PRODUCTS OF WITT GROUPS

BY
John Brendan Sullivan ${ }^{1}$

Introduction
We study products of Witt groups and answer the question of whether a direct factor of a product of Witt groups is also a product of Witt groups affirmatively.

The proof proceeds after an examination of the extendability of endomorphisms of products of Witt groups, and uses the cohomological study of algebraic group extensions given by Serre in Groupes Algébriques et Corps de Classes.

The category is that of affine algebraic groups.

0. Facts from Serre (Chapter 7)

Let k be an algebraically closed field.
(1) For commutative connected algebraic groups A and B, the group Ext (A, B) of classes of (commutative) extensions of A by B is the group $H_{\text {reg }}^{2}(A, B)_{S}$ of classes of symmetric regular factor sets $f: A \times A \rightarrow B$ [Serre, Proposition 7, Number 6]. We will abbreviate this group to $H^{2}(A, B)$.

Let k have characteristic $p \neq 0$.
(2) For W_{n} the n-dimensional Witt group ($W_{1}=G_{a}$, the additive group) and A_{n} the ring of endomorphisms of $W_{n}, H^{2}\left(W_{n}, G_{a}\right)$ is a right A_{n}-module and a left A_{1}-module under $\{f\} \cdot x=\{f \circ(x, x)\}$ and $y \cdot\{f\}=\{y \circ f\}$, for $\{f\}$ the element of $H^{2}\left(W_{n}, G_{a}\right)$ represented by the factor set $f, x \in A_{n}$ and $y \in A_{1}$.
(3) Let $F_{n}: W_{n} \times W_{n} \rightarrow G_{a}$ be a factor set with $F_{n}(0,0)=0$ which gives the extension

$$
G_{a} \xrightarrow{V_{n}} W_{n+1} \xrightarrow{R} W_{n},
$$

$V^{n}(a)=(0, \ldots, 0, a)$ and $R\left(a_{0}, \ldots, a_{n}\right)=\left(a_{0}, \ldots, a_{n-1}\right) . H^{2}\left(W_{n}, G_{a}\right)$ is a free A_{1}-module on base $\left\{F_{n}\right\}$ [Serre, Lemma 4, No. 9].
(4) $H^{2}\left(\Pi_{j} W_{n_{j}+1}, \Pi_{i i} G_{a}\right)=\prod_{i, j} H^{2}\left(W_{n_{j}+1},{ }_{i} G_{a}\right) \quad[$ Serre, (10), No. 1].

Here each ${ }_{i} G_{a}$ is the additive group. The connection is given by

$$
\{F\} \mapsto\left(\left\{F_{i j}\right\}\right)_{i j},
$$

where

$$
F_{i j}: W_{n_{j}+1} \times W_{n_{j}+1} \xrightarrow{\mathrm{inc}} \prod_{k} W_{n_{k}+1} \times \prod_{k} W_{n_{k}+1} \xrightarrow{F} \prod_{k}{ }_{k} G_{a} \xrightarrow{\mathrm{proj}} G_{a}
$$

[^0](5) There is a sequence of subgroups of W_{n} :
$$
G_{a} \xrightarrow{V} W_{2} \xrightarrow{V} \cdots \xrightarrow{V} W_{n-1} \xrightarrow{V} W_{n}
$$
where
$$
W_{i} \xrightarrow{v} W_{i+1} \text { is } V\left(a_{0}, \ldots, a_{i-1}\right)=\left(0, a_{0}, \ldots, a_{i-1}\right) .
$$
W_{i} is the unique connected dimension i subgroup of W_{n}.
(6) The elements of $\Pi W_{n_{i}+1}$ of order p form the subgroup $\prod_{i} G_{a}$ (${ }_{i} G_{a} \subset W_{n_{i}+1}$, the additive group) [Serre, No. 8].
(7) A commutative connected unipotent group of period p is a product of copies of the additive group [Serre, Proposition 11, No. 11].

1. Endomorphisms of products of Witt groups

For $x \in A_{n}$, there is a unique element $y \in A_{1}$ with $\left\{F_{n}\right\} \cdot x=y \cdot\left\{F_{n}\right\}$, by (3). The factor set $F_{n} \circ(x, x)-y \circ F_{n}$, which thus represents the trivial class in $H^{2}\left(W_{n}, G_{a}\right)$, must therefore arise out of a polynomial map $T: W_{n} \rightarrow G_{a}$ as

$$
F_{n} \circ(x, x)\left(a, a^{\prime}\right)-y \circ F_{n}\left(a, a^{\prime}\right)=T\left(a+a^{\prime}\right)-T(a)-T\left(a^{\prime}\right)
$$

for $a, a^{\prime} \in W_{n}$.
Using y and T, the element $x \in A_{n}$ can be lifted to an element u of A_{n+1}. In fact, define

$$
u\left(a_{0}, \ldots, a_{n}\right)=\left(x\left(a_{0}, \ldots, a_{n-1}\right), y\left(a_{n}\right)+T\left(a_{0}, \ldots, a_{n-1}\right)\right)
$$

One checks that u is indeed an element of A_{n+1}, and that

commutes.
Secondly, we lift an endomorphism x of $\prod_{i} W_{n_{i}}$ to an endomorphism u of $\Pi_{i} W_{n_{i}+1}$. Denote by $X_{j k}$ the homomorphism

$$
W_{n_{k}} \xrightarrow{\mathrm{inc}} \prod_{i} W_{n_{i}} \xrightarrow{\times} \prod_{i} W_{n_{i}} \xrightarrow{\mathrm{proj}} W_{n_{j}} ;
$$

since $X_{j k}\left(W_{n_{k}}\right)$ is a connected subgroup of $W_{n_{j}}, X_{j k}\left(W_{n_{k}}\right)=W_{n} \subset W_{n_{j}}$ for some n, by (5). Furthermore, the connected component of the identity of ker $X_{j k}$ must be $W_{n_{k}-n} \subset W_{n_{k}}$.

Therefore, $X_{j k}$ may be factored as follows:

Let $u_{j k}^{\prime} \in A_{n+1}$ lift $X_{j k}^{\prime} \in A_{n}$; then

$$
u_{j k}: W_{n_{k}+1} \xrightarrow{R^{n_{k}-n}} W_{n+1} \xrightarrow{u_{j k^{\prime}}^{\prime}} W_{n+1} \xrightarrow{\text { inc }} W_{n_{j}+1}
$$

lifts $X_{j k}$. The map $u: \Pi W_{n_{i}+1} \rightarrow \prod W_{n_{i}}$, determined by the condition that

$$
W_{n_{k}+1} \xrightarrow{\mathrm{inc}} \Pi W_{n_{i}+1} \xrightarrow{u} \Pi W_{n_{i}+1} \xrightarrow{\text { proj }} W_{n_{j}+1}
$$

is $u_{j k}$, lifts x.
Lastly, the lifting of an automorphism is an automorphism. In fact, let u^{\prime} lift $x^{-1} . u^{\prime} \circ u$ lifts the identity map:

The extension (*) can be described in two ways:
(1) $\left(\delta_{i j} \cdot\left\{F_{n_{j}}\right\}\right)_{i j} \in \prod_{i, j} H^{2}\left(W_{n_{j},}, G_{a}\right)$
(2) as the image of (*) under $u^{\prime} \circ u \mid$; namely

$$
\left(\left.u^{\prime} \circ u\right|_{i j} \cdot\left\{F_{n_{j}}\right\}\right)_{i j} \in \prod_{i, j} H^{2}\left(W_{n_{j}},{ }_{i} G_{a}\right) .
$$

By (4) and (3), $\left.u^{\prime} \circ u\right|_{i j}=\delta_{i j}$; that is, $u^{\prime} \circ u \mid$ is the identity. Therefore (cf. [Serre, p. 164, (3) and below]) $u^{\prime} \circ u$ is an automorphism, since $G_{a} G W_{n+1} \rightarrow$ W_{n} decomposes to $G_{a} G W_{n} \times G_{a} \rightarrow W_{n}$ as varieties. Similarly, $u \circ u^{\prime}$ is an automorphism. Therefore, u is an automorphism.

2. Decompositions of products of Witt groups

Let W be the product of Witt groups

$$
W=\prod_{i=-u}^{0}{ }_{i} G_{a} \times \prod_{i=1}^{r} W_{n_{i}+1}, \quad n_{i} \geq 1, \text { all } i \geq 1
$$

Display W as the extension

$$
\begin{equation*}
\prod_{i=-u}^{r}{ }_{i} G_{a} \rightarrow \prod_{i=-u}^{0}{ }_{i} G_{a} \times \prod_{i=1}^{r} W_{n_{i}+1} \rightarrow \prod_{i=1}^{r} W_{n_{i}} \tag{+}
\end{equation*}
$$

where ${ }_{i} G_{a} \subset W_{n_{i}+1}$ is the additive group.
$\prod_{i=-u}^{r}{ }_{i} G_{a}$ is the subgroup of W of elements of order p by (6).
Theorem. A direct factor G of a product W of Witt groups is a product of Witt groups.

Proof. The theorem is true for groups W of dimension 1. Suppose that it is true for groups of dimension less than the dimension of W. We show inductively that the theorem is true for W.

Suppose $W=G_{1} \times G_{2}$. The subgroup of G_{j} of elements of order p is $G_{j} \cap \prod_{i=-u}^{r}{ }_{i} G_{a}$; denote it by P_{j}. It is immediate that $P_{1} \times P_{2}=\prod_{i=-u}^{r} G_{a}$.

The sequence (+) can be decomposed as

$$
P_{1} \times P_{2} \rightarrow G_{1} \times G_{2} \rightarrow G_{1} / P_{1} \times G_{2} / P_{2}
$$

the product of the sequences $\left\{P_{i} \rightarrow G_{i} \rightarrow G_{i} / P_{i}\right\}_{i=1,2}$. Since

$$
\frac{G_{1}}{P_{1}} \times \frac{G_{2}}{P_{2}}=\prod_{i=1}^{r} W_{n_{i}}
$$

by the inductive assumption the groups G_{i} / P_{i} are products of Witt groups. Using (6) and induction, one shows that $\prod_{i=1}^{r} W_{n_{i}}=\prod_{i=1}^{r^{\prime}} W_{n_{i}}$ implies that $r=r^{\prime}$ and that there is a permutation w of $\{1, \ldots, r\}$ such that $n_{w(i)}=n_{i}^{\prime}$. Thus one sees that the product $\prod_{i=1}^{r} W_{n_{i}}$ can be reordered so that

$$
\pi_{1}: \frac{G_{1}}{P_{1}} \cong \prod_{i=1}^{m} G_{n_{i}} \text { and } \pi_{2}: \frac{G_{2}}{P_{2}} \cong \prod_{i=m+1}^{r} G_{n_{i}}
$$

for some m.
The map

$$
\frac{G_{1}}{P_{1}} \times \frac{G_{2}}{P_{2}} \xrightarrow{\pi_{1} \times \pi_{2}} \prod_{i=1}^{m} W_{n_{i}} \times \prod_{i=m+1}^{r} W_{n_{i}}
$$

is an automorphism of $\prod_{i=1}^{r} W_{n i}$. Extend this automorphism to an automorphism of $\prod_{i=1}^{r} W_{n_{i}+1}$, and then complete the extension to an automorphism y of W by setting $y=$ id on $\prod_{i=-u}^{0} G_{a}$.

The exact sequence (+) decomposes in two ways:

$$
\begin{align*}
& y\left(P_{1}\right) \times y\left(P_{2}\right) \rightarrow y\left(G_{1}\right) \times y\left(G_{2}\right) \rightarrow \prod_{i=1}^{m} W_{n_{i}} \times \prod_{i=m+1}^{r} W_{n_{i}} \tag{*}\\
& \prod_{i=-u}^{0}{ }_{i} G_{a} \times \prod_{i=1}^{m}{ }_{i} G_{a} \times \prod_{i=m+1}^{r}{ }_{i} G_{a} \rightarrow \prod_{i=-u}^{0}{ }_{i} G_{a} \times \prod_{i=1}^{m} W_{n_{i}+1} \times \prod_{i=m+1}^{r} W_{n_{i}+1} \tag{**}\\
& \rightarrow \prod_{i=1}^{m} W_{n_{i}} \times \prod_{i=m+1}^{r} W_{n_{i}}
\end{align*}
$$

By (7), $y\left(P_{1}\right)=\prod_{i=1}^{s}{ }^{i} G_{a}$ and $y\left(P_{2}\right)=\prod_{i=s+1}^{t}{ }^{i} G_{a}$ for some s, where the ${ }^{i} G_{a}$ are copies of the additive group and $t=r+u+1$.
By (4) and (3), the extension (+), as represented by (*), is described by

$$
\left(g_{i j} \cdot\left\{F_{n_{j}}\right\}\right)_{i j} \in \prod_{i, j=1,1}^{t, r} H^{2}\left(W_{n_{j}}, G_{a}\right)
$$

for a unique collection $\left(g_{i j}\right)$ of elements of A_{1}. As represented by $(* *)$, the extension $(+)$ is described by

$$
\left(\delta_{i j} \cdot\left\{F_{n_{j}}\right\}\right)_{i j} \in \prod_{i, j=-u, 1}^{r, r} H^{2}\left(W_{n j},{ }_{i} G_{a}\right)
$$

Write the coordinates of $a \in{ }_{k} G_{a}$ in term of the product $\prod_{i=1}^{t}{ }^{i} G_{a}$ as $\left\{x_{i k}(a)\right\}_{i}$, where $x_{i k}(a) \in{ }^{i} G_{a}$ and $x_{i k} \in A_{1}$. As indicated in (4), the connection between
$\left(\delta_{i j} \cdot\left\{F_{n_{j}}\right\}\right)$ and $\left(g_{i j} \cdot\left\{F_{n_{j}}\right\}\right)$ is given, via the $x_{i k}$, as $\left(x_{i j} \cdot\left\{F_{n_{j}}\right\}\right)=\left(g_{i j} \cdot\left\{F_{n_{j}}\right\}\right)$. Hence, by (4) and (3), $x_{i j}=g_{i j}$.

Since (*) decomposes the extension (+) as a product, $g_{i j}=0$ for $j \leq m$ and $i>s$ or $j>m$ and $i \leqq s$. So $x_{i j}=0$ for $j \leq m$ and $i>s$ or $j>m$ and $i \leqq s$; in other words,

$$
\prod_{i=1}^{m}{ }_{i} G_{a} \subset \prod_{i=1}^{s}{ }^{i} G_{a} \text { and } \prod_{i=m+1}^{r}{ }_{i} G_{a} \subset \prod_{i=s+1}^{t}{ }^{i} G_{a}
$$

Since $\prod_{i=1}^{m}{ }_{i} G_{a}$ and $\prod_{i=m+1}^{n} G_{a}$ are direct factors of $\prod_{i=-u}^{r}{ }_{i} G_{a}$, they are also direct factors (resp.) of $\prod_{i=1}^{s}{ }^{i} G_{a}$ and $\prod_{i=s+1}^{t}{ }^{i} G_{a}$. Let R_{1} and R_{2} be complementary subgroups; these are products of copies of the additive group by (7).

The expression (*) can then be expanded as

$$
\begin{align*}
\left(\prod_{i=1}^{m}{ }_{i} G_{a} \times R_{1}\right) \times\left(\prod_{i=m+1}^{r}{ }_{i} G_{a} \times R_{2}\right) & \rightarrow y\left(G_{1}\right) \times y\left(G_{2}\right) \\
& \rightarrow \prod_{i=1}^{m} W_{n_{i}} \times \prod_{i=m+1}^{r} W_{n_{i}}
\end{align*}
$$

Moreover, $R_{1} \times R_{2}$ is a direct factor of W complementary to $\prod_{i=1}^{r} W_{n_{i}+1}$. To see this, take the surjective map

$$
v: \prod_{i=-u}^{0}{ }_{i} G_{a} \xrightarrow{\mathrm{inc}} \prod_{i=1}^{m}{ }_{i} G_{a} \times R_{1} \times \prod_{i=m+1}^{r}{ }_{i} G_{a} \times R_{2} \xrightarrow{\mathrm{proj}} R_{1} \times R_{2}
$$

from the fact that

$$
v=\text { inc }-\left(\text { proj to } \prod_{i=1}^{m}{ }_{i} G_{a} \times \prod_{i=m+1}^{r}{ }_{i} G_{a}\right) \circ \mathrm{inc}
$$

it is immediate that

$$
\prod_{i=-u}^{0}{ }_{i} G_{a} \times \prod_{i=1}^{r} W_{n_{i}+1} \xrightarrow{(v, \mathrm{id})} \prod_{i=-u}^{0}{ }_{i} G_{a} \times \prod_{i=1}^{r} W_{n_{i}+1}
$$

is an automorphism. Thus the image of the direct factor $\prod_{i=-u}^{0} G_{a}, R_{1} \times R_{2}$, is a direct factor complementary to $\prod_{i=1}^{r} W_{n_{i}+1}$.

Finally, we consider ($*^{\prime}$) and

$$
\begin{align*}
\left(R_{1} \times R_{2}\right) \times \prod_{i=1}^{m} G_{a} \times \prod_{i=m+1}^{r} G_{a} & \rightarrow R_{1} \times R_{2} \times \prod_{i=1}^{m} W_{n_{i}+1} \times \prod_{i=m+1}^{r} W_{n_{i}+1} \\
& \rightarrow \prod_{i=1}^{m} W_{n_{i}} \times \prod_{i=m+1}^{r} W_{n_{i}}
\end{align*}
$$

Under the map

$$
\begin{aligned}
x: R_{1} \times \prod_{i=1}^{m} W_{n_{i}+1} \xrightarrow{\mathrm{inc}} R_{1} \times R_{2} \times \prod_{i=1}^{m} W_{n_{i}+1} & \times \prod_{i=m+1}^{r} W_{n_{i}+1} \\
& =y\left(G_{1}\right) \times y\left(G_{2}\right) \xrightarrow{\text { proj }} y\left(G_{1}\right),
\end{aligned}
$$

the diagram

commutes. Therefore (cf. [Serre, p. 164, (3) and below]) x is an isomorphism and so $y\left(G_{1}\right)$ is a product of Witt groups. So G_{1} is.

Acknowledgment. Kenneth Newman suggested this problem to me.

Reference

J-P. Serre, Groupes Algébriques et Corps de Classes, Hermann, Paris, 1962.
University of California
Berkeley, California
University of Washington
Seattle, Washington

[^0]: Received December 21, 1973.
 ${ }^{1}$ Supported in part by a National Science Foundation grant.

