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T. W. K6rner asks in his very brilliant paper [6; p. 111 and p. 223] if the sum
of two Kronecker sets is of synthesis. In this note we construct a counter-
example. This result implies in particular that the following theorem of
S. W. Drury [1] (see also [2]) is best possible in some sense: every finite sum of
closed subsets of a totally disconnected Kronecker set is of synthesis.

LEMMA (cf. [6; Lemma 6.11]). Let G be a metrizable LCA I-group with
dual , and E a strongly independent Cantor set in G.

(a) Then there exist two Kronecker sets E1 and E2 c G, both homeomorphie
to E, such that E c E1 + E2 and

Gp(E1) c Gp(E2)= Gp(E) Gp(Ej)= {0) (j 1, 2).

(b) Suppose, in addition, that E is a set of type M and that E1 and E2 are as
in part (a). Then there exist an Hi-set K E of type M and a compact set

K1 E1 such that K K1 + E2 and K1 E2 is an Hi-set.

Proof Part (a) is an easy consequence of Kaufman’s method in [5] (see
also [4]) and so we give only a sketch of the proof (a detailed proof will appear
in [9]).

Let C(E; G) be the additive group of all continuous mappings from E into G.
It is easy to see that C(E; G) forms a complete metric, topological group under
the topology of uniform convergence, and that, for quasi-allf C(E; G), f(E)
is a Kronecker set in G which is homeomorphic to E by Kaufman’s argument in
[5]. Moreover, we can show that the set B of allf C(E; G) such that

Gp(f(E)) c Gp(E) # {0}
is of the first Baire category in C(E; G), since E is independent. Therefore
quasi-all f C(E; G)\B have the property that the sets E1 =f(E) and
E2 (fo -f)(E) are Kronecker sets homeomorphic to E. Here fo denotes
the identity mapping on E. Since E is independent over Z, we conclude that
Ei and E2 have the desired properties.
To prove part (b), we must repeat some arguments in [8]. Since E2 is a

Kronecker set, we can choose the characters Z1, ZN e in Lemma 2 of [8]
so that

11 Xsl < e onE2 (j= 1,2,...,N), (1)
where e is an arbitrary, but preassigned, positive real number. It follows from
Theorem 2 and its proof in I-8] that E contains an Hi-set K of type M such that
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for each > 0 and # z C(K) and I1 1, there exist finitely many characters
;1, XN e d which satisfy (1) and

g N- Xj < onK. (2)
j=

These characters are the same as in (1), and this requires some variations in the
construction in !-8-1.

Notice that every element x of E + E2 can be uniquely written as x
x + x2 with x 6 E (j 1, 2), because E E2 0 and Ex E2 is inde-
pendent by part (a). Thus we may identify the sum E1 + E2 with the product
E x E2. Let re" E + E2 E1 be the natural projection, and let Kt n(K);
hence K = K + E2. It only remains to show that K1 E2 is an H-set.

Let ? 6 and > 0 be given. Choose finitely many characters ,..., gN 6

so that they satisfy (1) and (2) with # n. Then

1 N- < onE2.
j=

Moreover, we have

(3)

- N-1 Zj < 2e onK1. (4)
j=

Indeed, given x K1, choose x2 E2 such that x + x2 e K. It follows from
(1) and (2) that

(x) N- (x)

g(x + x2)- N - Z(x + x2) + N - 11
j= j=

2e.

This establishes (4). Since Kt and E2 are Kronecker sets, (3) and (4) imply that
Kt E2 is an H-set, which completes the proof.

THEOREM. Every LCA I-#roup G contains two disjoMt perfect Kronecker sets

K and K2 such that
(i) K1 K2 is an independent H-set;
(ii) Kt + K2 contains a strongly independent Hi-set K of nonsynthesis such

that Gp(K) Gp(Kj) {0} #r j 1, 2;
(iii) K + K2 is of nonsynthesis.

Proof Without loss of generality, we may assume that G is metrizable.
Then G contains a strongly independent Cantor set E which is an H-set of
type M by Theorem 2 of [8]. Let K, K1, and K2 E2 be as in part (b) of the
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lemma. Obviously (i) and (ii) hold. To get a contradiction, we suppose that
K1 + K2 is of synthesis. Under this hypothesis, we want to prove that the set K
satisfies Condition (af’b) in [7] for some positive constant b. This will yield the
desired contradiction, since K is of nonsynthesis.

First notice that the natural projections rj" K1 + K2 --* Kj are injective on
K (j 1, 2) by (i) and (ii). On the other hand, Kaijser’s theorem [3-] and (i)
assure that the Fourier restriction algebra A(Ki + K2) of A(G) is topologically
isomorphic to the tensor algebra V(K, K2) C(K) ( C(K2) under the map
f --} f, where

](x,, x2) f(xl + x2) (x e K; j 1, 2).

Indeed, it is an easy consequence of our construction of K and K2 that these
algebras are isometrically isomorphic. Let A and B be two disjoint compact
subsets of K. Then rot(A) o rot(B) 0, and so there exists a clopen subset C
of K such that tel(A) c C and rc(B)o C 0. Letf A(K + K2) be the
characteristic function of C + K2. Then Ilflla < b for some constant b < 00,
because Ill IIv 1 (b depends only on K and K2, and is independent of A and
B). Since C + K2 is a clopen subset ofK + K2, and since K1 + K2 is assumed
to be of synthesis, it follows that there exists a g A(G) such that g 1 on
some neighborhood of C + K2, g 0 on some neighborhood of (K\C) + K2
and IlgllA() < b. But A c C + K2 and B (Ki\C) + K2. Hence K satisfies
Condition (get’b) in [7-1, and is therefore of synthesis by Theorem of [7-1. This
contradiction establishes (iii).

Remarks. (a) For tensor algebras, we refer the reader to [11].
(b) Suppose that K is a compact subset of a nondiscrete LCA group G and

that X is any compact infinite space. If there exists an isometric algebra homo-
morphism $: C(X) --} A(K) with $(1) 1, and ifKcarries a pseudomeasure P
such that

lim sup Ie()l < ilellm, (i)

then K is of nonsynthesis. Notice that such a $ exists if A(K) C(X) (R) C(Y)
isometrically for some Y.
A rough proof of this fact is as follows. We may assume that K contains

0 G. Suppose that Kis of synthesis; hence P A’(K). Then every unimodular
functionfin A (K) such that IlfllA f(0) is the restriction of some charac-
ter in d by (i) and Lemma 4.2 of l- 10]. The existence of as above then forces K
to be a Dirichlet set. But this is impossible by (i), because P is carried by K.

(c) Our theorem holds for every nondiscrete LCA group G if we substitute
the words "Kq-set" and "weak Kq-set" for "Kronecker set" and "Hi-set",
respectively. To prove this, we must replace E and E2 by appropriate subsets
thereof in the proof of the lemma, and avoid appealing to Kaijser’s theorem in
the last proof. We omit the details.
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