A TRANSFER THEOREM FOR FINITE GROUPS WITH SYLOW *p*-SUBGROUPS OF MAXIMAL CLASS

BY

DAVID FINKEL¹

In [1], Cline proved a transfer theorem in response to a question of Glauberman [2, Problem 8] for the primes p = 3, 5 under the assumption that the Sylow *p*-subgroups of a finite group *G* have maximal class. We prove a similar result for the primes $p \ge 7$. The proof uses recent work of Shepherd [5] on *p*-groups of maximal class.

Our notations are standard [4]. In particular, if P is a p-group of nilpotence class n - 1, then $P = K_1(P), K_2(P), \dots, K_n(P) = 1$ is the lower central series for P.

THEOREM 1. Let G be a finite group with Sylow p-subgroup P of maximal class with p an odd prime. Let $N = N_G(C_P(K_2(P)/K_4(P)))$. Then

$$G/O^p(G) \cong N/O^p(N).$$

To prove this, we use the Hall-Wielandt Theorem [3, 14.4.2] and the following theorem of Shepherd.

THEOREM 2 [5]. Let P be a p-group of maximal class, with $p \ge 7$. Then the nilpotence class of $C_P(K_2(P)/K_4(P))$ does not exceed $\frac{1}{2}(p+1)$.

Let $P_1 = C_P(K_2(P)/K_4(P))$ and $P_i = K_i(P)$, i > 1. In view of the Hall-Wielandt Theorem, for the case $p \ge 7$ it is sufficient to prove that P_1 is weakly closed in P.

In [4, III.14], the following properties of P_1 are established:

LEMMA 1. Let P be a p-group of maximal class with $|P| = p^n$, and $n \ge 5$ and $P_1 = C_P(P_2/P_4)$. Then:

(a) P_1 is a maximal subgroup of P.

(b) $P_1 = C_P(P_i/P_{i+2})$ for $2 \le i \le n-3$.

We call P exceptional if $P_1 \neq C_P(P_{n-2}/P_n) = C_P(Z_2(P))$, where $Z_2(P)$ is the second center of P.

(c) If P is not exceptional, then P_1 is the only maximal subgroup of P that does not have maximal class.

(d) P/P_{n-1} is not an exceptional group.

We now establish the following.

LEMMA 2. Let P be a p-group of maximal class with $|P| = p^n$, and $n \ge 5$. Then P_1 is not isomorphic to any other subgroup of P.

Received July 31, 1973.

¹ Research partially supported by a grant from Research Corporation.

Proof. If P is not exceptional, then by (c) above, P_1 is not isomorphic to any other maximal subgroup of P.

If P is exceptional, then let $P^* = C_P(Z_2(P))$. Then P^* is a maximal subgroup of P. If M is a maximal subgroup of P and $M \neq P^*$, then

$$Z(M) = Z(P) = P_{n-1};$$

if we had |Z(M)| > p, then $Z_2(P) \leq Z(M)$, and $M \leq C_P(Z_2(P)) = P^*$. Thus P^* is the only maximal subgroup of P whose center has order larger than p, and so P_1 is not isomorphic to P^* .

Now let M be any maximal subgroup of P, $M \neq P_1$, P^* , and consider \bar{M} , its image in $\bar{P} = P/P_{n-1}$. Now $\bar{P}_1 = P_1/P_{n-1} = C_{\bar{P}}(\bar{P}_2/\bar{P}_4)$. For n > 5, since \bar{P} is not exceptional, \bar{P}_1 is the unique maximal subgroup of \bar{P} which does not have maximal class, by Lemma 1. For n = 5, it is easy to see that \bar{P}_1 is the unique maximal subgroup of \bar{P} that does not have maximal class, since \bar{P} has order p^4 . Thus \bar{M} does have maximal class, and since

$$\bar{M} = M/P_{n-1} = M/Z(M),$$

it follows that M has maximal class. Thus P_1 is not isomorphic to M, and so P_1 is not isomorphic to any other maximal subgroup of P, completing the proof of Lemma 2.

Thus if $|P| = p^n$, $n \ge 5$, P_1 is weakly closed in P. For n < 4, $P_1 = P$. For n = 4, it is easy to see that P_1 is the only maximal subgroup of P that does not have maximal class. Thus for all n, P_1 is weakly closed in P.

So for $|P| = p^n$, $p \ge 7$, Theorem 1 follows from Shepherd's Theorem and the Hall-Wielandt Theorem. For p = 3, 5 the theorem is essentially identical to Cline's result.

References

- E. CLINE, Transfer theorem for small primes, Math. Zeitschr., vol. 107 (1968), pp. 49-52.
- G. GLAUBERMAN, Subgroups of finite groups, Bull. Amer. Math. Soc., vol. 73 (1967), pp. 1-12.
- 3. M. HALL, JR., The theory of groups, Macmillan, New York, 1959.
- 4. B. HUPPERT, Endliche gruppen I, Springer-Verlag, Berlin, 1967.
- 5. R. T. SHEPHERD, *p-groups of maximal class*, Ph.D. Thesis, University of Chicago, 1970.

BUCKNELL UNIVERISTY LEWISBURG, PENNSYLVANIA