with R - G factoring through S, say

G= TH---SK.
Let K G --. K be the projection with kernel S, and vr G -- T the projec-
tion with kernel H. Now

Q---R ....) T

is epic, implying R --. T is epic, thus the composition

;T.-. )K

being 0 implies

T K >K

is the 0 map. It follows that T S.

3.5 THEOREM. Let $ be a class of small objects of which is dosed under
summands. A countable S-separable object S of can be written as a direct sum
of objects in $, i.e., is completely S-decomposable.

Proof. Let :-1 P. --* S be epic with each P. a small projective, Apply-
ing 3.4 repeatedly obtains a chain T1 c T c of summands of S with
P. --. S factoring through the inclusion T, --* S and with each T. in $. Let
S T, andwrite T+ T S,+ for n 1, 2, .... Then :--1 S c S,
and S. is in $ for each n. Let K be small and g K -* S. Then there is a
small projective P with an epic P -, K. We get a commutative diagram

p /

since P is projective and the lower horizontal map is epic. Since P is small,
the map P --. -- P. factors through a finite sum - P.. The map
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--1P --* S factors through T. Let vH S --, H be a projection withkernel
T. Then

implies u g 0 since P -* K is epic. It follows that g factors through

nd thus - S, S, pplying xiom (iii).

3.6 Coo,,av. A countable separable orsion free abelian group is com-
pletely decomposable.

Proof. Let be the completely decomposable finite rnk groups and e the
ctegory of torsion free groups. See [10] for proof that is closed under
summnds.

3.7 Do. An ob]eCt B in hs the zcnge propry if the follow-
ing condition holds.

If G B C ,A, then there exist A’ c A such that

 =Be
The follong lemm pper in [20].

3.8 L. Le B C B be he projection ap and le

f:SBC
beonic. ThenKerf= SnC. I]BcS, tnS=B (SnC).

3.9 L. I] G e a e Home(G, G) is an ipoten, hen

G Ker e Ker(1 e).

3.10. L. I] is a all object in ea the eorphi ring o] S is
a lol ri,n hengpropery.

3.11 o. Le b a o] all obe o] hih cloed uger
mmas, a ppos $he objects o] have $he ecnge propery. Then, in
gory , summas of $-separable objects are $-separable.

Proof. Let A be $-seprable, nd A B C. Let P B be map th
P sm pro]eotive. There is summnd S of A th S e nd the mp
P B A factoring though S. Sy A S T. Now S hs the ex-
change property, hence there re subob]ects B’ c B nd C c C such that

A S B C.
Then B B’ ((S C’) n B). Now let be the pro]ectioa of A onto S
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with kernel B’ C’, and let vs be the restriction of this map to B n (S C’).
Then

Ker rs [B n (S C’)], (C’ B’)

Bn[(S C’).(C’B’)] BnC’ O.

Thus B n (S C’) C S, so that B (S $ C’) is a summand of S and hence
in $. Since P --* B --* A factors through both B --, A and S C’ --, A, it
factors through their intersection. It follows that B is S-separable.
We now compare these definitions and theorems applied to the category 2

with Fuchs and Viljoen’s notion of locally quasi-separable.

3.12 DEFINITION.

_
torsion free group is locally quasi-separable if every

finitely generated subgroup is quasi-contained in a local quasi-summand of
finite rank.

A torsion free group is then locally quasi-separable if and only if it is S-sepa-
rable in the category 2 for the class $ of finite rank groups.

3.13 DEFINITION. /k torsion free group G is (locally) quasi-decomposable
if there are nonzero torsion free groups A and B, with G (locally) quasi-
isomorphic to A $ B. If G is not (locally) quasi-decomposable, G is (/o-
cally) strongly indecomposable. A torsion free group G is completely (locally)
quasi-decomposable if G is (locally) quasi-isomorphic to a directsum of strongly
indecomposable finite rank torsion free groups.

B. Jonsson showed, among other things, that every finite rank torsion free
group is completely quasi-decomposable. Thus a torsion free group is com-
pletely locally quasi-decomposable if and only if it is locally quasi-isomorphic
to a direct sum of finite rank groups. It is proved in [19l that the quasi-endo-
morphism ring of a strongly indecomposable finite rank torsion free group is
local. It follows from these two facts that all small objects of , have the ex-
change property. It follows that both theorems of this section apply to the
category ., with $ any class of finite rank groups closed under quasi-summands.
In particular:

3.14 THEOREM. A countable locally quasi-separable group is completely lo.
cally quasi-deconposable.

3.15 THEOREM. A local quasi-sumand of a locally quasi-separable group is
locally quasi-separable.

If G is locally quasi-isomorphic to a separable torsion free group, then G is
locally quasi-separable. Also, of course, completely locally quasi-decomposa-
ble groups are locally quasi-separable.
More interesting examples are elusive.
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4. A Kruli-Schmidt theorem
Our last theorem follows from a theorem of Warfield [20], which we quote.

THEORE A. Let a be an additive category satisfying the following conditions.
(i) Any morphism has a kernel.
(ii) Infinite direct sums ( coproducts exist.
(i i) If M ,M with associated injections e, and f: M X is a

map such that Ker( y,fe) 0 for all finite J I, then f is monic.
Let M be an object in a with M _,r M, where each of the M has a local ring
as its endomorphism ring, and each of the M is small. Then:

(a) Any indecomposable summand of M is isomorphic to one of the M.
(b) If M ,,rN where the N are indecomposable, then there is a bi-

jective map I -. J such that M
c IfN is any summand of M, N is a direct sum of indecomposable objects.

(d) Any two direct decompositions of M have isomorphic refinements.
Since every object in 2 is finitely approximable, the category 2 satisfies

condition (iii) of Theorem A. The other conditions are satisfied also, by 2.7,
2.9 and 2.12. The finite rank groups which are indecomposable in have
local endomorphism rings [19]. Thus Theorem A applies to the category
We state the theorem in the language of local quasi-isomorphisms. See 3.13
and the remarks immediately following that definition.

4.1 THEOREM. Let M be completely locally quasi-decomposable, that is, M is
locally quasi-isomorphic to a direct sum ,M with each M strongly inde-
composable of finite rank. Then any strongly indecomposable finite rank local
quasi-sumand of M is quasi-isomorphic to one of the M. If M is locally
quasi-isomorphic to ,Na where each Na is strongly indecomposable of finite
rank, then there is a bijective map I -. J such that M is quasi-isomorphic to
N(). If N is any local quasi-summand of M, N is locally quasi-isomorphic to
a direct sum of strongly indecomposable finite rank groups, i.e., N is completely
locally quasi-decomposable. Moreover, any two local quasi-decompositions of M
have local quasi-isomorphic refinements.
Examples have been given to show that a summand of a direct sum of finite

rank torsion free groups may not be again a direct sum of finite rank groups.
By this theorem it must, however, at least contain a locally quasi-equal sub-
group which is a direct sum of finite rank groups.
Theorem 4.1 can be generalized by replacing the finite rank summands by

groups of countable rank whose 2-endomorphism rings are local. The first
part of the theorem generalizes to groups of arbitrary rank whose 2-endomor-
phism rings are local. We have no examples of infinite rank groups with local
2-endomorphism rings, however.

BIBLIOGRAPHY
1. R. BAER, Abelian groups without elements of finite order, Duke Math. J., vol. 3

(1937), pp. 68-122.



LOCAL QUASI-ISOMORPHISMS 551

2. R.A. BEAUMONT, "/_ survey of torsion-free rings" in Topics in abelian groups, Scott
Foresman, Chicago, 1963, pp. 41-51.

3. R.A. BEAUMONT AND R. S. PIERCE, Torsion-free rings, Illinois J. Math., vol. 5 (1961),
pp. 61-98.

4. , Torsion-free groups of rank two, Mem. Amer. Math. Soc., no. 38, Amer. Math.
Soc., Providence, R. I., 1961.

5. Subrings of algebraic number fields, Acta Sci. Math. (Szeged), vol. 22 (1961),
pp. 202-216.

6. Quasi-isomorphisms of p-groups, Proc. Colloq. on Abelian Groups, Budapest,
1964, pp. 13-29.

7. , Quasi-isomorphisms of direct sums of cyclic groups, Acta Math. Acad. Sci.
Hungar., vol. 16 (1965), pp. 33-36.

8. A.L.S. CORNER, A note on rank and direct decomposability of torsion-free abelian
groups, Proc. Cambridge Philos. Soc., vol. 57 (1961), pp. 230-233.

9. R. ENSEY, Isomorphism invariants for abelian groups modulo bounded groups, Pacific
J. Math., vol. 24 (1968), pp. 79-91.

10. L. FUCHS, Summands of separable abelian groups, Bull. London Math. Soc., vol. 2
(1970), pp. 205-208.

11. L. FUCHS AND G. VILJOEN, On quasi-decompositions of torsion-free abelian groups of
infinite rank, Math. Scand., vol. 33 (1973), pp. 205-212.

12. N. HART, Ulm’s theorem for totally projective groups in the category of abelian groups
modulo bounded groups, Pacific J. Math., vol. 35 (1970), pp. 205-212.

13. L. JESMANOWISZ, On direct decompositions of torsion-free abelian groups, Bull. Acad.
Polon Sci., vol. 8 (1960), pp. 505-510.

14. B. JONSSON, On unique factorization problem for torsion-free abelian groups, Bull.
Amer. Math. Soc., vol. 51 (1945), pp. 364.

15. , On direct decompositions of torsion-free abelian groups, Math. Scand., vol. 5
(1957), pp. 23O-235.

16. On direct decompositions of torsion-free abelian groups, Math. Stand., vol. 7.
(1959), pp. 361-371.

17. J.D. REID, On quasi-decompositions of torsion-free abelian groups, Proc. Amer. Math.
Soc., vol. 13 (1962), pp. 550-554.

18. "On the ring of quasi-endomorphisms of a torsion-free group," Topics in
Abelian Groups, Scott Foresman, Chicago 1963, pp. 51-69.

19. E.A. WALKER, Quotient categories and quasi-isomorphisms of abelian groups, Proc.
of the Colloquium on Abelian GroupS, Hungarian Academy of Sciences, Buda-
pest 1964, pp. 147-162.

20. l. B. WARFIELD, JR., Invariants and a classification theorem for modules over a dis.
crete valuation ring, manuscript.

IEW IIEXICO STATE UNIVERSITY
LAs CRUCES, NEW MEXICO


