FOURIER-STIELTJES TRANSFORMS WITH SMALL SUPPORTS

BY

COLIN C. GRAHAM

Abstract

Let G be a LCA group with dual Γ . Suppose $S \subseteq \Gamma$ is a Borel set such that $S \cap (\gamma - S)$ has finite Haar measure for a dense set of $\gamma \in \Gamma$ (or $S \cap (S - \gamma)$ does). If μ and ν are regular Borel measures whose Fourier-Stieltjes transforms vanish off S, then $|\mu| * |\nu| \in L^1(G)$ ($|\mu|$ denotes the total variation measure). This generalizes to non-metrizable groups a result of Glicksberg. Related results are given; the proofs are elementary.

1. Introduction

Glicksberg's result appears in [G], where he shows that if μ , ν and S obey the hypothesis then $\mu * \nu \epsilon L^1(G)$, and, if G is metrizable, $|\mu| * |\nu| \epsilon L^1(G)$ also. See [M], [PS], [W] for similar and/or related results. I use the notation of [R] and prove:

THEOREM 1. Let G be a LCA group with dual Γ and $S \subseteq \Gamma$ a Borel set such that either

(a) $\{\gamma : S \cap (S - \gamma) \text{ has finite Haar measure}\}$ is dense in Γ , or

(b) $\{\gamma : S \cap (\gamma - S) \text{ has finite Haar measure} \}$ is dense in Γ .

Let μ , ν be regular Borel measures on G whose Fourier-Stieltjes transforms $\hat{\mu}$, $\hat{\nu}$ vanish off S. Then $|\mu| * |\nu| \in L^1(G)$.

Glicksberg's proof uses disintegration of measures. (See remarks at the end of this paper.) An iteration of the method here yields many varients. Theorem 2 is a sample. Its proof is left to the reader.

THEOREM 2. Let G be a LCA group with dual Γ , and $S \subseteq \Gamma$ a Borel set such that for some integers, $m, n \geq 1$,

$$\{(\gamma_1, \cdots, \gamma_{n+m}) : S \cap (S - \gamma_1) \cap \cdots \cap (S - \gamma_n)\}$$

 $\cap (\gamma_{n+1} - S) \cap \cdots \cap (\gamma_{n+m} - S)$ has finite measure

is dense in Γ^{n+m} .

Let $\mu_0, \mu_1, \dots, \mu_{n+m}$ be regular Borel measures whose Fourier-Stieltjes transforms vanish off S. Then $|\mu_0| * \cdots * |\mu_{n+m}| \in L^1(G)$.

There do not seem to be any known examples of sets S for which $\hat{\mu} = 0$ off S implies $\mu^2 \epsilon L^1(G)$, while for some $\mu \epsilon L^1(G)$, $\hat{\mu} = 0$ off S.

I make some general remarks before proceeding to the proof of Theorem 1.

Received July 27, 1973.

For a measure σ on G and a bounded continuous function f on G let $f\sigma$ denote the measure whose value at $g \in C_0(G)$ is $\int gd(f\sigma) = \int gf d\sigma$. Note that if $\gamma_{\alpha} \in \Gamma$ are characters which converge to $\gamma \in \Gamma$, then $\gamma_{\alpha}\sigma$ converges to $\gamma\sigma$ in measure norm. (This is because $\gamma_{\alpha} \to \gamma$ uniformly on each compact set, and boundedly everywhere.) Finally, if $\{\gamma : \hat{\sigma}(\gamma) \neq 0\}$ has finite Haar measure, then the inversion formula implies $\sigma \in L^1(G)$.

2. Proof of Theorem 1

(A) Suppose (a) holds and consider the measures ω_{γ} whose Fourier-Stieltjes transforms are

(2.1)
$$\hat{\omega}_{\gamma}(\rho) = \hat{\mu}(\rho) \vartheta(\rho - \gamma) \quad (\gamma \in \Gamma).$$

The hypotheses on S and μ , ν imply that $\omega_{\gamma} \epsilon L^{1}(G)$ for a dense set of γ . If γ is any element of Γ , there exist $\gamma_{\alpha} \to \gamma$ with $\omega_{\gamma_{\alpha}} \epsilon L^{1}(G)$. Of course $\hat{\nu}(\rho - \gamma_{\alpha}) = (\gamma_{\alpha}\nu)^{*}(\rho)$ so $\gamma_{\alpha}\nu \to \gamma\nu$ in norm, and therefore $\omega_{\gamma} = \mu * (\gamma\nu)$ belongs to $L^{1}(G)$. Hence $\omega_{\gamma} \epsilon L^{1}(G)$ for all $\gamma \epsilon \Gamma$.

An easy computation shows

$$\gamma_1 \, \omega_{-\gamma_1+\gamma_2} = (\gamma_1 \, \mu) * (\gamma_2 \, \nu)$$

so $(\gamma_1 \mu) * (\gamma_2 \nu) \epsilon L^1(G)$ for all $\gamma_1, \gamma_2 \epsilon \Gamma$. By replacing each of the γ 's with finite linear combinations of characters, we easily obtain $|\mu| * |\nu| \epsilon L^1(G)$.

(B) Suppose (b) holds. For a measure σ define $\sigma^{\#}$ and $\tilde{\sigma}$ by

(2.2)
$$\int f(x) d\sigma^{\#}(x) = \int f(-x) d\sigma$$
, and $\int f(x) d\tilde{\sigma}(x) = \int f(-x) d\tilde{\sigma}$

where an overbar denotes complex conjugation. It is then easy to see that the Fourier-Stieltjes transforms obey

(2.3)
$$(\sigma^{\#})^{\wedge}(\rho) = \hat{\sigma}(-\rho), \quad \tilde{\sigma}^{\wedge}(\rho) = \hat{\sigma}(\rho)^{-}.$$

Also note that

(2.4)
$$|\sigma|^{\sim} = |\tilde{\sigma}| = |\sigma^{\#}| = |\sigma|^{\#}$$
 and $|\sigma|^{\sim \#} = |\sigma|$.

We define ω_{γ} by

$$\omega_{\gamma} = \mu * ((\gamma \nu)^{-\#}) = \mu * (\gamma (\tilde{\nu})^{\#}).$$

A straightforward calculation using (2.3) shows

$$\hat{\omega}_{\gamma}(\rho) = \hat{\mu}(\rho)(\hat{\nu}(\gamma - \rho)^{-}.$$

The argument of (A) using the hypothesis (b) now shows $|\mu| * |(\tilde{\nu})^{\#}| \epsilon L^{1}(G)$. By (2.4), $|\mu| * |(\tilde{\nu})^{\#}| = |\mu| * |\nu|$, so Theorem 1 is proved.

Remarks. The use of the limit argument to show $\omega_{\gamma} \in L^{1}(G)$ for all γ appears implicitly in [G; p. 421]. The passing to $|\mu| * |\nu|$ was suggested to me by [W].

By using the method of [P] one may weaken the hypotheses of Theorem 1:

instead of requiring that $\hat{\mu}$, $\hat{\nu}$ be zero off S, we may suppose there exist f, $g \in \bigcup_{1 \le p \le 2} L^p(G)$ with $\hat{f} = \hat{\mu}$ a.e. on $\Gamma \setminus S$ and $\hat{g} = \hat{\nu}$ a.e. on $\Gamma \setminus S$. (In the proof, one finds, as in [P], f_1 , $g_1 \in L^1(G)$ with $\hat{f}_1 = \hat{\mu}$, $\hat{g}_1 = \hat{\nu}$ a.e. on $\Gamma \setminus S$. Let $\mu_1 = \mu - f_1 dx$, $\nu_1 = \nu - g_1 dx$, so μ_1 , $\nu_1 = 0$ a.e. off S. The proof of Theorem 1 shows $|\mu_1| * |\nu_1| \in L^1(G)$, and, of course, $|\mu| * |\nu|$ is absolutely continuous with respect to $(|\mu_1| + |f_1| dx)*(|\nu_1| + |g_1| dx \in L^1(G).)$

BIBLIOGRAPHY

- [G] I. GLICKSBERG, Fourier-Stieltjes transforms with small supports, Illinois J. Math., vol. 9 (1965), pp. 418-427.
- [P] L. PIGNO, Measures and convolution products with small transforms, Math. Zeitschr., vol. 123 (1971), pp. 18-20.
- [M] Y. MEYER, Spectres des mesures et mesures absoluement continues, Studia Math., vol. 30 (1968), pp. 87-99.
- [PS] L. PIGNO AND S. SAEKI, Fourier-Stieltjes transforms which vanish at infinity, to appear.
- [R] W. RUDIN, Fourier analysis on groups, Interscience, New York, 1962.
- [W] L. J. WALLEN, Fourier-Stieltjes transforms tending to zero, Proc. Amer. Math. Soc., vol. 24 (1970), pp. 651-2.

Northwestern University Evanston, Illinois