
LOCALIZATION OF MAPPING SPACES

BY

1. Introduction
Let e be the category of spaces with the homotopy type of a c.w. complex,

and continuous maps. In Anderson [1] a functor R -+ is introduced
which has the effect of localizing the homotopy groups of a 1-connected space.
In this paper we study R for more general classes of spaces in .

In 2 we define R and prove the Universality Property (2.7). While much
of this is in [1], a careful proof of (2.7) is necessary for 3.
3 is devoted to generalizing the localizing properties of R to nilpotent

spaces. Here we find that R localizes the homotopy groups above dimension
2, and kills the M-torsion of (X). While the effect on ,a is not as pleasant as
Hilton, Mislin and Roitberg’s localizing functor ()(e) [6], R does have the ad-
vantages of being functorial on (as opposed to the associated homotopy
category), and being applicable to any space in (X(e) is not defined if X is
not nilpotent). It is also more conceptual than Bousfield-Kan’s functor [2].

In 4 we show that mapping spaces Xr are completely localized by R (X) r

if X is nilpotent, and Y is finite path connected. In 5 we modify R slightly
to obtain a functor R0. We show that Xr is localized by the mapping space
R0 (X)r, where now, Y is simply connected and finite, but X has no conditions
on its fundamental group (5.7). It should be remarked that (Xr)(e) local-
izes, but (X(e)) r is not even defined.

Unless otherwise indicated all spaces belong to , have finitely generated
homotopy groups, and are path connected.

2. The functor R
Let P be a set of primes. Let Z<) be the integers localized at P. M Z

shall denote the set of integers which are invertible in Z(e>. A group is M-tor-
sion or P-torsion if its elements are all torsion of order belonging to M, or P
respectively.

For a Z, the Moore space, M (a), is defined to be the cofibre of a map of
degree a from S to S1.

DEFTION 2.1. ,(X; Z/a) [S"-M (a), X] where is homotopy
classes of base point preserving maps. For n _> 2 this is a group.

From the Puppe sequence

S a $1 S SM (a) -- ---> .--> SM (a) -
Received July 23, 1973.

522



LOCALIZATION OF MAPPING SPACES 523

we obtain a long exact sequence

aa (X) (---- (X Z/a) (X) .-----(2.2) (Z) r 2

DEFINITION 2.3. X is a Z(e)-space if (X; Z/m) 0 for all i _> 1, m e M.
For i 1 this means r (X; Z/m) has only one element.
A group G is local if the map G -- G defined by g --* g is a bijection for

m e M. /k space is local if all its homotopy groups are local.

From 2.2 it follows that a local space is a Z()-space. The converse is almost
true:

(2.4) If X is a Z(e)-space (X) is a local group for i >_ 2, and (X) has
no M-torsion.

Let R (X) be obtained from X by attaching a cone on each map of any
SM (a), for a e M. Inductively define R+ (X) R (R (X)).

DEFINITION 2.5. R (X) (J R (X). Clearly R is a functor.

PROPOSITIO 2.6 (Anderson [1]). R(X) is a Z(,)-space. The inclusion
e: X R (X induces a P-bijection in reduced, integral homology, and a surjec-
tion in r.

(A homomorphism g: G --* G, between arbitrary groups, G, and G. is a
P-bijection if ker g is M-torsion, and for x e G., there is an m e M such that
x is in the image of g.

THEOREM 2.7. Let g: X Y be a map of X to a Z(,)-space Y. Then
there is up to hootopy a unique map, f: R (X) Y, such that

x R,(X)

Y

homotopy commutes.

Proof. Exisgenee.

x ,., : i (x)

To construct, f, we must extend f_ to a cone on any map

S: SM (a)----> R- (X), a M
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Since Y is a Z()-space

SM(a) f-I Y

is null homotopic. The null homotopy gives us the required extension.
Uniqueness. Suppose we have

fl and f extensions of g. We denote by f (s 1, 2), the restrictions to
R (X). Suppose we have found a homotopy

H’R(X) I Y

fromf to f. We wish to find an H R+ (X) X I -, Y such that

communtes.

Y

We will then be able to pass to the limit to obtain a homotopy H from fl to

For a map s" SM (a) R (X), a e M, D is defined to be the space

(SM (a) X I) u Cone(SM (a) X {0} ) o Cone(SM (a) X 1} ).

We have a map T D -+ Y defined by

(S o (s identity)) u (f+, o s) u (f+, o s).

But D is the same homotopy type as S (SM (a)).
space, T is null homotopic, and we obtain a map

Hence, since Y is a

TI" (D X I)/ (D X {I}) -+ Y.

(D X I)/(D X 1} is homeomorphic to Cone (SM (a)) X I, and we thus
obtain a map

h" (R’(X) u Cone(SM(a))) X I -* Y.

Using the above procedure for each map, s, gives us the desired homotopy
H+I.

(2.8) Remark. (i) From the proof, it is clear that the Universality Prop-
erty is true for any space obtained from X by attaching cones on mappings of
Moore spaces. Furthermore, if Y is path connected the mappings of Moore
spaces need not be base point preserving.
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(ii) In Anderson [1] the uniqueness is shown for mps which restrict to
null homotopic mps on ech R (X).

3. Properties of R
A space, X, is said to be nilpotent if n (X) is nilpotent group, and acts

nilpotently on the higher homotopy groups of X. See Bousfield-Kan [2] for
details.

PROPOSITION 3.1. If X and R (X) are nilpotent spaces, then

(Z)

localizes for i >_ 2, and e is the quotient map

n (X) n (X)/ (M-Torsion (R (X)).

Proof. The first part of 3.1 follows from 2.6 and 3.2 below.
is Proposition 3.4.

The last part

LEMMA 3.2. Let f" X Y be a mapping between nilpotent spaces.
H. (f) is a P-bijection if and only if r. (f) is a P-bijection.

Proof. One may use the argument in Dror [3], modified for P-bijection or
refer to Hilton, Mislin, and Roitberg [6].

3.1 becomes interesting in light of

THEOREM 3.3. If X is nilpotent, then R (X is nilpotent.

Proof. Let

R (Z)~ R (X)

be the Universal covering of R (X). Define R (X)- (P-Z (R* (X)). In
particular

is a fibration with discrete fibre. Hence is nilpotent. Let /be the cone
on a map of a suspension of a Moore space into R (X); /denotes a lift of /to
R (X)~. R+ (X)- is obtained from R (X)- by attaching the cones 0. , for
all 0 n (R (X)), /as above. Note the attaching maps do not preserve base
points. It follows from 2.8 (i) that : -, R (X) satisfies the Universal
Property. Since the 1-skeleton of R (X) is contained in X, and X is path
connected, n(R(X), X) is the 1-point set. By the homotopy extension
property, n (R (X)~, :) is the 1-point set, and is path connected. Since
R (X) is a Z(e)-space R (X) R (:). It follows from 3.2 that localizes
homotopy. Hence e locaIizes homotopy in dimension >_2.

Suppose a r (R (X)). Since rz (e) is onto, we may suppose a r (e) (az)
for some az n(X). Since r(e), i > 1, is the localization map, it follows
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by a simple induction that F (X) -- F (R (X)) is P-surjective, where

FI(Y) r,(Y) r (Y)

is the filtration of , (Y) determined by the action of 1 (Y).
Since X is a nilpotent space there is a ], such that rk (X) 0. Therefore

every element in rk (R (X)) is M-torsion. But , (R (X)) is local for >_ 2,
so 1 (R (X)) must be 1, and R (X) is a nilpotent space.

PROPOSITION 3.4. Suppose rl (X) is a nilpotent group. Then

r (R (X) r (X)/ (M-torsion

and r (e is the canonical quotient map.

Proof. Since X is path connected, and X contains the 1-skeleton of R (X),
r (R (X), X) 0. We wish to show that r2 (R (X), X) is M-torsion. 3.4
will then follow, since rl (R (X)) has no M-torsion. To this end we state

LEMMA 3.5 (Hilton [4]). There is a localization functor which assigns to
each nilpotent group G, a nilpotent group G(e), and a map e G G(,) such
that

(i) G(p) is a local group and e is a P-bijection,
(ii) localization is an exact functor.
We now consider the homotopy sequence of the pair (R (X)~, 2) (the

notation is that of 3.3). By the homotopy extension property we may iden-
tify 2 (R (X), X) with r (R (X)-, ). We therefore obtain the sequence

(R (X)) (R (X), X) (2) 0.

For this situation there are two relevant observations:
(1) The image of j lies in the center of (R (X), X)
(2) The subgroup, F, of r (R (X), X) generated by elements of the form

( o a)a-1, e (), a e . (R (X), X) coincides with the commutator sub-
group (Spanier [7, pg. 385]).

It follows from (1) that 2 (R (X), X) r is nilpotent. Suppose r con-
tains an element, a, which is not M-torsion. The exact sequence

induces, by 3.5 (ii), an exact sequence

But the relative Hurewicz theorem implies (/[, ])(p) 0. Further-
more [r(e), r(e)] [r, r](e) (Hilton [5]). Since r(e) is nilpotent, we must
have r(p) 1. However by 3.5 (i), e(a) 1. We conclude that r is
M-torsion, proving 3.4.

In order to obtain information about H. (R (X);Z) we proceed as follows.
Let Y be a Z(e)-space. Then if Y is 1-connected, H.(Y; Z/m) O,
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_> 1 (Sullivan [8]). For Y arbitrary, we have the fibration

if" -+ Y -+ K (., Y ), 1).

From the above remark, his fibration is orientable wih Z/m eoeffidents, and
we obtain the following from the 8erre spectral sequence.

PROPOSITION 3.6. Let r(Y; Z/rn 0 i >_ 1, r r, (Y). Then

H. (Y; Z/rn H. (r; Z/m ),

i.e., the obstructions to H. (Y; Z) being local, are the groups H.(r; Z/m).

COOT.AaY 3.7. If r is nilpotent and local then H, (Y; Z) is local.

For, by Hilton [4],/. (r) is local, >_ 0. Note that no assumption on
the action of r on the higher homotopy groups is necessary.

COrOLLArY 3.8. Suppose r, (X) is abdian with 1 free summands. Then

H, (i) H, (R (X)

is the localization mapfor

4. Applications to mapping spaces
We now consider the problem of the localizing the space X. The base

point shall be the constant map.

LEMMA 4.1. R (X) " is a Z(,,)-space for X, Y arbitrary c.w. complexes.

Proof. r.(R(X)sM(=)) 0for. 0,1,2, ...,/c 0,1,2, ...,meM.
Therefore R(X)sM(’) hus the homotopy type of a point. It follows that
[Y,R(X)sM()] 0. By adjunction [SM(rn),R(X)r] 0, k >_ 0,
rn e M. Hence R (X) r is a Z(v)-space.

LEMMA 4.2. Let Y be a finite c.w. complex, X a nilpotent path connected
space, and F the fibre of the map e X -+ R (X ). Then r, (F’) is an M-torsion
group, n >_ 1.

Proof. From the long exact sequence of the fibration F -+ X -+ R (X) it
follows that r. (F) is M-torsion, _> 1, and F is connected. Assume the
result is true for a complex Y with k cells. There is the Puppe sequence

Y-+ Y u D’-+ S’,

and he induced exac sequence

IS*+’, F]-+ [S* (Y u D’), F]-+ IS*Y,
from which it follows that r. (Fru’) is M-torsion, >_ 1 proving 4.2.

Let Xr -+ R(X) " be composition with e X -+ R(X).

PaOPOSITmN 4.3. With X, Y as in 4.2,
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(i) r, (e) r, (Xr) ---* r, (R (X) r) localizes for >_ 2,
(ii) ker r (e) is the M-torsion of r (Xr).
Proof. Both parts follow from the exact sequence

[S"Y, F] --+ [S"Y, X] --+ [S"Y, R(X)]-+ [S’-Y, F]

and the lemmas above.
We now come to the main result of this section.

Toa 4.4. Let X be a nilpotent space, Yfinite and path connected. Then
r, (e) localizes the homotopy groups of Xr for >_ 1.

It remains to show that v (e) is the localization map. We first prove a
special case.

LEMMA 4.5. Let X be simply connected, Y finite. Then r, (e) localizes the
hornotopy groups of Xr for >_ 1.

Proof. Let a e r (R (X) r). There is the diagram

(x)
A id 11B

where rn S -+ S is a map of degree m, and a is the adjoint of a. If we
can show that there is a " SY --+ R (X), unique up to homotopy, making
(4.5) commute, for m e M, then a will have a unique m-th root. The mapping
cone of rn /kid is M (rn) /X Y. The obstructions to unique extension lie in

//* (M (m) /X Y; r, (R (X)) )

Since r, (R (X)) is a local group, and M (m) is a Z/m Moore space, it follows
that all obstructions are 0, and x, (R (X)r) is local.
To show r (e) is a P-bijection we consider the lifting problem

X

The obstructions 0, to lifting lie in H*+t (S A Y; -,F) where F is the
fibre of (P. -, (F) is M-torsion. I-Ienee for each ,, here is a d, M such
tha {9, is of order d,. Since Y is finite there is a k, such that a lift to the
k-th stage of the Moore-Postnikove resolution of (P implies a lift to X. Using
the Co-H space structure of S*, we replace a, by (dd...d)a which we denote
det. Since the group structures of [SY, K (G, n)] given by the Co-H space
structure of S and by the H-space structure of K (G, n) coincide, we see that
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the obstructions to lifting da are zero, and (e) is P-surjective.
jectivity of rl (e) follows from 4.3 (ii). This proves 4.5.
To prove 4.4 in general we consider the diagram

$

x e

where

The P-in-

is the universal cover of X, R ((P) is given by universality, and F is the fibre of
R (). e localizes higher homotopy groups, and vl (R ()) 0. It follows
that (F) 0, i >_ 1. The Whitehead theorem implies the path com-
ponent of the base point in F has the homotopy type of a point. Since Y
is path connected, Fr has the homotopy type of a point. It follows that

(R ()r) - (R (X) r) is an isomorphism for i >_ 1. Similarly
r(Xr) is an isomorphism for i >_ 1. 4.4 now follows from 4.5.

5. Localizing Xr, Y simply connected
Let X be a space. R (X) is defined to be the space obtained from X by

attaching a cone on all maps SAM (m) --, X, m e M, k >_ 1. Inductively
define Rg+1 (Z) R(R (X)).
DEFINITION 5.1. Ro(X)

Clearly R0 is a functor. The proof of the following proposition is similar
to the proof of the corresponding statements for R.

PaOPOSITION 5.2. (i) (R0 (X) Z/m) O, m M, i >_ 2.
(ii) The natural map eo" X -- Ro(X) is universal with respect to maps

X ---) Y, where Y is a space such that v(Y; Z/m) O, i >_ 2, all m M.

In the following lemma X (n) denotes the n-th connected cover of X.

LEMMA 5.3. If Y is (n 1)-connected the natural homomorphism

is an isomorphism for i >_ 1.

Proof. In the proof of 4.4 it is shown that X (1)r ._, Xr induces an iso-
morphism for vi, i >_ 1, if Y is path connected. There is the fibration

(5.4) f K(r(X),k 1) --. X(k) X(k 1).

Furthermore r (Fr) [SY, F] H-- (Y; (X)).
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Since Y is (n 1 )-connected and (X) is finitely generated, the Universal
coefficient theorem implies

H-’-I(Y;r(X)) 0, i >_ 0, k _< n.

5.3 now follows from the long exact homotopy sequence associated to (5.4).

PROPOSITION 5.5. If X is path connected then Ro (X (n) Ro (X) (n).

Proof. There is the diagram

0 Ro(X)

X eo Ro(X)

where Ro(X)- is the universal cover of R0(X), and (-1 (X). As in
the proof of 3.3, R0 (X)- R0(,). Since R0 is obtained from X by attach-
ing cones on suspensions of Moore spaces, vl (R0 (), 1) (Ro (), )
0. It follows that X. 5.5 is therefore tree for n 1. Since H, (Co)
is a P-bijection, , (0) is the localization map for > 2, and (e0) is the
canonical map

x. (X) - r (X)/(M-torsion).
Since r,(e0) is the localization homomorphism for _> 3, 5.5 follows for
n> 2.

COROLLARY 5.6. Suppose Y is a 1-connected, finite c.w. complex. Then. Xr Ro(X) r

localizes all homotopy groups.

Proof. 5.6 follows from the diagram below with "=" meaning "induces an
isomorphism for ,, >_ 1".

x(2) iI

R(X(2)) r R0(X(2)) r R0(X)(2) r Ro(X) r

fl A A
f and f8 are equivalences by 5.3. f is an equivalence by 5.5. A is an equiva-
lence since R R0 for 2-connected spaces. 1 induces the localization homo-
morphism in ,, >_ 1 by 4.5.

COROLLARY 5.7. Ro localizes r, >_ 3.

Proof. Take Y S in 5.6.
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