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1. Introduction

In I-6] and [7], we laid the foundation for determining the maximal sub-
groups of PSp4(2"). The purpose of this paper is to determine those maximal
subgroups which contain either central elations or noncentered skew elations.
Central elations are induced by transvections in Sp4(2"), and noncentered skew
elations are the duals of central elations. Other than the full symplectic groups
over smaller fields, the maximal subgroups under consideration fall into six
conjugacy classes, which are paired off by duality under the outer automorphism
of PSp,(2").
The basic notation is that of [6] and [7]. By the Duality Theorem in [7], we

need only look at subgroups of PSp4(q) which contain central elations. Re-
peated use will be made of the Center-Axis Theorem in [7]. See Huppert
[12, pp. 191-214] for a discussion of the groups on a line. We will use I to
denote the identity transformation or any identity matrix of appropriate rank.

THEOREM. Let (V, f) be a nondegenerate, four-dimensional symplectic space
over GF(q), where q 2"; let 6 be a duality on the incidence structure PT(V, f)
ofpoints and totally isotropic lines.

(i) If G is a proper, superprimitive subgroup of PSp#(q) which contains a
central elation, then G is the orthogonal group GO(Q)for some nonmaximal index
quadraticform Q on ( V, f).

(i*) If G is a proper, superprimitive subgroup of PSp#(q) which contains a
noncentered skew elation, then G is the dual GO(Q) of the orthogonal group
GO(Q) for some nonmaximal index quadratic form Q on (v, f).

COROLLARY. The conjugacy classes of those maximal subgroups of PSp4(2")
which contain central elations or noncentered skew elations are asfollows:

(a) stabilizer of a point,

(a*) stabilizer of a totally isotropic line,

(b) maximal index orthogonal group,
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(b*) stabilizer of a pair ofpolar hyperbolic lines,

(c) nonmaximal index orthogonal group,

(c*) dual ofnonmaximal index orthogonal group,

(dr) (for each prime r dividing n) stabilizer of subgeometry over the maximal
subfield GF(2"/r).

Proof of theorem. By the Duality Theorem in [7], it suffices to prove (i).
Let G be a proper, superprimitive subgroup of PSp4(q) which contains a central
elation. Recall that a superprimitive group is one which fixes no point, line,
plane, pair of skew lines, tetrahedron, totally isotropic regulus, or subgeometry
over a proper subfield of F GF(q).
For any central center P, the subgroup generated by the central elations in G

is elementary abelian of order 2"’ for some n’ no larger than n and independent
of the choice of P. The proof of the theorem divides into two parts. The first
part uses methods similar to those used by Mitchell [-15-1 and Hartley [10].

2. Part A

Suppose n’ > 2, or n’ and no hyperbolic line contains more than three
central centers. Let q’ 2"’.
We will show there is a symplectic basis Ix1,..., x4] for (V, f) such that

almost all rational points (over GF(q’)) in (xl)z and (x4)z are central centers
and that all central centers are rational points; hence the primitivity of G will
yield q q’. Then we will show that G is either PSp4(q) or PG04(- 1, 2).

LEMMA 1. Assume the hypotheses ofPart A. Let k be a hyperbolic line spanned
by central centers and H the subgroup of G generated by the central elations in G
with centers on k. Then there is a symplectic basis [x,..., x,] for (V, f) with
respect to which H is represented by

A A e SLz(q’)

and the central centers for G on k are precisely the rational points on k. Further,
ifX, Y, and Z are distinct central centers on k, then H contains a central elation #
with center X such that Z 9(Y).

Proof Let H denote the action ofH on the fixed line k for H. The group H
fixes all points on k+/- with eigenvalue 1, since each of its generators does. Hence
there is a symplectic basis [xx,..., x4] for (V,f) with respect to which each
element h in H has matrix of the form

[1 ]A
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where A represents h and is in SL2(q). Thus, H is isomorphic to H. Direct
computation shows that if ]i is an involution, then h is a central elation. Con-
sequently, a Sylow 2-subgroup of H is the image of the subgroup consisting of
central elations in G with a given center on k and has order q’ 2"’.

Since H has no fixed points on k it is either dihedral of order 2. d, where d is
odd and at least 3, or isomorphic to PSL2(2e) for some e > 2 [12, pp. 191-214].
The first case (in which n’ 1) leads to d central centers for G on k; hence the
hypotheses of Part A imply d 3, and H is isomorphic to PSL2(2). The latter
case implies that e n’. Thus, H is isomorphic to PSL2(q’ in all cases, and
there is an ordered basis I-u, v] for k with respect to which H SL2(q’). Note
that (u) and (v) might be any pair of preassigned central centers for G on k.
There is then a symplectic basis Ix1,. x,] for (V, f) such that x2 (1/x/r)u,
x3 (1/x/r)v, and r f(u, v). With respect to Ix1,..., x,], H is represented
by

A A e SL2(q’)

and the central centers for G on k are precisely the rational points of (X2, X3)
over GF(q’). The last remark in the lemma is a consequence of the fact that a
Sylow 2-subgroup of PSL2(q’) acts regularly on the q’ nonfixed points.

LEMMA 2. Assume the hypotheses ofPart A. Let k be a hyperbolic line which
is spannedby central centers and does not lie in the polar ofagiven central center R.
Then k meets R- in a central center.

Proof Let T= knR1 and S= k-cR-. Suppose Tis not a central
center. By Lemma 1, there is a symplectic basis Ix1,..., x4] for (V,f) such
that P (x2) and Q (x3) are central centers. So T (x2 + rx3) for
some r in GF(q)*. Without loss of generality, xl is chosen to span S so that
R (xx + x2 + rx3). The central elations in G with centers P, Q, and R
respectively are

1 1 1 rs s s
1 a 1 l+rs s s

1 b 1
and gs-- r2s 1 + rs rs

1 1

for all a and b in GF(q’)*, and for q’ values s in F*. Then gs(P) and #s(Q)
are central centers on (P, R) and (Q, R), respectively. By Lemma 1, there are
central elations 9 and h in G with centers P and Q, respectively, such that
9(R) #(P) and h(R) g(Q). Hence there elements a and b in GF(q’)* such
that rs(1 + at) + rs and s(b + r) + rs. Consequently, r 2 (sa) -.
Thus, s b- and r 2 (sa)- are in GF(q’), r is in GF(q’), and T is a rational
point and central center.
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We continue the proof in Part A. Since G is primitive and acts transitively
on its central centers, there exist nonorthogonal central centers P and Q, and a
third central center R on neither (P, Q) nor (P, Q)l. By Lemma 2, we may
assume, without loss of generality, that P .L R. There is then a symplectic basis
Ix1,..., x4] such that P (x2 Q (x3 s R+/- c (P, Q)+/- (Xl
R (xl + x2), and the central centers for G on (P, Q) and (Q, R) are
precisely the rational points on these lines, with respect to

V* (_, a,xi a, GF(q’)}.
Since the central elations in G with center R have matrices

0 s s
s s

0

for all s in GF(q’)*, and since the central centers different from P and on
<P, Q> are the points <ax2 d- x3> for all a in GF(q’), direct computation shows
that all rational points in S+/- <P, R> are central centers for G. Application
of the central elation

in G with center Q to the rational points (axl + X2 for each a in GF(q’) shows
that all rational points in S+/- (S} are central centers for G.

Since G is primitive and transitive on its central centers, there is a central
center R’ for G on neither S+/- nor (P, Q)l. Since R’ meets (P, Q) in a single
point, and since there are at least three central centers on (P, Q), we may
assume that Q was chose to be a central center different from P and not
orthogonal to R’. The lines (P, Q) and (P, Q)+/- meet R’+/- in points P’ and S’,
respectively; so S’ (bxl / x,) for some b in F. Since the matrix

0 0 b

i
effects a symplectic coordinate change which fixes every vector in S+/- and
centralizes the central elations with centers in S+/-, we may assume, without loss
of generality, that b 0 and S’ (x).
By Lemmas and 2, the point P’ is spanned by x2 + ax3 for some a in

GF(q’). So R’ (x2 + axa + dx#) for some d in F. By Lemma 2, there is a
rational point (ax + ax2 + flxa) orthogonal to R’; hence a + d fl/a. Thus,
d is also in GF(q’) and R’ is a rational point.
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If g is a central elation with center R’, then there is, by Lemma 1, a central
elation with center Q mapping R’ to g(Q). The computation shows that all
central elations in G with center R’ have entries in GF(q’).
The calculation for applying the central elations in G with center R’ to the

central centers on (P, Q) shows that all rational points in S’+/- {S’) are
central centers for G.
We will now show that all central centers for G are rational points. Let R be

an arbitrary central center for G and k (P, Q). If R is on k, then we already
know R is a rational point.
Suppose R lies on neither k nor kx. Without loss of generality, R

_
Q. The

unique totally isotropic transversal to {k, k+/-} containing R meets k in a central
center W (x2 + ax3) for some a in GF(q’) and meets kx in a point U equal
to <x4) or (xl + bx4> for some b in F. In the latter case, R ([c, 1, a, bc’] t)
for some c in F*; computation and application of Lemmas and 2 to the point
R and the lines <x + x2, x3) and <x2 + x,, x3> show that a, bc, and c lie
in GF(q’). In the former case, R <[0, 1, a, c]t> for some c in F, and com-
putations show that c is in GF(q’). In both cases, R is a rational point.

Suppose R lies on k; and is equal to <axl + x,> for some a in F*. Lemma
applied to the line <x + x2, x3) shows that

0

!
is a central elation in G. So g(R) is equal to <[a + l, 1, 0, 1] t) and is a central
center not on k or k’. Hence g(R) is a rational point, a + is in GF(q’), and
R is a rational point.

It is easy to find explicitly five rational central centers for G, no four of which
are coplanar. Since any projectivity is determined by the images of these five
central centers [1, pp. 66-68], and since any element in G maps these centers to
other central centers, which we have shown to be rational points, we conclude
that G must stabilize the rational subgeometry V*. Thus, n’ n, since G is
superprimitive.
Knowing that q’= q, we have thus far shown that a symplectic basis

[xa,..., x4] for (V, f) can be chosen such that all points in <x>" and <x4>"
are central centers, except possibly <x> and <x,>, and that all the points on a
hyperbolic line spanned by central centers are central centers.

Since <ax + x2> and <x2 + x4> are central centers for any a in F*, all
the points on <xa, x4> are central centers, except possibly <x) and <x). Two
cases arise: (i) all points of <x, x,> are central centers, or (ii) q 2, and

<x + x,> is the only central center on <Xl, x4>.
In the first case, the group generated by the central elations in G with centers

on <x, x> maps <x>" to the polar of any point on <x, x>. Hence all
points in V are central centers. Since any two central elations in G with non-



252 DAVID E. FLESNER

orthogonal centers are conjugate in the dihedral group they generate, the sub-
group of G generated by the central elations in G is transitive on its central
centers and hence irreducible. A theorem of J. E. McLaughlin [14, p. 365]
implies that G is the full symplectic group PSp#(q).

In the second case, we have shown all points to be central centers, except
possibly the five points (xl), (x#), (xl + X2 -" X#), (X + X3 -" X#), and
(x + x2 + x3 + x#). If any of the five were a central center, then all
would be, and the first case would apply. Hence none of these five points is a
central center. It is now easy to verify that these five points form the quadric
of the nonmaximal index quadratic form Q given by Q([a, b, c, d] t) ad +
b2 + bc + c2. Since GO#(- 1, 2) is generated by its ten transvections [3, p. 42],
all of which are in G, the group G must actually be the orthogonal group
eao(- , 2).

3. Primitive subgroups of odd order

Before discussing Part B of the proof of the theorem, we show that the odd
order primitive subgroups of PSp#(2") are precisely the subgroups of the Singer
groups, which are contained in nonmaximal index orthogonal groups. Thus,
PSp#(2") has no maximal subgroups of odd order.

I wish to thank the referee and Robert Liebler for the proof given for
Lemma 4.

Let F GF(q) be the Galois field of order q 2". The additive group of
GF(q#) forms a four-dimensional vector space V over F. If d generates the
multiplicative group GF(q#)*, then the function Te" V V given by x - dx,
for all x in GF(q#), is an element of order q# in GL(V) and induces an
element e of order (q# 1)/(q 1) in PGL(V). The conjugates of the sub-
groups generated by Te and e are called the Singer groups in GL(V) and
PGL(V), respectively.

Let generate the automorphism group of GF(q#) over F. Then the function

f: V x VF given by f(x,y)= Tr(xy), where z2 and Tr(z)
z + z" + + ’, is an alternate bilinear form on V. For a in F*, the element
Ta’x ax in GL(V) is in Sp (f) if and only if a 1. The Singer group
induced by Ta in PGL(V) intersects PSp(f) in a group E of order q2 + 1. The
conjugates of E in PSp(f) are Singer groups in PSp(f).

LEMMA 3. (a) The normalizer in PSp#(q) ofany subgroup of a Singer group
in PSp#(q) has order 4(q 2 + 1) and is the product of that Singer group and a
normalizing flag-fixer.

(b) All nontrivial subgroups of the Singer groups in PSp#(q) are irreducible.

(c) Let G be a cyclic, irreducible subgroup of PSp#(q) of odd order. Then G
is contained in a Singer group in PSp#(q).

Proof (a) Since q2 -t- and q2 are relatively prime, this part follows
from a theorem in Huppert [12, pp. 187-189], together with the direct computa-
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tion showing that the generating automorphism a of GF(q4) over F of order 4
preserves the alternate bilinear formf given above.

(b) Let Te: x - ex induce a nontrivial element of PSp4(q), where e is in
GF(q4). Clearly, Te has no fixed points. Suppose Te fixes the line (x, y) for
some x andyin GF(q4). Then ex ax / by and ey cx + dy for some
a, b, c, and d in F. Computation shows that X2 -- (a t- d)X -Jr- (ad + bc) is
in FIX] and has root e. Hence e is in GF(q2), and e implies that e 1,
contrary to Te being nontrivial.

(c) An examination of Table in [7] shows that any nontrivial subgroup of
an irreducible, cyclic, odd order subgroup of PSp4(q) must also be irreducible.
So by part (a), we may assume that G has prime order r. Since G fixes no lines,
the length of each orbit for G acting on hyperbolic lines is equal to r. Thus, r
divides (q2 -b 1)q 2 and also q2 + 1. A theorem of Wielandt [18] yields the
conclusion.

PROPOSITION 1. The normalizer in PSp4(q) of a Singer subgroup k contained
in an ortho#onal group GO(Q)for some nonmaximal index quadratic form Q
on (v, f).

Proof. A Singer subgroup of PSp(q) lies in such an orthogonal group by
Theorem 5.6 in Hestenes [11, p. 513]. Further, direct computation shows that
the above automorphism, of order 4 preserves the form Q in Hestenes. So
Lemma 3 implies the result.

LMMA 4. Let G be an odd order, irreducible subgroup of PSp4(q) and H a
normal subgroup ofG with prime index r. Then H is also irreducible.

Proof. Consider first the case in which G is absolutely irreducible. By
Clifford’s Theorem [2], H is completely reducible on V. If W is a proper irre-
ducible/-/-submodule, which has dimension or 2, then the inertial subgroup
of G for W, which has odd index dividing dim V 4, is equal to G. Thus, V is
a direct sum of H-modules isomorphic to W, and hence H acts faithfully on W
Drawing on an argument in Feit [4, p. 54], we extend the action on W to yield
a faithful G-module. Let gH generate G/H. Since G is the inertial group for W,
there is a matrix C such that CT(h)C- Tab(h), where T denotes the given
representation of H on W and Ta(h)= T(#h#-). By Schur’s Lemma,
C-’T(g) is a scalar matrix S*, and, after possible field extension, there is a
scalar matrix S such that S S*. The definition T(gh) SCT(h) yields a
representation of G itself on W, which is faithful since there is more than one
choice for an rth root S of S*. Dickson’s classification of the groups on a line
[12, p. 213] shows that G must be cyclic. Thus, H is irreducible by Lemma 3.

If G is not absolutely irreducible, then V is a direct sum of irreducible G-
submodules of dimension or 2 over some extension field v of F. Dickson’s
theorem shows that G acts cyclically on each component. By possibly extending
the field further, we may take all the components to be 1-dimensional. The
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Galois group G(IV/F) acts naturally on V, using a basis for V with respect to
which G is defined over F, and centralizes the action of G. The components of
G on V (R)/V are permuted transitively by G(IY/F) since G is irreducible on V
(over F). So G acts faithfully on each component and hence is itself cyclic.
Thus, H is irreducible by Lemma 3.

PROPOSITION 2. Let G be a nontrivial, odd order subgroup of PSp4(q). Then
G is primitive ifand only ifG is contained in a Singer subgroup ofPSp4(q).

Proof. First, note that a subgroup of PSp4(q) of odd order is primitive if
and only if it is irreducible, since a group of odd order cannot act transitively
on a pair of skew lines nor on the four vertices of a tetrahedron. Second, the
reverse implication is Lemma 3(b).

Suppose now that G is an odd order, primitive subgroup of PSp,(q). By the
Feit-Thompson Theorem [5-1, G is solvable, and there is a subnormal series
< G1 < G2 <"" < Gm= G, whose quotients are of odd prime order.

Successive application of Lemma 4 yields that G1 is irreducible and hence con-
tained in a Singer group in PSp4(q) by Lemma 3(c). If Gi is contained in a
Singer group (for between and m), then by Lemma 3(a), G/ is in a Singer
normalizer of order 4(q 2 + 1) and so has order dividing q2 + 1. Wielandt’s
theorem implies that G+ lies in a Singer subgroup of PSp4(q), and iteration
yields the same for G itself.

4. Part B

We return to the proof of the main theorem. Suppose n’ and there
is a hyperbolic line containing more than three central centers for G.

Immediately, we conclude that q > 2 and that no two central elations in G
have the same center. For each central center X, let tx denote the unique central
elation in G with center X.

LEMMA 5. The polar ofa central center for G is spanned by central centers.

Proof. There are three cases to consider.

Case 1. Suppose no two distinct central centers are orthogonal and G has
centered skew elations. We show first that central centers are distinct from
skew centers. If not, then the set of central centers coincides with the set of
skew centers, since G is transitive on each of these sets. Since G is primitive,
there are nonorthogonal centers P and Q. By the Center-Axis Theorem, there
is a centered axis u through Q meeting P+/- in a center R, contrary to the
hypothesis.
The Center-Axis Theorem implies that each central center is orthogonal to

each skew center. Since there are nonorthogonal skew centers P and Q, all
central centers lie on (P, Q)+/-, contrary to G being primitive. Thus, Case
cannot occur.
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Case 2. Suppose no two distinct central centers are orthogonal, and G has
no centered skew elations. Then G has pattern (0C) of [,7]. A Sylow 2-subgroup
S of G is cyclic of order 2 and is generated by a single central elation t. By Burn-
side’s Theorem, G has a normal 2-complement C [-8, p. 252]. If C were primitive,
then by Proposition 2, G would lie in a Singer normalizer, which contains no
central elations. Thus, C is not primitive and fixes a point P or a line k. Hence
G acts on {P, t(P)} or on {k, t(k)}, contrary to (7 being primitive. Thus, Case 2
cannot occur.

Case 3. Suppose G has orthogonal central centers, but the polar of a central
center is not spanned by central centers. Let P and Q be distinct orthogonal
central centers. Hence, k (P, Q) is a centered axis, and every centered axis
is spanned by central centers. The hypothesis implies there is a unique centered
axis through each central center.

Let u be an arbitrary centered axis for G. If u contains P, then u k. If u
does not contain P, then the Center-Axis Theorem implies that u meets k.
Hence the skew centers for the dual G of G all lie in K+/-, where K 5(k),
contrary to G being superprimitive. Thus, Case 3 cannot occur, and the lemma
is proved.

We will now examine carefully the polar of a central center. First, we remark
that the number of central centers on any totally isotropic line spanned by central
centers is a constant, say e. Indeed, ifA and B are nonorthogonal central centers
in the polar of a central center P, then A and B are conjugate in the dihedral
subgroup of the point stabilizer G, generated by the central elations in G with
centers .4 and B. If A and B are orthogonal central centers in P+/- {P}, then
there is by assumption a central center C not orthogonal to both A and B. Thus,
G, is transitive on the central centers in P {P}, and the remark follows.

Let P be a central center, H the subgroup of G generated by the central ela-
tions in G with centers in P+/-, the action of H on P/P, and K the kernel of
the action.
For X a central center in P, the central elation tx is in K if and only ifX P.

If Q and Q’ are distinct, orthogonal central centers in P" {P}, then tote, is a
centered skew elation in G with axis (Q, Q’) and center different from Q and Q’
i-7, Table 2-1. Thus, ia , if and only if tote., has center P. If Q and R are
nonorthogonal central centers in P’, then (to, tR) acts faithfully on the hyper-
bolic line (Q, R), since to and tR each fix all vectors in (Q, R)’. Thus,
acts faithfully on P+/-/P and is isomorphic to (to., tR)-. Further, to.tR has odd
order d, and (to., tR) is dihedral of order 2. d. If Q’ and R’ are central centers
on (P, Q) and (P, R), respectively, such that , and lg,, then
(to, tg) is isomorphic to (to.,, tR,).

LEMMA 6. is isomorphic to PSL2(2)for some > 2.

Proof. Since is isomorphic to a subgroup of PSL2(q) and has no fixed
points, the lemma follows from [ 12, pp. 191-214], provided we show that is
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not dihedral of order twice an odd integer. So suppose H is dihedral of order
2. d, where d is an odd integer. Since a Sylow 2-subgroup of H has order 2,
ix ix, for distinct, orthogonal central centers X and X’ in P+/- (P}, and
txtx, is a centered skew elation with center P. This implies that there cannot be
four distinct, central centers on any totally isotropie line, since G is transitive
on its central centers. Thus, e 2 or e 3.

Let Q and R be central centers in P+/- such that the involutions i and iR
generate H. If X is any central center in P+/- {P), then the involution ix in H
can be lifted to a central elation tr in (to,, tR). So X .L Y, X it, and (P, X)
meets (Q, R) in a central center. Call a totally isotropic line u through P special
if it meets (Q, R) in a central center. Since H is dihedral of order 2. d and iso-
morphic to (to, tg), the line (Q, R) contains d central centers, and there are d
special lines.

Suppose e 3, that is, any totally isotropic line spanned by central centers
has exactly three central centers. Let Q’ and R’ be the third central centers on
(P, Q) and (P, R), respectively. Each ofthe hyperbolic lines (Q, R’), (Q’, R),
and (Q’, R’) meets each special line in a central center, since, for example,
(tQ,, tR,) is isomorphic to (tQ, ta). Let S be a third central center on (Q, R)
and S’ (P, S) c (Q, R’). It is easy to verify the incidence diagram in the
figure.

If d > 3, then there is a central center X contained in (Q, R) and different
from Q and S such that (tr, tx) is dihedral of order 2. d. Since (tr, tx) is
isomorphic to (tR,, tx), we conclude that (R’, X) has d central centers and so
meets each special line in a central center. Thus, (R’, X) meets (P, S) in
either S or S’, both impossible since X is different from Q and S. Therefore,
d 3, and every hyperbolic line in the polar of a central center contains at
most three central centers.
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The contradiction to the assumption that e 3 arises by showing that every
hyperbolic line spanned by central centers lies in the polar of a central center.
Since tote, is a centered skew elation with center P, the central centers and the
skew centers coincide. Let (A, B) be an arbitrary hyperbolic line spanned by
central centers .4 and B, and k a centered axis through the skew center B. By
the Center-Axis Theorem, k meets .4+/- in a central center M, which is orthogonal
to both .4 and B. Thus, (.4, B) lies in M+/-, and e cannot be 3.

Suppose e 2, that is, any totally isotropic line spanned by central centers
has exactly two central centers. Hence each centered axis contains exactly two
central centers. Further, all central centers in P+/- (P) must lie on the hyper-
bolic line (Q, R).

If G does not have pattern (3FC) or (3FCN), then by the Center-Axis Theorem
any central center not in P+/- lies on (Q, R)+/-, and G fixes the set {(Q, R),
(Q, R)+/-}, contrary to G being primitive. Thus, G must have pattern (3FC) or
(3FCN).
For each of the d central centers X in P+/- {P}, the product tx,te is a cen-

tered skew elation with center Y, different from P and X, and axis (P, X),
for 1,..., d [7, Table 2-1. The point Y is the only skew center on (P, X).
We claim that there are exactly d skew centers in P+/-, namely, Y1,...,
Suppose Y is a skew center in P+/- and k a centered axis containing Y. If k is
different from (P, Y), then Table 2 in [7-1 yields a flag-fixer in G with axis
(P, Y). In any case, (P, Y) is a centered axis and so must be one of the special
lines (P, X). Since Y is the unique skew center on (P, X), we conclude that
Y= Y.
Let Y and Yj be distinct skew centers in P+/-. There is a unique central center

X on (Q, R) such that tx interchanges Y and Y. and fixes the hyperbolic line
(Y, Yj). Thus, (Y, Y.) meets (Q, R) in the unique central center X. Since
no two distinct central elations in the dihedral group (to., tR) interchange the
same pair of central centers on (Q, R), we conclude that no three skew centers
in P are collinear.

Let Z be a central center not in P. The Center-Axis Theorem implies that
Z c P+/- is a hyperbolic line containing d centers for G, at most two of which
can be skew centers. Thus, (Z, P) (Q, R) or d 3. If d were larger than
3, then each central center for G would lie on (Q, R) or (Q, R), contrary to
G being primitive. So d must be 3.
By assumption, there is a hyperbolic line rn which contains at least four

distinct central centers A1,..., .44. If At is different from P, then A{ c P+/- is
a hyperbolic line containing three centers, that is, one of the four lines (Q, R),
(X1, Y3), (X2, Yx), or (X3, Y2), where Q x and R Xa. Ifm contains P,
and P is different from Ag, then A c P+/- contains one of the central centers X,
and rn lies in X{, an impossibility since no line in the polar of a central center
has more than three central centers. So rn does not contain P. Thus, the lines
(At, P)+/- (i 1,..., 4) are all distinct and must be exactly the four lines in P
listed above. Consideration of the cases yields that m must lie in the polar of a
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central center. Thus, the assumption that e 2 also leads to a contradiction,
and the lemma is proved.

Since R is isomorphic to PSL2(71) there is an ordered basis [x,..., x] for
(V, f) such that P (x), the formfhas matrix

and the elements in have matrices in SL2(?/). Since the matrix

effects a coordinate change which yields a symplectic basis for (V, f) and which
centralizes the representation of H on p.t/p, we may assume, without loss of
generality, that Ix1,. x4] is itself a symplectic basis, that is, e 1.

Let lower case Greek letters denote 2 x matrices in V2(q), and for

let [y, x]. It is easy to verify that: (a) e 0 for all e in V(q), and
(b) ira is in SLy(q) and e, B in V(q), then AB A-e. Further, the elements
in H have matric of the form

where is in V(q) and A runs over all matrices in SL(). Note that

[’ ’1]g-X= A- A

The kernel K of the action of H on PZ]P is represented by matrices g for
which A I. Since 5a 0, computation shows that for g in K, the scalar z
is determined additively modulo w by the vector a in V(q), where

te I

is the unique central elation in G with center P. Direct computation will also
verify the following lemma.
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LEMMA 7. Let

S= I

be in K andA in SL2(1 ). Then there is an in V2(q) and u in Fsuch that

is in H, andfurther:

(i) TST-x Sr [1
g(A- +I)

(ii) SS= I

Z]A1e is inK, and

(A + I)e is inK.

For

S= I

in K, we have z =- x2 + xy + y2 (mod w), where

since application of (ii) in Lemma 7 to S using

yields that
1] and A2 [ ]

is in K, where z’ x2 -I-- xy -- y2.
We claim the K (h,). Suppose there is an

S= I

in K with
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Without loss of generality, y 0, otherwise application of (ii) in Lemma 7
using

yields a new S in K for which y 0 and x 0. Since te is also in K, we may
assume that z x2. Since ?/ > 4, there are distinct elements r and r2 in
GF(I) {0, }. Application of (i) in Lemma 7 to S using

A [r 1/ri]
yields x2 (rix)2 (rood w) and hence x2(r2 + 1) 0 (rood w) for and 2.
Since x 0 and r # 1, we conclude that x2(r + 1) w for both and

2. This contradicts the choice of rl different from r2, and shows that
K <h,>.

Since K <re>, direct computation shows that for

in H, (A) is determined by A, and z is determined modulo w by A. Further,
o(AB) Ao(B) + o(A) for A and B in SL2(). Thus, the function is a
derivation (crossed homomorphism or 1-cocycle) from SL2(/) to V2(q) as a
natural SL2(/)-module [13, pp. 105-108].
We claim that the homomorphism from H to H maps the central elations in

H K one-to-one onto the set of involutions in . Indeed, if

is a central elation in H K, then A # /, and A is an involution. Since
all involutions in SL2(/) are conjugate, and since for each B in SL2(7:/) there is
an S in H such that B, we conclude that every involution in H is the image
of a central elation in H K. If o and ts are central elations in H K such
that o IR, then totR is in K, and o ts or tots te. The latter is impossible
by Table 2 in [7]. Thus, the map is one-to-one.
Examination of the matrices for central elations in H shows that each central

center for G in P+/- lies on one of the F/ + rational, totally isotropic lines in P+/-.
Conversely, for each rational, totally isotropic line rn in P+/-, which can be
expressed as (xl, rx2 + sx3) for some r and s in GF(Ft), there is an involution
in SL2() with center

By the last claim, there is a central elation in H such that i, and the center
of t is different from P and lies on m. Since there are / involutions in
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SL2(F/) there are i/2 central centers for G in P+/- {P}, and hence there are
e /central centers on each totally isotropic line spanned by central centers.

Let Diag denote the subgroup of diagonal matrices in SL2(/). If we restrict
the function a to Diag, we obtain a derivation from Diag to V2(q) as a Diag-
module. Since V2(q) has exponent 2, which is relatively prime to 7:/
IDiagl, all derivations from Diag to V2(q) are inner derivations. Hence there is
a vector fl in V2(q) such that a(D) (D I)fl for all D in Diag. The matrix

effects a symplectic change of coordinates which fixes each totally isotropic line
through P, centralizes , and allows us to assume that

for all/9 in Diag.
If the unique central elation T1 in H such that

TI A
1

then y O, and the matrix

where

0l/d])
__

x ([ ][1/d 0

_[d+l_0 0

and obtain a central elation Td in H with center (xl + dx2). Since 7/ > 2, we
can choose din GF(?t) {0, 1). Then

effects a symplectic coordinate change which allows us to assume that x
and

1

For a derivation e, it is easy to verify that e(A -) A-a(A), and that
e(BAB -) (BAB- + I)(B) + B(A). So for d in GF(gt)*, we compute
that
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and hence

Thus

and H contains a central elation S with center (xl + xa) such that

Since SL2(/) is generated by the involutions

[11 01] and [10 d12 ]
for all d in GF(/)*, the subgroup H is generated by the central elations te, Ta,
and S for all d in GF(?t)*. Since all entries in the matrices for Ta and S are from
GF(t), and since multiplication by te effects only the (1, 4) entry of any upper
triangular matrix, we conclude that all matrices for elements in H have entries
in GF(?I), except for the (1, 4) entry, and that all central centers in P+/- are
rational points (with respect to { axl a c GF(?/)}).
The /central elations in G with centers on (xl, x2) are te with center

and Tg with center (Xl + dx2) for all d in GF(?I)*. For d in GF() {0, 1},
TT is a centered skew elation in G with center (x2). Since G is transitive on
its central centers and on its skew centers, we conclude that no point is both a
skew center and a central center for G.

Since G is transitive on pairs of orthogonal central centers, there is in G an
element g which fixes (x + X2 and maps (xl + dx2) to (x), where d q: 0
or 1. Since stabilizes the set of central centers on (x, x2) and hence fixes the
rational subline (x, x2), we conclude that must fix (x2) and that (T Ta)
is a centered skew elation in G with center (x2). Computation of the matrix
for (T1Ta) Tlte shows that w 1. It is consistent with the notation Ta to
write To for tv.

Summarizing, we have found a symplectic basis Ixx,..., x#] for (V, f) such
that H is generated by the central elations S and Td for all d in GF(). Further,
all central centers in P+/- (where P (x)) are rational points. Every rational,
totally isotropic line in P+/- is a centered axis, and its unique rational point which
is not a central center is a skew center.

Since G is primitive, there is a central center Q not in P+/- such that te and te
generate the full dihedral group D generated by all central elations in G with
center on (P, Q). For each of the + rational, totally isotropic lines rn
through P, the Center-Axis Theorem implies that m meets Q in a center X,
which must be rational since all central centers in P are rational, and since if
G has pattern (3FC) or (3FCN), then X is the only skew center on m and hence
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rational. Thus, (P, Q)+/- is a rational hyperbolic line, and any central center
not in P" lies on a rational hyperbolic line through P.

Since Q ([a, b, e, 1]’) for some a in F and b, e in GF(Yq), the matrix

c b a
0 b

c

effects a symplectic basis change which sends Q to (x4) and stabilizes the set of
rational vectors in P. Without loss of generality, Q (x4); however, we can
no longer say that (x2) and (x3) are skew centers.

Suppose o maps xl to xl + rx4, where r is in F. Since 7/ > 2, there is an a
in GF(t)* such that C (xx + ax2) is a central center. Thus, to(C) is a
central center and hence lies on a rational line through (x). Computation
shows that r is in GF(Tq).

Since P and Q are conjugate in the dihedral subgroup D of PSp4() generated
by h, and to, we conclude that all central centers in (x) are rational points,
and that every central center lies on a rational line through Q.

Let X be any central center for G. If X is not on (P, Q), then X is a rational
point, since (P, X) and (Q, x) are distinct, rational lines. If X is on (P, Q),
then X is also rational, since all central elations with center on (P, Q) are con-
jugate in D, which is contained in PSp#(t). Therefore, all central centers for G
are rational points.

Since it is easy to find five central centers, no four of which are coplanar, and
since a three-dimensional projectivity is determined by the images of five such
points [1, pp. 66-68], we conclude that G stabilizes the set of rational points.
By Proposition 4 in [7], G fixes the rational subgeometry { ax] as e GF()},
which is a contradiction to G being superprimitive, unless 7/ q. Therefore,

5. Construction of the quadric

Let P (xa) and let Q be the quadratic form on (V, f) given by

Q([a, b, c, d]’) a2 + ad + d2e, d- bc,

where e is in F*. It is easy to verify that the generators S and Ta (all d e F) of
H are contained in the orthogonal group GO(Q), as is H. Since both H and
GO(Q) have q2 central elations with centers in P-, and since the central elations
in GO(Q) have nonsingular centers, we conclude that the q2 central centers for
G in P+/- are precisely the nonsingular points for Q in P’, and that the q +
skew centers for G in P are precisely the singular points for Q in P’. Thus, in
the polar of any central center, the skew centers form an oval, and the central
centers are the points off that oval.
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Since <xl, x,) lies in the polar of a central center on <x2, x3), we conclude
that (x, x#) contains either q or q + central centers. Let

W (ax + x)

be a central center such that ta, and tw generate the full dihedral group generated
by the central elations in G with center on (xx, x4). Since the matrix

0 0 a-
0 0

0

effects a symplectic coordinate change which maps W to (x#), fixes the vectors
in (xa)+/-, and centralizes the matrices in H, we may assume that W (x4),
and so

0
for some s in F*.tw= 0 0

sO0

Hence w tetw has order q or q + and acts regularly on the central
centers on <xx, x#>. Use 1/s for e in Q. Then w is in GO(Q), and <x2) and
<x3) are singular points for Q and hence skew centers for G.
For each of the q central centers Z on <x2, x3), there is a unique skew

center Z* (different from Z and P) on the totally isotropic line <P, Z>. The
transformation w fixes Z, acts regularly on the q or q + central centers
on <xx, x,), and hence acts regularly on q or q + totally isotropic lines
through Z, each of which is spanned by central centers and has a unique skew
center not on <x, x,). This accounts for (q 1)2 or q2 skew centers off
<xl, x4), each of which is a singular point for Q, since z* is singular and w is
in GO(Q).
The transformation w acts faithfully on <x:, x,) as

+ s 1]s

which has characteristic polynomial X2 + sX + 1. Since the reducibility over
F of X2 + sX + follows that of X2 + (x/s)X + and X + X + l/s, we
conclude that (xx, x4) has q central centers if and only if Q has maximal
index.

Suppose Q has maximal index. Then there are exactly two points Xx and X
on (xa, x4) which are not central centers, namely (axl + x), where a and a
are the distinct roots in F to X + X + 1Is. Computation shows that Xt and
Xz are singular for Q.

Let Rx (x2) and R2 (x3). Then (X, R) (i, j 1, 2) are four totally
isotropic lines each of which contains two points which are not central centers.
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Hence <X, Rj> (i, j 1, 2) contains no central centers. Each of the other
totally isotropic lines through R1 or R2 meets (xl, x4) in a central center, and
hence has exactly R1 or R2 as its only point which is not a central center. Fur-
ther, since X and Rj (i, j l, 2) are orthogonal singular points for Q, all
points on (X, R) are singular.
A count yields exactly (q / 1)2 points which are not central centers. There-

fore, the points which are not central centers are precisely the singular points
for Q. Since G acts on its central centers, it stabilizes the quadric for Q, con-
trary to G fixing no totally isotropic regulus. Thus, Q must have nonmaximal
index.
For each of the q central centers Z on (x2, xa), there are q / points

in Z +/- which are not central centers, and we have seen that all of these are sin-
gular for Q. Since each totally isotropic line through (xi) (i 2, 3) meets
(x, x4) in a central center, (xi) is the only point in (x)z which is not a central
center. Thus, there are q2 + points in (V, f) which are not central centers, all
of which are singular for Q and hence form the quadric for Q. Since G stabilizes
its central centers, it stabilizes the quadric for Q and lies in GO(Q) [-7, Proposi-
tion 5-]. Since G contains a central elation at each nonsingular point, and since
GO,(-1, q) is generated by its central elations [-3, p. 42], we conclude that G
is equal to GO(Q), where Q is a nonmaximal index quadratic form on (V, f).
This concludes the proof of the theorem.

6. Proof of corollary

By the theorem, the candidates for the maximal subgroups of PSp,(q) which
contain central elations or noncentered skew elations are the nonmaximal index
orthogonal groups, the stabilizers of the various geometric objects in the defini-
tion of superprimitive, and all the duals of the preceeding. The stabilizers of
points (or equivalently of planes) and the stabilizers of totally isotropic lines are
dual. The stabilizer of a hyperbolic line lies properly in the stabilizer of a polar
pair, whose dual is a maximal index orthogonal group [-7]. The stabilizer of a
pair of skew totally isotropic lines fixes a totally isotropic regulus and lies in a
maximal index orthogonal group. The stabilizer of a pair of distinct, nonpolar,
hyperbolic lines fixes a unique totally isotropic line [-6, Theorem 2-]. The proof
of the Duality Theorem [7] shows that if G fixes a tetrahedron, then its dual G
acts on a set of three points and hence has been considered above. Clearly,
PSp,(q’) cannot be maximal in PSp4(q) unless GF(q’) is maximal in GF(q).
We conclude that the only candidates for maximal subgroups of PSp,(q) which
contain central elations or noncentered skew elations are those listed in the
corollary. It remains to show that each of these is maximal and that all sub-
groups within a given category are conjugate. Only one category in each dual
pair needs to be considered.

Let H be the stabilizer in PSp,(q) of a point P and G a subgroup of PSp,(q)
which contains H properly. It is easy to verify that the orbits ofH on the points
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of Vare {P}, PX {P}, and V P+/-. Further, G must then be transitive on the
points of V, hence irreducible. A theorem of McLaughlin [14, p. 365] implies
that G is PSp4(q), and H is maximal.

Pollatsek [16] has shown that the orthogonal groups are all maximal in
PSp4(q).

Let F’ GF(q’) be a maximal subfield of F and H the stabilizer in PSp4(q)
of some subgeometry over F’. Suppose G is a maximal subgroup of PSp,(q)
which properly contains H. By duality, we may assume, without loss of gener-
ality, that G is an orthogonal group or belongs to one of the categories (d,) of
the corollary, since H clearly fixes no point. If G is an orthogonal group (in
which distinct central elations have distinct centers), then q’- 2, which is
impossible, since no three skew centers (singular points) for an orthogonal
group can be collinear. So G must be the stabilizer of some subgeometry over
a maximal subfield F" GF(q") of F. If q’ 2, then F’ is the only maximal
subfield of F, and F" F’. If q’ > 2, then the subgroups E and E’ ofH and G
(resp.) generated by the central elations in H and G (resp.) with centers on a
hyperbolic line spanned by central centers for H and G (resp.) are isomorphic
to PSL2(q’) and PSL2(q") (resp.) with E

_
E’; hence F’ is a subfield of F",

and F’ F". Therefore, PSp(q’) is a maximal subgroup of PSp(q) whenever
GF(q’) is maximal in GF(q).

Since Sp,(q) is transitive on the symplectic bases, the groups in each of the
categories (d,), (a), and (dually) (a*) are conjugate. Since the symplectic trans-
formation

0 0 e
0 0

0

maps the quadric of Q to the quadric of Q(2+,+), where

Qa(aixi)- a2 + axa4 + a,2 + azaa for anyAinF,

and since Qz is of maximal index if and only if X2 + X + ) is reducible over F,
we conclude that there are two classes of quadrics over PSp4(q) and only two
classes of orthogonal groups in PSp(q). Thus, all groups in each of the cate-
gories of the corollary are conjugate.

7. Other maximal subgroups

Since our result on the maximal subgroups of PSp4(q) which contain no
central elations or noncentered skew elations is not as complete as in the
corollary, we will state the theorem and at this time only give an outline of the
proof.

THEOREM. IfM is a maximal subgroup of PSp4(2") which contains no central
elations or noncentered skew elations, then either q 2 and M is isomorphic to
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the alternating group on six letters (PSp4(2) is isomorphic to the symmetric group
on six letters), or M contains normal subgroups Mx andM2 such that M >_ M
M2 _> { 1}, where M/M and M2 are o.f odd order, and M/M2 is isomorphic to
PSL2(q’) or Sz(q’) (Suzuki group)for some power q’ of2.

A few matrix computations yield contradictions to the existence of a primitive
subgroup of PSp4(q) with pattern (2F). Dually, pattern (3F) is also ruled out
for primitive subgroups. If G is a primitive subgroup of PSp4(q) and has pattern
(1), (2), (3), or (1F), then it is easy to use the Sylow 2-Subgroup Theorem in [7-1
to verify that the Sylow 2-subgroups of G are TI sets; a theorem of Suzuki l-17-1
then implies the last portion ofthe theorem above, with the additional possibility
of PSUa(q’). Ben Mwene observed that PSUa(q’) cannot occur since PSU3(22)
has a quaternion Sylow 2-subgroup, whereas PSp(2") has no quaternion sub-
groups.

It remains to consider G a superprimitive subgroup of PSp(q) with pattern
(4F). By letting H be the subgroup of G generated by the flag-fixers in G with a
given center P, and by considering the action of H on P+/-/P, we are able to
construct the actual matrices for elements in H and see that H is isomorphic to
the symmetric group on four letters. By applying a theorem of Gorenstein and
Walter [9] and considering the various cases, we can show that G - PSL2(9) -A6. Further computations show that q 2, and that G is the obvious subgroup
of PSp(2) S6.

I would like to thank Professor Jack E. McLaughlin for his patient help,
guidance, and encouragement in this research. I would also like to thank David
Perin and Robert Liebler for helpful discussions leading to new ideas.
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