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1. Introduction

Peter Hilton has conjectured that combinatorial theorems, analogous to those
of J. H. C. Whitehead [13] for CW-complexes, could be proven for local CW-
complexes. The purpose of this article is to prove that this conjecture is correct
with emphasis being placed on the two most important combinatorial results--
the cellular approximation and homotopy theorems. Before proceeding any
further with the introduction let us recall some definitions and results of
localization in homotopy theory [3], [8], [9], [12].

In the sequel all of the spaces and maps are from the pointed homotopy
category, the set P will always denote a subset of the primes, and P’ c Z {0)
will be the multiplicative set generated by the primes not in P. A connected
space Y, with the homotopy type of a CW-complex, is nilpotent if 1Y is nil-
potent and each ,Y, n > 2, is a nilpotent 1 Y-module. A nilpotent space Y is
P-local if z, Y is P-local for all n _> and a map e: X - Y between nilpotent
spaces P-localizes if Y is P-local and e has the universal property, i.e.,

e: E Y, z] [x, z]

is a bijection for all P-local Z. For N the homotopy category of nilpotent spaces
there exists a P-localization functor L: N- N and a natural transformation
e: - L such that e(X): X --. LX Xe P-localizes.

Since the n-sphere S", for n > 0, is a nilpotent space, it has a localization S,
called the P-local n-sphere. In fact, S, - M(Ze, n), where Ze is the P-localiza-
tion of the integers Z and M( ) is the Moore space. The cone over S, is
referred to as the P-local (n / 1)-cell, and it is denoted by e,+ 1.
A CWP-complex, as defined in Section 4, is a Hausdorff space built inductively

from a point by attaching P-local cells using maps of the P-local spheres into the
lower "P-local skeletons" [12]. D. Sullivan has shown in [12] that if X is a
1-connected CW-complex with one zero cell, then there is a CWP-complex Xe
and a "cellular" map e: X - Xe such that

(i) e induces a one-to-one correspondence between the cells of X and the
local cells of Xe, and

(ii) e P-localizes.
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As a simple example, if X S" [,.J, em, where m > n, then X, and e: X --,

are obtained as indicated in the following diagram

S sn ; X

S-’ ; S-’--"* X,,, S, U e.
L

This result of Sullivan’s generates motivation for studying the intrinsic proper-
ties of the CWP-complexes, since the localization of a 1-connected CW-complex
is a CWP-complex.
One approach to proving the cellular approximation theorem for CWP-

complexes would be to explicitly apply the classical one for CW-complexes, but
this method generates at least two serious questions. Given a CWP-complex
is it a CW-complex, and if so, how is the CW-structure related to the CWP-
structure? It can be proven that a CWP-complex has the homotopy type of a
CW-complex, but there is no guarantee that it has a CW-structure. To avoid
this problem, one possible approach would be to redefine a CWP-complex in
the following manner. First, suppose, for n > 0, S, is a CW-complex having
only one 0-cell, an infinite number of n-cells, and an infinite number of (n / 1)-
cells, which is possible since S - M(Z,, n). Now use for Sag the CW-complex
mentioned above and let the definition of a CWP-complex be as before, with
the exception that the attaching maps are required to be cellular. With this new
definition both of the questions are answered, but at the same time it now be-
comes clear that the classical cellular approximation theorem will not directly
imply the corresponding theorem for CWP-complexes since the n-skeleton of a
CWP-complex can contain both n- and (n + 1)-Euclidean cells. The reader is
referred to 2.1, 4.1, and 4.5 for the definition of the n-skeleton of a CWP-
complex. As an example, let X S, v S+1 and f: X --, X be a cellular
CW-complex map. Here the n- and (n + 1)-skeleta of X as a CWP-complex
are S and X, respectively; whereas, the (n + 1)-skeleton ofX as a CW-complex
is not X and contains (n + 1)-Euclidean cells from both the n- and the (n + 1)-
skeleta of X as a CWP-complex; and hence it cannot be concluded that
f(S,) = S,.

For another point of interest, recall that the homotopy theorem follows from
the approximation theorem for CW-complexes, since X x I is a CW-complex
with X x i a subcomplex. However, for X a CWP-complex, X x I does not
have an obvious CWP-structure leaving the original structure on X x i
unchanged. Thus, the homotopy theorem for CWP-complexes does not follow
as an immediate corollary from the CWP-approximation theorem. To avoid
this awkwardness, we prove the main theorems for a general class of spaces
with filtrations, which includes the CWP-complexes.

Sections 2 through 4 discuss the cellular approximation and homotopy
theorems for filtrations and CWP-complexes, while Section 5 deals with ques-
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tions related to the direct limit of the homotopy and homology groups over the
finite subcomplexes of a CWP-complex. Also, in Section 5, the question of the
existence of a CW-complex such that its localization is the given CWP-complex
is answered.

2. Filtrations

Throughout this section, as well as sequel sections, all spaces are supposed
path connected and Hausdorff.

DEFINITION 2.1. A family {xk}= o of closed subspaces ofX is afiltration ofX
provided Xk c Xk/ for all k > 0, X 0 xk, and X has the weak topology
determined by {xk}. Xk will be called the k-skeleton ofX and X the limit space.
X is said to befiltered by {xk}, and the dimension ofX is inf {k: Xk X} and
is denoted by dim X. A filtration {Ak} of A c X is a subfiltration of {xk}, if
Ak A c Xk and A is closed. Given filtrations {xk}, { yk} for X, Y, a map
f: X --. Y is cellular iff(Xk) yk for all k > 0.

If {xk}, { yk} are filtrations then {Xk x yk} may not be a filtration ofX x Y,
since the weak topology determined by the family of subspaces may not agree
with the product topology. However, a theorem of J. H. C. Whitehead [5; p.
262] implies that {Xk I} is a filtration of X x L since I is compact. Another
example, which is important in the sequel, is the following. Let {Ak} be a
subfiltration of {xk}. Then

{x"-’
is a filtration of X x I and {A"- x I X" x i }= o is a subfiltration with its
limit space A x I w X x i, where X-1 and A-1 are empty sets.

It is obvious that in general a map between two filtered spaces cannot be
approximated by a cellular map. So, some additional conditions must be
imposed on the filtrations in order to guarantee such an approximation.

DEFINITION 2.2. The pair (X, A) is simple if A is a closed subset of X, (X, A)
is n-simple for all n > 1, and #" zlA -- zclX, where is the inclusion map.
The homology dimension ofX is

inf{k:HX= 0 for alll> k}.

DEFINITION 2.3. Let {Xk} be a filtration of X. Then {Xk} is
(1) hep if (Xk, Xk-) has the homotopy extension property (HEP) for all

k>_l,
(2) partially hep if (X, Xk- 1) has the HEP for all k >_ 1,
(3) connected if (X, Xk) is k-connected for all k > 1,
(4) s-connected if Xk is s-connected for all k _> 0,
(5) simple if (X, Xk) is simple for all k >_ 1,
(6) relative CW if (Xk, Xk- 1) is a relative CW-complex for all k > 1,
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(7) an R-filtration (resp., a flee R-filtration) if, for each k > 1, xk/xk-
has homology dimension <k and fflk(Xk/xk-) is an R-module (resp., a free
R-module), here R is a commutative ring with an identity,

(8) Moore if xk/xk- M(Gk, k) for each k > 1, where Gk is a group.

PROPOSITION 2.4.
C c Xk for some k.

If {Xk} is a filtration of X and C c X is compact, then

Proof. The proof is analogous to that given by J. H. C. Whitehead in [13]
for CW-complexes.

The following is a list of easily proven facts.

PROPOSITION 2.5.
(1) A hep filtration is a partial hep filtration.
(2) A relative CH/-filtration is hep and hence partially hep.
(3) .4 1-connectedfiltration has a 1-connected limit space, and hence it is simple.
(4) A hep 1-connected Moorefiltration is connected.
(5) If {Ak} is a subfiltration of (Xk} and (Xk, Xk- u A) has the HEPfor all

k >_ 1, then {Xk A) is a hep filtration of X.

Completely analogous to the situation for CW-complexes, we can define a
chain complex for each filtration {Xk} of a space X, and hence obtain what we
will call the homolo9y of the filtration. For each n > 0, let %(X, X)
H.(X, X ), where H, is the singular homology functor; and let. :%(x. x) + %_ (x. x)
be the boundary map for the triple (X#, X#-, X#-2). It is then clear that
((X, X), d) is a chain complex. The following theorem gives the relationship
between the homology of the filtration {Xk} and the singular homology of the
pair (X, X) for a special case.

THEOREM 2.6. If (Xk} is a hep Moorefiltration ofX then

H,((X, X), ) H,(X, X).
Proof The proof is analogous to the argument given for CW-complexes.

Also, we can associate with each filtration of a space a homology spectral
sequence obtained from the exact couple

DD

E

where {HX}, E {H(X, X-)}, and the maps e, B, are induced
from i,, j,, and 0 in the exact sequence

, n,x , H(X. X-)
o , H_(X- .
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Notice that, for a fixed q, Hq(X) li__m HqXp and H(Xp, X) 0 for small
enough p. Hence, the spectral sequence converges with the limit being the
bigraded module associated to the filtration {Fp} of H(X, X) defined by
im [H(Xp, X) H(X, X)] rp.

3. Cellular approximation and homotopy theorems for filtrations

We begin by quoting the foundation stone of this section, a theorem by
Sze-Tsen Hu [10].

THEOREM 3.1. Letf: (X, A) --. (Y, B), where (X, A) is a relative CW-complex
and (Y, B) is simple. Then f can be deformed into B relative to A (rel A), /f
Hk(x, A" nk(Y, B)) 0 for all k > 1.

THEOREM 3.2. (Cellular Approximation). Let {Ak}, {Xk}, and {yk} be
.filtrations of A, X, and Y with thefollowing properties.

(1) {Ak} is a subfiltration of {xk}.
(2) { yk} is simple.
(3) (Xk, xk-x w Ak) is a relative CW-complexfor all k > 1.
(4) Hr(Xk, Xk-x w Ak; nr(Y, yk)) O for all r > and k > 1.

Then for any map f: (X, X) (Y, yo) that is cellular on A, there exists

g" (X, X) (Y, yO), a cellular map homotopie to f rel (X w A).

Proof We will construct a sequence of homotopies

Hk’(X,X) x I (Y, yO), k O, 1,...,

relative to A (i.e., Hk(a, t) f(a), (a, t) e A x I) for each k >_ 0 satisfying the
following conditions.

(1) Ho(,0) =f
(2) Hk(,1) Hk+( ,0) fork >_ 0.
(3) Hk is a homotopy relXk-x (i.e., Hk(X, t)= Hk_x(X, 1) for all

(x,t) eXk- x I).
(4) Hk(Xk X 1)= yk.

Let Ho’X x IuA x I-, Y be defined by Ho( ,t) =f for all teL
Ho can be extended to (X, X) x I overfsince (X, X w A) has the HEP (note
2.5, parts and 5), Let Ho denote this extension. Assume H,_a has been
constructed, n > 1. Let g,_ H,_( 1) and ,_ g,_x IX", ,_1"
(X", X"-x u A") (Y, Y"). By the hypothesis and 3.1 there exist h, and a
homotopy

H,’h, - O,_z rel(X"- wA")

with h,(X") Y". Let/," (X" w A) x I Y be defined by/, X" x I H,
and 17I,(x, t) f(x), (x, t) A x L Use the HEP of the pair (X, X" w A) to
extend/, to H, on X x I over g,_ 1. Clearly, H, has the desired properties.
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Define H" (X, X) I --, (Y, yO) as follows"

H(x, t) 1/k 1/(k + 1)]
tHe(x, )

g H( l) is the desired map.

forl- 1_< t_<1-
k

if xeX. k+l
,k_>l

If for each n > 1, (A", A"-1) is a subcomplex of (X", X"-1), as relative CW-
complexes, then (X", X"-1 w A) is a relative CW-eomplex. So, condition (3)
in 3.2 could be eliminated if the subfiltration {Ak} satisfied this stronger con-
dition.

COROLLARY 3.3. (Homotopy Theorem). Let the hypothesis be the same as
in 3.2 exceptfor (4), which is replaced by

(4’) ffI-I(X"/X-1 A"; zr,(Y, y,+l)) Ofor all r > andn >_ O.

Now, iff, " (X, X) ( Y, yO) are cellular maps with homotopy F, and if F
is cellular on A x I with respect to the filtration

{A"-1 ItoA" x

then there exists G" (X, X) I --, (Y, yO), a homotopy off and g, which is
cellular with respect to the filtration {X"-1 I w X" i}. In fact,

G- F rel(A IwX i).

Proof Notice first that F is cellular on A I w X i with respect to the
filtration {A"- I w X" i }, which is a subfiltration of{X"- I w X" i }.
Also, observe that

(X X I w X"+1 x 1, (Xn-1 X I w X" x 1)w (A" x I w X"-1 x 1))
is a relative CW-complex for all n > 0. Therefore, the conclusion follows from
3.2 after noticing that

Hr(Xn X I to Xn+ X i, (Xn-x X I to X x 1)to (An X I w Xn+ x 1);
,(Y, Y"+ b)

and
ii"(X(X"/X"- A"); ,(Y, Y"+ ))

are isomorphic. [2]

The following technical lemma will be used for specific filtrations that are
considered later, in order to show they satisfy conditions (4) and (4’) of 3.2 and
3.3, respectively. For the rest of the paper R will denote the P-localization of
the integers.

LEMMA 3.4. Suppose that X has homology dimension < n (resp., X
M(G, n)), where n > 1, and that {Gk" k > 1} is a,family of abelian groups with
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Gk 0 for k < n (resp., G. 0). Then H"+X(X,G.+x) 0, and hence
Hk(x, Gk) 0for all k > 1, provided at least one of thefollowing holds:

(1) Ext (H.X, G.+,) O,
(2) H.(X, R) is a free R-module and G.+x is an R-module,
(3) H.X is a free R-module and G.+I is an R-module.

Proof If condition (1) holds, the result follows immediately from the uni-
versal coefficient theorem for cohomology. Now we will prove that

(3) = (2) = (1).

The universal coefficient theorem for homology yields Hk(X, R) HkX (R) R,
for each k, since R is torsion flee; and if A is an R-module, then

A A (R)RR-- A (R)R.

Thus (3) (2). For R-modules A and B with A free, Ext (A, B) 0 [1].
Hence, (2)

The conclusion of Lemma 3.4 does not hold for arbitrary rings R. As an
example, let R Z/3 and let (3) of 3.4 be satisfied. From the universal coeffici-
ent theorems and the hypothesis of the lemma,

H"+ I(X, G.+ 1) ExtR (H.(X, R), G.+ 1) HomR (H.+ I(X, R), G.+ 1)

and H.+ I(X, R) Tor (H.X, R). Since, H.X is a free Z/3-module, it is iso-
morphic to r Z]3. Hence,

H.+ I(X, R) r Z/3 and Hom (H.+ I(X, R), G.+ 1) - YIr G.+ 1.

Therefore, H"+ I(X, G.+ 1) 0 if and only if G.+ 0 or H.X O.
At this point we give an application of 3.2 and 3.3, but first we need to set the

stage.

DEFINITION 3.5. The 1-connected CW-complex K is said to be normal if it
has a 1-connected CW filtration {K"} such that K K =., each K" is a
subeomplex, Hr(K") 0 for all r > n and t.: H.(K") - H.(K) for r < n,
where t" K" K is the inclusion map.

THEOREM 3.6.
complex.

Every 1-connected CW-complex is homotopic to a normal

The reader is referred to [7; p. 53] for the proof of 3.6 and for further details
of this decomposition. Such a decomposition yields a 1-connected, simple,
connected, CW, Moore Z-filtration (see Definition 2.3). Naturally, the question
of "approximating" an arbitrary map between two normal complexes arises.
In general this cannot be done, but if a condition is imposed on the homology
ofX and Y the question is answered in the affirmative (see also [4]).
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THEOREM 3.7. Let X, Y be 1-connected CW-complexes, and let {X"}, { Y"} be
normal homology decompositions of X, Y respectively.

(1) IfExt (H.X, H.+ Y) Ofor all n > 2, any mapf: X Y is homotopic
to a cellular map rel ..

(2) IfExt (H.X, H.+2Y) Ofor all n > 2, thenfor every pair ofhomotopic
cellular maps, f, #: X Y, there exists a cellular homotopy between them.

Proof (1) According to Theorem 3.2 it suffices to show that

Hr(X",X"-l;zrr(Y, Y")) 0 for allr > landn > 1.

By the exact homology sequence for (Y, Y") and the definition of a normal
homology decomposition, H.(Y, Y")= 0 for r < n and H,,+I(Y,
H.+ I(Y). From the Hurewicz Theorem, re.+ I(Y, Y") - H.+ a(Y, Y"). So, an
application of 3.4 gives H"(X", X"-1; rc,(Y, Y")) O.
The proof of (2) is similar to (1).

The following result gives two alternative conditions for the cohomology
hypothesis in 3.2 and 3.3.

THEOREM 3.8. Hypotheses (4) in 3.2 and (4’) in 3.3 can be replaced by either
of the followin#." {X" A} is a free R-filtration (resp., Moore free R-filtration),
{ Y"} is connected (resp., rc.(Y, Y") 0 for all n > 1) and rc.+ I(Y, Y") is an
R-modulefor each n > 1.

Proof We will prove the theorem when {X" w A} is a free R-filtration and
{ Y"} is connected. The other proof is entirely analogous. First we will show
that condition (4) in 3.2 is satisfied. From homology theory,

H(X", X"-1 w A"; zrr(Y, Y")) I"(X" w A/X"-1 w A rc(Y, Y")).

By the hypothesis, X"w A/X"-1 A has homology dimension <n with its
nth homology a free R-module. Furthermore, r,(Y, Y") 0 for k < n and
ft.+ I(Y, Y") is an R-module for each n > 1. Hence, for each n >_ an applica-
tion of 3.4 shows that

H(X",X"-I wA";zcr(Y, Y")) 0 for everyr > 1.

That condition (4’) in 3.3 is satisfied follows from the work above and the
fact that

{X"-1 x Iw X" x l)w (A x Iw X x i)}

is a free R-filtration (resp., a Moore free R-filtration). In fact, Z"+I/Z is
homeomorphic to Z(X" w A/X w A), where

Z"=(X"-1 IwX" x i) w(A x IwXx i).

In closing this section, we give two more results analogous to the ones for
CW-complexes. They will be corollaries of the following theorem.
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THEOREM 3.9. Let (Xk} be a relative CWfiltration ofX, (Y, B) a simple pair,
and Hr(Xk,Xk-1; ztr(Y,B)) O for all r > and k > 1. Then any map
f: (X, X) --+ (Y, B) can be deformed into B rel X.

Proof. The proof is similar to that of 3.2.

COROLLARY 3.10. IfX has a relathe CWfree R-filtration (resp., Moorefree
R-filtration) ofdimension <n, (Y, B)is simple andn-connected (resp., 7r,(Y, B)
0), and rc,+ I(Y, B) is an R-module then every map f: (X, X) - (Y, B) can be
deformed into B rel X (X is the O-skeleton).

COROLLARY 3.11. IfX has a relative CWfree R-filtration and (Y, B) is both
simple and n-connectedfor all n >_ 1, then any map

f: (X, X) - ( Y, B)

can be deformed into B rel X.
4. Relative cellular complexes and CWP-complexes

The definition of a CWP-complex will be given in this section, and the cellular
approximation and homotopy theorems will be proven. These theorems are
essentially just corollaries of previous results.

DEFINITION 4.1. Let b,:Y X, F, be a family of continuous maps.
Then a space Z is said to be obtained from X by attaching cones on the Y, if
Z X U c(vY), where b is the coproduct map (the): VY X.

DEFINITION 4.2. A relative cellular complex (X, A) modeled on Y and startiny
at 1 > 0 is a topological space X with a closed subspace A, and a filtration
{(X, A)k}ff=o such that

(1) (X,A)k AforallO < k < l- 1, and
(2) for k > l, (X, A)k is obtained from (X, A)k-1 by attaching cones on

Ek- Y, where E Y Y.

When no confusion can occur, we will abbreviate in one or more of the
following ways. The k-skeleton (X, A)k will be denoted by Xk, X will denote
(X, A); and I will not be mentioned.

Every relative CW-complex is an example of a relative cellular complex, which
is modeled on SO starting at 1.

PROPOSITION 4.3. If X is a relative cellular complex modeled on Y then the
family ofskeleta {Xk} is a hepfiltration ofX. Furthermore, if Y is a Cl-complex
then {Xk} is relative CW.

Proof See [113. [--i

DEFINITION 4.4. A subcomplex (Z, B) of a relative cellular complex (X, A)
modeled on Y is a relative cellular complex modeled on Y such that Z is a closed
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subspace of X and (Z, B)k Z (3 (X, A)k for all k > 0. Notice that the skele-
ton-filtration of (Z, B) is a subfiltration of the skeleton-filtration of (X, A).

THEOREM 4.5. A relative cellular complex (X, A) modeled on a CW-eomplex Y
has the homotopy type ofa relative CW-eomplex (Z, A).

Proof See [11]. [-

The following example shows that the cellular approximation theorem is not
necessarily valid in the category of relative cellular complexes modeled on Y.
In fact, Y may be taken to be a Moore space. In the example A and Y is a
Moore space with its group a solid ring [2]. However, if in addition to being
solid we also require R to be torsion free, it will be proven that any map between
any two 1-connected relative cellular complexes modeled on M(R, 1) and
starting at l 2 can be approximated. Concerning such a ring, Bousfield and
Kan have proven that R Ze for some P a subset of the primes [2].

Let 1 M(Z/3, 1). E2, and E3 are cellular complexes modeled on t
and starting at 2. Denote them by 3 and 4. Any cellular map from 3
to 84 has to be nonessential, since the 3-skeleton of 84 as a cellular complex
modeled on 8t is the point .. So, if [83, ,] : 0, then there are maps from
3 to 84 which are not homotopic to a cellular map. From the Puppe sequence,

S3 _. ,3 S4 ._ S4 4 S _. where S ) e2,
3

we obtain the following exact sequence

S3 a S4[ ’] ’] IS’, [’, is’,- [ .- ] ,_ [ ] ,_ ] ._ ] _.
r3(g4) 0 by the cellular approximation theorem for CW-complexes,
,(g4) Z/3 by the Hurewicz theorem, [ g4] 0, since $4 is not con-
tractable, and IS5, 4] 0 by [6; p. 133]. Therefore,

0 e [ ] z/ --, z/ [, ]
implies [ga, g4] Z/3.

DEFINITION 4.6. Let P be a subset of the primes. A relative CWP-omplex,
(X, A), is a relative cellular complex modeled on S, starting at 2, with the
space A being 1-connected (A will often be a single point).
Even though S is not 1-connected, the mapping cone of any map Q - A,

with Q connected, is 1-connected, so we do not leave the category of I-connected
spaces in this construction.

PROPOSITION 4.7. The skeleton-filtration, {X"}, of a relative CWP-complex
is a hep, 1-connected, connected, simple, Moore, relative CW, free Zvzfiltration.

This proof follows from previous results and the fact that
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From 2.6, 4.5, and 4.7 every relative CWP-complex has the homotopy type
of a relative CW-complex and the homology of its skeleton-filtration coincides
with its singular homology.

THEOREM 4.8. The homology ofa relative CWP-complex is P-local.

Proof. From the remark above, its homology can be computed using the
chain complex of the skeleton-filtration. But since this chain complex has
P-local groups the homology is P-local [1]. [-1

THEOREM 4.9. (Cellular approximation theorem for relative CWP-complexes).
Any map f: (X, A) (Y, B) between relative CWP-complexes that is cellular
on the subcomplex (, ) is homotopic rel ( t_) A) to a cellular map

g" (X, A) -+ (Y, B).

Proof It suffices to show that the properties (1) through (4) are satisfied in
Theorem 3.2. From the definition of a subcomplex it follows that the skeleton-
filtration of (., ) is a subfiltration of the skeleton-filtration of (X, A). Accord-
ing to 4.7, (Y"} is simple. And (X, X-x w ) is obviously a relative CW-
complex for all k > l, since (., ) was a subcomplex of (X, A). We will now
use Theorem 3.8 to prove property (4) of 3.2. First observe that the skeleton-
filtration of (X, A ) is a Moore free Z-filtration. By 4.7, the filtration of
(Y, B) is connected and hence zr,(Y, Y") 0 for all n >_ 1. Also,

rc,+ x(Y, Y") - H,+ x(Y, Y"),

and hence it is P-local by 4.8 for all n > 1.

THEOREM 4.10. (Homotopy theorem for relative CWP-complexes.) Let

f, g" (X, A) (Y, B)

be cellular maps between relative CWP-complexes. Furthermore, suppose
F: f - g such that F is cellular on (’, ) x I, where (’, ) is a subcomplex of
(X, A). Then there exists a cellular homotopy G betweenfandg such that G F
relative to

(XxIxxi).

Proof. The proof follows from 3.3 and 3.8. l--I

Of course, there are analogous corollaries to 3.9 and 3.10 for the relative
CW-complexes.

Remark 4.11. With these tools now available for CWP-complexes the
analogs of theorems presented in J. H. C. Whitehead’s work [ 13-1 can be proven.
In particular, an exact couple can be constructed which gives rise to a spectral
sequence with an edge being the P-local version of Whitehead’s "A certain
exact sequence" [ 14-1.
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5. Special CWP-complexes

We deal with the following questions in this section.

(1) Are the homotopy (resp., homology) groups of a CWP-complex obtained
from the direct limit of the homotopy (resp., homology) groups of the finite
CWP-subcomplexes ?

(2) Given a finite CWP-complex X does there exist a finite CW-complex Y
such that LY X, i.e., does there exist x: Y X that P-localizes?

If one attempts to prove assertion (1) the following question arises.

(3) Iff: X - Y is a map of CWP-complexes with X finite, then does there
exist a g - f such that g(X) is contained in a finite CWP-subcomplex?

The following example shows that (1) and (3) are both false for CWP-
complexes, but in the sequel it will be shown that they are both valid for special
CWP-complexes to be defined later.

Example. Let

g 2 S
2 sn 1 V S,, n >_ 2,

r=l

where tx is the inclusion in the first factor. Let b" S, V S be such that
(S) is not contained in a finite wedge of local n-spheres and g (such a
map exists). Let X (V S) e+ . Notice that the only finite CWP-
subcomplexes of X are finite wedges of local n-spheres. We now proceed to
show that there exists an h: S$ X such that h(S) is not contained in a finite
subcomplex of X, and furthermore, any h’ with h’(S) in a finite subcomplex is
not homotopic to h. This will give a counter example for question (3).

First observe that X = ((V S) e’+)e, and since (V S") e+ is
1-connected,

n,(Sn)nn((Sn)Yen+) (g)S’) by[ll’2.10].,

Take P {2}. Then

@ Zp n S n,(X) Zv @ Z/2.
r=2

Let [h] [S, X] n,2 represent the element of order 2. Then every
[h’] [S, ] such that h’(S) is contained in a finite subcomplex of X (a finite
wedge of local n-spheres) has infinite order. Hence, h h’.

Also, it is obvious that n, n,(V S) n,, where the limit is over
the finite subcomplexes of . Hence, question (1) is also false for CWP-
complexes.
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Recall that the n-skeleton, X", of a CWP-complex is of the form

where X"-x is the (n 1)-skeleton and X X ,. The the, are called the
attaching maps.

DEFINITION 5.1. A CWP-complex is special if the image of each attaching
map is contained in a finite subcomplex.

Notice that every finite CWP-complex is automatically a special CWP-
complex.

PROPOSITION 5.2. Every compact subset of a special CWP-complex is con-
tained in afinite subcomplex.

Proof Let C be a compact subset of the special CWP-complex X. By 2.4
C c Xk for some k, where Xk is the k-skeleton of X as a CWP-complex. The
proof is by induction on k. For k 0 or the result is obvious. Suppose the
proposition is true for k > 0 and let C Xk. C c Xk- is compact so
by the induction hypothesis it is contained in a finite subcomplex. If

C

for only a finite number of a, then C is contained in a finite subcomplex, since
k ktk,(,ep) is contained in a finite subcomplex for each a. So, pick exactly one x,

from C c (,e,- ,S,-1) for each a provided it is not empty and assume
A {x,} = C is infinite. Now A c Xk- q and A c ,e is the singleton
set {x,} or tk, which is closed in ,ek. Hence, A is closed in Xk [5; p. 128]. Simil-
arly, any subset of A is also closed. Therefore, A is an infinite discrete closed
subset of C. But this cannot occur with C compact. This completes the
induction.

Let ( Y,: F} be any family of subspaces of Y. Order F by inclusion and for
_< fl let : Y Y and : Y - Y be inclusions.

PROPOSITION 5.3. For any space X, {IX, Y]; t} is a direct system of sets,
and ifX is a co-H-group it is a direct system ofgroups. Furthermore, there exists
a morphism

qt:[X, r,]- IX, r], {a} ta, wherea[X, Y,].

PROPOSITION 5.4. For any k > O, {HkX,; ,} is a direct system of abelian
9roups, and there exists a homomorphism

: HkX, HkX, {a} t,a for a HkX,.

THEOREM 5.5. IfX is afinite CW-complex and Y is a SCWP-eomplex (special
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CWP-complex), then : IX, Y] - IX, Y], where {Y} is thefamily offinite
subcomplexes of Y. IfX is a co-H-group then is an isomorphism.

Proof. To prove is a bijection we will show that there exists

such that p and 1. For [-f] e IX, Y], Proposition 5.2 implies
there exists g: X Y,, for some , such that fig - f Define [f] {[#]}.
First we will show is well defined. Suppose, F: fig - tah. Since X x I is
compact, F(X x I)c Y, for some . Without loss of generality, assume
Y, Y c Yr Therefore, ff# - h, and hence, {[0]} {[-hi} [f]. Let
{a} e IX, Y] with a [g] IX, Y]. Then {a} a b[t g]
([g]} {a}. For If] I-X, r] and I-g] IX, Y] such that If] z[g],
[f] {[g]) [g-! {f).

COROLLARY 5.6. If Y is a SCWP-complex, then : ZrkY - It,k Y where
{ Y: F} is the family offinite subcomplexes of Y.

THEOREM 5.7. If Y is a SCWP-complex, then p: lim HkY, HkYfor each
k > O, { Y} is thefamily offinite subcomplexes of Y.

Proof As in Theorem 5.5, we define b: HkY 1_ HkY,, bp and
tk 1. Let u Hk Y. By the compact support theorem for singular homology
there exist a compact subspace Y1 of Y and v HkYI such that i,v u, where
i: Yx - Y. By 5.2, Y c Y for some . Let j: Y

_
Y and Cu {j,v}.

First we will show b is well defined. Let Ya, Y2 be compact subspaces of Y and
vl HkYx, v2 HkY2 such that i,v u i2,v2, where is: Y Y for
s= 1,2. Let

j: Y1
_
Y and J2: Y - Y fora, fleF.

Consider the following diagram of inclusions

Clearly, v x,v- /2,/)2 e ker e,. So, by a corollary to the compact
support theorem there exists a compact set B

_
Y w Y2 such that l,v O,
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where 1: Yx w Y2 B. Pick V such that Y,w YawB_ Yr. The diagram

HY .I-IY

HkY HkB HkY

induced by inclusion maps, is commutative; and

t,j,v, /#,’j2,2 ,l,xx,vx ,/,x2,02 g,l,v O.

Therefore, tvja,va trj2,v2 and hence {j,v} {j2,v2} u.
follows from the definitions of and ff that and 1.

It now

Remark 5.8. Since every compact subset of a CWP-complex is contained in
some local n-skeleton, arguments similar to those in 5.5 and 5.7 yield

" li__m rCkXn -- 7rkX and k" li__m HkXn -- HkXfor every CWP-complex X, where the direct limit is taken over the local skeleton.
The following theorem gives us a method of replacing a CWP-complex with

a SCWP-complex.

THEOREM 5.9. For each CWP-complex X there exkt a SCWP-complex Y
and an equivalence f: X Y such that (f,,f,_), mapping (X", X"-x) to
(Y", Y"-), is an equivalence ofpairs for each n, where f, is the restriction off
to the local n-skeleton. Furthermore, the set of local n-cells in X is in one-to-one
correspondence with the set of local n-cells in Yfor each n > O.

Proof We will construct Y inductively. Let Y= X and f for
0, 1, 2. Suppose, yk andfk have been constructed for 2 < k < n- 1.

Now

X"=X"-’ <.> (Vr’e’)"
Let
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Then there exists gn" X" f" such that

(x x _.

is an equivalence of pairs [7; p. 40]. For each e,

e[_] [] withe’S- S-.
By Proposition 5.2, (S-) is contained in a finite subcomplex, Yo, of Y’-.
Hence, by the commutativity of the diagram

e#
[sv Yo] Is Yo]

[S-’, yn-] [sn-, yn-],- 0 for some 0 such that 0(S) c Yo. Let

As above there exists h," F" -- Y with (h,, 1)" (F, Y-) (Y, Y-) an
equivalence of pairs. Let hg. This completes the induction step. Let
Y Y and letf: X -- Y be defined by the family (}. Since kX kX
and li kY kY for all k,f" kX kY is an isomorphism for all k 0;
and hence, f is an equivalence since X, Y have the homotopy type of CW-
complexes (see 4.5).

We will now proceed to answer the third question stated in the introduction,
and then we will give a generalization of 5.5 which will then answer the first
question raised.

LMgA 5.10. For each [S-, X] there exists an ’ IS-, X] such
that X e X e relative to X.
Pro@ By [12], we have the following commutative diagram"

m-X
e

So, there exist e’ e

_
Xand s e P’ such that Oee e’ N l/s, which implies

Oees ’ N Oeee’. Hence, ees eel’. But since localization is a
functor, se. So, as maps,
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commutes up to homotopy. Furthermore, since s e P’, the map induced by it is
an equivalence [11; Section 3.4]. Therefore,

relative to X, [7;p. 40].

U U
p

THEOREM 5.11. For each CWP-complex X there exbt a 1-connected CW-
complex Y and an equivalence f: X Y, such that the map (fn, fn-1) from
(X", X"-1) to ((Y,)", (Y,)"-1) is an equivalence ofpairs for each n, where f is
the restriction offto the local n-skeleton. Furthermore, the set oflocal n-cells in X
is in one-to-one correspondence with the set of local n-cells in Y,, and hence with
the set of n-cells in Y, for each n > O.

and

Proof The proof is similar to that of 5.9. Let

yO y, yo y1 X o X ,, y2 VS2

F

Let

<]’.- *>
y e

As in 5.9 there exists an equivalence (#,, f,_ 1) from (X", X"-1) to (Z", F"-’).
By an obvious extension of Lemma 5.10 there exist maps ,," S y.- 1, for
each , and an h, such that

is an equivalence, where Y" equals

Notice that in the definition of F", ,,, is a map and not a class of maps. Let

yn yn-1

Clearly, Y.g
_

F". Letf h,#,, Y 0 Y", F 0F" and f: X--. F be the
map defined by the family {f,}. As in 5.9, f is an equivalence. Now observe that

Y2 X2 VS.
F

Letfi I’Xi ifori= 0, 1, and2. Suppose, Yi, F i, and fi have been
constructed for 2 < < n. Now

X’=X-I U<>(rVe)"
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from the definition of the localization of a 1-connected CW-complex given by
D. Sullivan there exists an equivalence k" F Yp such that

(kn, k,_ x)" (, Y"- ) ((Y,)", (Y,)"- )
is an equivalence for each n, where k, is the restriction of k to the local n-
skeleton, f kf is a map that satisfies the conclusion.

So, for X a finite CWP-complex there exists a finite CW-complex Y such that
Ye X, i.e., there exists a map k" Y X that P-localizes.

THEOREM 5.12. If X is a finite CWP-complex and Y is a SCWP-complex,
then " IX, Y] IX, Y], where the limit is over the finite subcomplexes of
Y.

Proof By 5.11, there exists a finite CW-complex Z and a map x’Z X
that localizes. Let x" [X, Y] _% [Z, Y] and x" [X, Y] [Z, Y] be the
equivalences induced by x. {x" } is a map of the direct system {IX, Y,]; i}
into the direct system {[Z, Y,]; z}. These systems were defined above. With, i as defined in 5.3 the following diagram commutes.

li__m IX, Y]
lim, l_j_[Z, Y,]

By the universal property and properties of direct limits, e and # are
equivalences, and 0 is an equivalence by 5.5. Therefore, is one too. V1

COROLLARY 5.13. 1ff: X Y is a map between the finite CWP-complex X
and the SCWP-complex Y then there exists y f with y(X) contained in a finite
subcomplex of Y.

COROLLARY 5.14. Iff y: X Y are maps of SCWP-complexes such that
X isfinite andf(X), y(X) c Yo, where Yo is afinite subcomplex of Y, then there
exists G: f y such that G(X x 1) is contained in a finite subcomplex of Y
containing Yo.

6. P-local 1-connected CW-complexes and CWP-complexes

Recall that X is P-local if r,X is P-local. Let cgCg.x denote the full sub-
category of the homotopy category 3g consisting of all spaces with the homo-
topy type of a 1-connected P-local CW-complex, and let ff//’ denote the full
subcategory consisting of all spaces with the homotopy type of a CWP-complex.
By 2.6, H,X is P-local for every CWP-complex; and hence, n,X is P-local

by [12].

THEOREM 6.1. If X is 1-connected and P-local then there exists
and a weak homotopy equivalence f: " - X. Furthermore, if is another space
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in / and : X is a weak homotopy equivalence, then there exists a
homotopy equivalence h" " such thath - f.
Proof The proof uses the CW approximation to a space and 4.5. I--I

THEOREM 6.2. rg/- cg//- as categories.

Proof The proof follows from 6.1 and 4.5.
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