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The purpose of the paper is to extend the theory of D-algebras on semigroups.
We first consider a finite product of idempotent intervals, with Lebesgue mea-
sure. Then we extend the theory to products of intervals with a group. In the
next stage, all homomorphic images of the aforementioned type semigroups are
examined. Finally, in the last section, we consider some examples. One example
which comes readily out of this is a generalization of Bergman’s work [2] on
algebraically irreducible semigroups S in which S’ is an idempotent thread (see
Example 4.2).

1. Products of idempotent intervals

Let I {a, b} denote an interval of real numbers from a to b, where a or b
may be infinite and I may or may not contain either of the endpoints a and b.
With multiplication on I given by xy max (x, y), and the natural topology,
the space I is a topological semigroup. For any E

_
/, and point x /, define

the set Ex- by
Ex- {y I xy E}.

Then M(I) is the space of all bounded, regular, Borel measures on I equipped
with total variation norm and multiplication given by

P*v(E)=fxfxg..(xy)dp(x)dv(y)=fzl(EY-1)dv(y),
where Z is the characteristic function of E. If m is Lebesgue measure on/,
define Lt(/, m) to be the space of all measures in M(I) which are absolutely
continuous with respect to m.

Lardy, in [5], has shown that 12(1, m) is a closed subalgebra of M(I). Define
(a, b] as follows: (a b] is the ordinary open-closed interval if b # oo, and if
b oo, (a, b] is obtained by "compactifying the right half" of (a, oo]. In
other words, (a, c] (a, oo)w {oo}, where a neighborhood base of oo is
given by {(c, oo) w { oo } c e (a, m)}. With this definition, Lardy has identified
the maximal ideal space of Lt(L m) with the interval (a, b]. In addition, he has
shown that L(/, m) is regular, possesses approximate identities, and satisfies a
Herglotz-Bochner theorem.

All through this discussion, S will denote the semigroup I-I2-1 I, (which we
will write as 17[ I, when the indexing is understood), where I, (a,, b,} and
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multiplication is given by (x.)(y.) (max (x,, y.)). Under the Cartesian pro-
duct topology, S is a commutative topological semigroup. The measure algebra
M(S) has been studied by Baartz in [1] and many of the following results draw
heavily on his work. If 2 is product Lebesgue measure on S and convolution is
defined exactly as before, we must first show that LI(S, 2)is a closed subalgebra
of M(S). From now on, we simply write LI(S) for LI(S, 2).
At this point, we introduce several definitions.

DEFINITION. Suppose that A is a nonempty, proper subset of {1, 2,..., N},
B {1, 2,..., N} A, and x (x.) 6 ]-I.A I.. Then for E a subset of S,
E {y (y) 6 I-/.a I. there exists a point z (z,..., zs) E where

z x for all n A and z y. for all n B}. Let 2A denote Lebesgue mea-
sure on l-I.a I,.

If x I’[.A I and y I’I.B I as in the above definition, consider the pair
(x, y) S in the natural way. In other words, identify (x, y) with the point
z (Zl, ZN) S having the property that z x. for all n A and Zn Y.
for all n B. We can now state and prove the two key lemmas necessary to
show that LI(S) is an algebra.

LEMMAI.1. Let E be a subset of S such that 2(E) 0 and let X JA
I-I.A I and y Jn I-IB I, where A and B are nonempty subsets of
{1, 2, N} with A c B O and A w B {1, 2, N}. Then 2A(Ey) 0
for almost all (2n)y Jn and 2n(Ex) 0 for almost all (2A)X JA.

Proofi It suffices to prove one of the statements, for the other will then follow
in exactly the same manner. We have

0 2(E) fsXr(z) d2(z) j ;s r(x’y)d2A(X)d2(Y)
fj 2A(Ey) d2.(y).

B

Since 2A(E) is a nonnegative function ofy and 2 is a positive measure, the fact
that the integral is equal to zero implies that 2A(E) 0 for almost all
yJ.

LEMMA 1.2. If E S and 2(E) 0, then 2(Ez-1) 0 for almost all (2)
zS.

Proof Given a nonempty, proper subset A of {1, 2,..., N}, let B
{1, 2, N} A and define the set Da {x I-I.a I. 2B(Ex) > 0}. By
Lemma 1.1, 2a(Da) 0 for all such sets A. Suppose
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where the union runs through all nonempty, proper subsets of {1, 2,..., N},
and let K E w D. Then 2(K) 0. For any such subset A of (1, 2,..., N},
let zra be the projection of S onto I-I,a I,. The claim is that for z
(z,..., Zs) K,

Before proving the claim, it should be noted that 2(Fz) 0, since for any set A,
(zx, Zs) Kimplies that (zl, zs) Da x I-I,#a I,, which in turn implies
that for B (1, 2,..., N} A, 2B(E.,tz)) 0.
To prove the claim, suppose that u (u1,..., us) Ez- and consider the

three cases:

CaseI. Ifu > z, thenuz uE_ F,. (Recall thatu > zifus > zfor
all 1,..., N.)

Case II.
zCK.

If u < z, then uz z E, which contradicts the assumption that

Case III. Ifu z and u z, then u. _< z, for n A, where A is a nonempty,
proper subset of {1, 2,..., N}. If

B= {1,2,...,N} ,4 {nlu. > z,},

we conclude that uz w (wt,..., ws) E, where w. z. for n A and
w. u, for n B. Consequently, u E,,,tz) x I-I,a I, F, and

(z-) _< 2(r,) 0.

The fact that L(S) is closed under multiplication is an easy consequence of
these two lemmas. Rothman [9] shows that Lemma 1.2 is a sufficient condition.

THEOREM 1.3. The space L(S) is a closed subalgebra of M(S).

DEFINITION. We denote the space of all nonzero, measurable semicharacters
on S, identified almost everywhere with respect to 2, by .

Baartz has shown in Ill that all of the semicharacters on S are characteristic
functions of sets A of the form A I-I {a,, c,), c. _< b,, where the left-hand
bracket is open or closed depending on whether it is open or closed in {a,, b,},
and the right-hand bracket is open or closed. The proof of the following
theorem is a fairly standard application of the Riesz Representation Theorem
and can be found in Lardy [5] and Rothman [9]. Crucial to this whole theory
is the fact that elements of L(S) can be considered as either absolutely con-
tinuous measures or absolutely integrable functions, which is guaranteed by the
Radon-Nikodym Theorem. The symbol [(L(S)) stands for the maximal ideal
space of La(S); that is, the space of all nonzero, multiplicative linear functionals.
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THEOREM 1.4. Each Z gives rise to an h //[(LI(S)) by

h(p) fsZ dP for all p D(S).

Conversely, each h l(l.)(S)) defines a measurable sernicharacter Z such
that h(p) s Z dp.

The sets I-[ {a,, c}, regardless of whether the right brackets are open or
closed, determine the same member of g(L(S)) since their characteristic func-
tions are equal almost everywhere with respect to 2. Hence, we obtain the
following theorem.

THEOREM 1.5. The space , with the Gelfand topology, is homeomorphic to

I-I (an, bn], with the interval topology. The elements of form a semiyroup under
minimum multiplication.

The idea of this proof is the following. We show that the set of functions
{/[p D(S)} are continuous on I-[nl (an, bn’], separate points, vanish at
infinity, and do not all vanish at a particular point. This implies that the
topologies are equivalent.

Proof. It should be mentioned that we are using the same interpretation of
(an, o] as was defined earlier. We can now identify I-/(an, bn] and $ by asso-
ciating to each element (xn)6 I-I (an, bn] the semicharacter ;t which is the
characteristic function of I-I (an, xn-l; where now, if Xn , we interpret
(an, xn] as I-an, c-I. In order to see that the topologies coincide, let x (xn)
I-I (an, bn], ! LI(S), and e > 0 be given. Since is absolutely continuous, we
can find an open neighborhood G of I-[ (an, xn] of the type G I-I (an, dn)
(where (an, dn)= (an, bn’] if xn bn < c) such that

Il(I-I (a., d)) < Il(I-I (a, Xn]) + .
Similarly, there exists a compact set K_ I-I (an, xn), which we can assume
without loss of generality is of the type K 17I [en, cn], such that

In this manner we obtain an open neighborhood (in the interval topology) of
(xn), namely I-I (cn, dn), with the property that for any

I.u(l-I (an, Yn]) .u(rl (an, Xn])[ < e.

Therefore, the Gelfand image/ of/ is continuous on g with the interval topology
which implies that the Gelfand topology is weaker than or equal to the interval
topology.
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Both , with the Gelfand topology, and I-I (an, bn], with the interval topology,
are locally compact spaces. Choose # LI(s) and without loss of generality,
p > O. We want to show that/ vanishes at the of the one-point compactifi-
cation of l-[ (an, bn]. Define the measure Pk L(ak, bk) as follows"

I,x Ex I..k(E)
n= n=+

Given an e > 0, choose a compact set Ck (ak, bk) such that

V((a, b) C) < e.

Suppose t is the minimal element of C and define K Its, b]. If x
(x) K, then for some k, we must have that x < t. Hence,

(x) #( (a., x.])

I. x (ak, Xk] X I.flkn=l n=k+l

k((ak, Xk])

from which we conclude that vanishes at .
To see that not all of the functions in { D(S)} vanish at any particular

point of (a, b.], let x (x) e (a,, b.]. Choose e > 0 with the property
that x- e(a,,b] for all n. IfA [x- e,x,], define D(S) by
v(E) 2(E A). Then #(x) V(H (a,, x,]) es > 0. Finally, notice that
the set {#IV D(S)} separates points of H (a,, b,] by the Gelfand theory.
Hence, by a theorem in general topology [6], the two topologies coincide.

The following propositions are easy generalizations of the ones given by
Lardy and hence, they will be included here without proof.

Every proper closed ideal in L(S) is contained in a reyular,

PROPOSITION 1.7. The al#ebra I2(S) is regular.

PROPOSITION 1.8. The al#ebra I2(S) is symmetric and semisimple.

DEFINITION. A sequence {un} in a Banach algebra A is called an approximate
identity for A if limn-.oo unx x for all x A.

THEOREM 1.9. The al#ebra LI(S) possesses approximate identities.

Lardy points out in [5-1 that if I is a bounded interval, then LI(1) is singly
generated. In fact, it is generated by the function which is identically one on I.
In the case of Lt(S), however, it is still unknown as to whether or not it is even
finitely generated.

PROPOSITION 1.6.
maximal ideal.
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The next two ideas are essentially different from those presented in Lardy’s
paper and hence are given here in complete detail. Recall that the Choquet
boundary of LI(S) is the set of points in which possess unique representing
measures.

PROPOSITION 1.10. The Choquet boundary of LI(S) equals .
Proof. Since L(S) is symmetric, the Stone-Weierstrass theorem implies that

the Gelfand image of L(S) is dense in Co(). Hence, suppose that ;( and
L1, 22 are representing measures for . In other words,

ffd21 =.f(;0 ffd22 for allf LI(S);

or equivalently, f d(21 22) 0 for all f L(S). The fact that L(S) is
dense in Co() implies that 21 ,2 0, or/],1 /2.

Although LX(S) does not contain point masses, convolving a point mass 6x
with a particular measure in L(S), depending on x, yields a new measure in
L(S) for almost all (2) points x in S. However, the proof of the following
proposition will point out that convolving 6,, with the wrong measure in LI(S)
will yield a measure which is not in L(S), showing us that unlike in the group
algebra case, L(S) is not an ideal in M(S). For certain topological semigroups
R, Rothman, in [9], uses a result along the lines of the following proposition to
obtain a concrete representation of the measurable semicharacter associated with
a multiplicative homomorphism (see Theorem 1.4). In other words, if
h /g(L1(R)), the function defined by t(x) h(l,6)/h(l)for some/ U(R)
with 1,. L(R) and h(/) : 0 is a measurable semicharacter. Hence, the next
proposition gives us an alternative proof to the second part of Theorem 1.4.

PROPOSITION 1.11. If X (X.) ]-[ (a., b.), then there exists a measure

l LX(S) such that l*6x LI(S).

Proof Define the set A by A {y (y.) S x. < y. < min (b., x. + 1)}
and notice that 0 < 2(A) < . If # is given by/(E) 2(E c A) then the
support of/ is contained in A. For any B

_
S with 2(B) 0,

la*fx(B)=fssZa(ty)d(t)dfx(Y)
_Is 7.a(tx) dla(t)

.It ’Bx-’(t) d#(t)

la(Bx- 1)

2(Bx -1 A).
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However, Bx- c A {y A yx B } {y A Y B} A c B. Therefore,
,() ( r ) o.

2. Products of intervals with a group

This section is inserted merely as a stepping stone to work in further sections.
The ideas of the proofs are very straightforward and similar to those in Section
and for that reason, will be omitted.
As in the previous section, let S I-[ {a,, b,} and suppose that G is a locally

compact Abelian group. Throughout this section, T will denote the topological
semigroup S x G. If is Lebesgue measure on S and m is Haar measure on G,
define/z m. Then/t is a measure on T and we can consider the space
LI(T,/t). This space turns out to be a closed subalgebra of M(T) and we can
summarize the major results in the following theorem.

THEOREM 2.1. (1) Each 9ives rise to an h /(LX(T)) by

h(v) .It 7, dv for all v I.)(T).

Conversely, each h I(LI(T)) defines a measurable semicharacter Z such
that h(v) r 7, dv.

(2) The space " is equal to x d.

(3) The Gelfand topolo#y on ’ " (I’I (a., b,])x ( coincides with the
Cartesian product topology, where I-I (a,, b,] has the interval topolo#y and d has
the compact-open topolo#y.

The results corresponding to semisimplicity, approximate identities, and
existence of a measure v I_)(T) such that v.6, D(T) are exactly the same as
in Section 1.

3. Homomorphie images

Suppose U is a locally compact topological semigroup and T and # are as in
Section 2. Let be a continuous homomorphism of T onto U and define by v
by v(E) p(ff-I(E)) for all Borel sets E

_
U.

In order to verify that v is indeed an element of M(U), first notice the v(0)
p(-1(0)) p(0) 0. We see that v is bounded since v is positive and v(U)
p(-I(U)) p(T) < . If {E.}= are disjoint sets in U,

v (w E.) p(@- (w E.)) /.t (w (0- I(E.)) /frO- I(E.)) Y v(E.).

Finally, if E
___

U, 5 > 0 is given, and E1 qt-I(E), choose a compact set

Ka
_
T such that/(E1 K1) < 5. If K (K1) then

v(E K) #(d/ (E K)) I.t(0-1 (E) -1 (K))

p(E, $-’(g)) < p(E1 gl) < 5.

Therefore, v M(U).
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Throughout this section we consider the space L(U, v) where U is a homo-
morphic image of T, and v is defined by v(E) /(@-I(E)). The following
lemma is needed in order to show that LI(u, v) is a subalgebra of M(U).

LEMMA 3.1. If v(E) O, then v(Ex-1) 0 for almost all (v) x U.

Proof Define A {x U]v(Ex-1) > 0} and suppose v(A) > 0. If
Eo if-I(E) and Ao -I(A), then/(Eo) 0 and/(Ao) > 0. For Xo Ao
and x (Xo), we assert ff-l(Ex-1)= Eoxff 1. This follows since Yo
k-l(Ex-1) if and only if (Yo) Ex-1 if and only if d/(yo)x E if and only if
ff(yo)(Xo) E if and only if d/(yoXo) E if and only if XoYo d/-(E) Eo if
and only if Yo Eoxff 1. Therefore,

l(Eoxff 1) l(- X(Ex- 1)) v(Ex- 1) > 0 for all Xo Ao,

which is a contradiction arising from the analog of Lemma 1.2 for T.

From this lemma, the proof of the following theorem proceeds exactly as in
1.3.

THEOREI 3.2. The space LI(u) is a closed subalgebra of M(U).
Similarly, the proof of the characterization of the maximal ideal space is

exactly the same as in the case of a finite product of intervals.

THEOREM 3.3. Each 7. 0 gives rise to an h #(LI(U)) by

h(p) .fI 7. dp for all/ LI(U).

Conversely, each h I(I.)(U)) defines a measurable semicharacter 7. 0 such
that h(p) v 7. dp.

The next project is to identify the Gelfand topology. In the following result
and remark, it is noticed that 0 can be embedded in ’, telling us quite a bit
about the structure of 0 since the space was thoroughly described in 2.1.
Then a precise description of the subset of identified with 0 is given.

THEOREM 3.4. If b*" t) - is defined by b*() , then p* is one-to-
one and continuous with respect to the Gelfand topologies on l) and .

Proof. To see that the range of k* is actually , first note that @*() is
clearly a semicharacter on T. If *() 7. were zero almost everywhere (p),
choose E

_
T with the property that 7.(t) 0 for all E and p(T E) 0.

Letting D @(E), we see that (u) 0 for all u D since if u @(t) D
where tE, then (u) o@(t) 7.(t) 0. Moreover, v(U D) O,
since

v(V D) (,-’(v D)) (,- (V) ,-
=/(T ,-’(D)) _< (T E) O.

This is a contradiction since 0.
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The map * is one-to-one, for suppose 1, 2 U and 1 2 as elements of
0. Then for some D

_
U with v(D) > 0, we have l(u) # 2(u) for all u D.

If K -I(D), then p(K) > 0 and for y K,

*(I)(Y) l(tCy)) g: 2(tCy))= *(I)(Y)

since (y) e D. Therefore *(1) - *(2) as elements of .
In order to establish the continuity of *, let {,}, e 0 with , in the

Gelfand topology of 0. We must verify that if *(,) Z, and *()
then ) ) in the Gelfand topology of . In other words, it must be shown
that IT l,a dfl --+ IT Z dfl for all fl L(T). Fix a measure fl L(T) and define
the measure n M(U) by

t(E) fl(d/-1(E)).

Then zt e LI(U), since for any set B U with v(B) 0, we have p(,- I(B)) 0
which implies fl(,-’(B)) 0, and thus, t(B) 0. Since + , we have

Therefore, the proof will be complete if we can show that v dTc T Z dfl
for all a and v drc T rift. The image of is contained in the closed unit
disc A, and hence there is a decomposition of A, say {B}.= 1, such that if A
{u e U (u) e B}, and b is an arbitrary point of B, and e > O, then

Suppose C 0-(A3. Then C {t e T )(t)e B}, since t e C implies
0(t) e A implies )(t) 0(t) e B, and t e {t e T )(t) e B} implies )(t)

0(t) e B implies 0(t) e A implies e 0-1(A3 C. Therefore, 2’= bfl(C3
approximates r Z dB and all that remains to be seen is that

2 b,fl(C3 2
i=1 i=1

and this is because fl(C) fl(g/-l(Ai) 7z(Ai).

Remark. The one point compactifications of/) and , written 0oo and
respectively, are obtained by adjoining the zero semicharacter. The map
$*" 0oo -+ oo, which extends $* by sending the zero semicharacter on U to the
zero semicharacter on T, is a one-to-one, continuous mapping of a compact
space onto a compact space, namely ’*oo(0). Therefore, $*oo is a homeomor-
phism, from which we conclude that $* is a homeomorphism.

DEFINITION. Suppose X and Y are topological spaces and p" X -+ Y is a
continuous, onto mapping. Thefibre over a point Yo e Yis the setp-(yo)

_
X.

As a corollary to the previous theorem, we identify the image of
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COROLLARY 3.5. The space is homeomorphic to

{7. " 7. is constant on fibers of T}.

Proof. If A {7. 6 1 is constant on fibers of T}, we must show that
*(0) A. Suppose that 0 and 7. *() o. ThenT.A since
if x and y are in the same fiber of T, then (x) (y), and hence, 7.(x)
o (x) o O(Y) 7.(Y)-
On the other hand, suppose that 7. e A and define e 0 by

(u) 7.(-1(u)) for all u e U.

This is well defined since 7. is constant on fibers of T. Moreover, is not zero
almost everywhere (v) for if B

_
T has the properties that /(B) > 0 and

Z(t) - 0 for all B, then 7.(t) :/: 0 for all e B ff-((B))
__

B. Con-
sequently, (u) 4:0 for all u b(B), where

v(O(B)) /ffO-’(O(B))) > (B) > 0.

To see that is a semicharacter, suppose ul, u2 e U. Notice that

q,-(u,)O-(u) =_ -(uu),
since x -1(ul), y ff-l(u2) implies (x) ul, (y) u2 implies k(xy)
O(x)k(y) uu2 implies xy ff-l(uu2). Therefore, ifx k-l(ua), y ff-(u2)
we have

(u,u) z(-’(uu)) z(xy)= z(x)z(y)

z(-(u))z(- (u)) (u)(u).

Finally, *() 7., since ff*()(t) ((t)) 7.(ff-’((t))) 7.(t).

The following three results are very straightfowrard and will complete our
study of L(U).
PROPOSXON 3.6. The algebra L(U) is semisimple.

PROPOSITION 3.7. The algebra Lx(U) possesses approximate identities.

PROPOSITION 3.8. If U (]--I {a,, b,) G), then there exists a measure
L (U) such that t 6, L (U).

4. Examples

In this section, two specific types of semigroups are considered. Both of these
semigroups can be realized as continuous homomorphic images of semigroups of
the form I-[ {a,, b,} x G, where G is a locally compact group, and hence the
theory of Section 3 is applicable. In the first example, we deal with the quotient
spaces as discussed in [9].
Through this section, the semigroup T and the measure/ are defined as in

Section 2 of this paper.
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Example 4.1. Suppose I is an ideal in T and U T/L Then the canonical
map k" T T/I U is a continuous onto homomorphism. It is well known
that the space (T/l) {I} is homeomorphic to T /. Therefore, the measure
v LI(U) defined by v(E) /(-I(E)) can also be defined in the following
manner"

v(E) p(E) for E T/I {I} and v({I}) /(I).

As in the preceding section, define *" 0 by *() 7 k. Then,
by 3.5, we know that

0 - {Z Z is constant on fibers of T}

{ is constant on 1}.

In this particular example, it should be noted that this last fact could be easily
verified on a straightforward manner rather than resorting to the previous, more
general result.

The following example generalizes the algebras discussed by Bergman in [2].
In it, the idea of an algebraically irreducible semigroup is extended to some
degree and the L-theory of such semigroups is discussed. The manner in which
the first three sections were developed was geared precisely to the study of these
new types of semigroups.

Example 4.2. Before we begin, some definitions and notation are needed.

DEFINITION. If U is a compact commutative semigroup with identity, and
x, y U, then x y(La) if xU yU.

It is a known fact that the quotient space, U/c.W, is again a compact semigroup
which is denoted by U’. Let

H the maximal subgroup of U containing the identity 1,
and

K the kernel of" U the minimal ideal contained in U.

It is known that H is a compact topological group. The semigroup U under
consideration in this example is defined next.

DEFINITION. We call U a quasi-irreducible (Q I) semi#roup if:
(1) U is a compact, commutative semigroup with identity 1;
(2) U’ I-I [a., b.], where [a., b.] are idempotent intervals;
(3) if q" U -/ U’ is the canonical map, then there exists a subsemi-

group P U such that q] is an isomorphism onto U’;
(4) U is the union of the orbits of elements ofH under action by P.

It should be pointed out that the third condition in this definition is implied
by the first two. The proof of this fact, which will be given later, is very similar
to a proof given by Hunter in [4].
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Because both H and P are contained in U, we can define the map : H x P
U by $((h, e)) he. By part (4) of this definition, is onto, and $ is clearly
continuous since multiplication is continuous. To see that $ is a homo-
morphism, choose (h, e), (k, f) H x P. Then

$((h, e)(k,f)) $(hk, ef) (hk)(ef) (he)(kf) $(h, e)$(k,f).

Therefore, $ satisfies all of the conditions of the previous section. Hence, if we
define v LI(U) by v(E) /(-I(E)), then v > 0, Ilvll < oo, v(D) > 0 for D
open in U, and D(U, v) is a closed subalgebra of M(U). Furthermore, the
maximal ideal space of LI(u) can be identified with 0.
By part (4) of the definition, U xe Hx. We now claim that this union is

disjoint. Suppose x, y e P, x 4: y, and Mx and Mr are the maximal groups in
U containing x and y respectively. It is a standard fact in semigroup theory that
M c Mr 0. We next show that Hx is a group in U containing x. If h, k H,
then (hx)(kx) (hk)x2 (hk)x, and thus, Hx is closed under multiplication.
The element x lx Hx is the identity for Hx since x(hx)= hx2= hx.
Finally, if hx Hx, then h-ax Hx and (h-Xx)(hx) lx2 x. From this
we conclude that Hx

_
M,. Similarly, Hy

_
Mr and the fact that M c My

0 implies that Hx Hy
_
M c Mr 0, which proves the claim.

Suppose Lx {y U xU yU} the equivalence class of x(modulo ),
and

Tx:H Lx byT(h) hx.
For h H, hx Lx since

and
(hx)U x(hU)

_
xU

xU (xhh-t)U (hx)(h-1U)
_

(hx)U.

Observe that Tx is a homomorphism since

T,(hlh2) hh2x hlh2x2 (hlx)(h2x) Tx(hl)T,(h2).

Finally, Tx is onto, since if z Lx and z ! Tx(H) Hx, then z Hy for some
y e P, y # x. This implies that z Ly (since Hy Ly via the map Tr), which
is a contradiction since L c Lr 0. Therefore, Hx L,.
We can now analyze the structure of the maximal ideal space of I)(U).

Partition H x P as follows"

{T-’(z) x {x}[z eLx}x,.
Notice that this partition corresponds to the fibers in H P with respect to gt,
for if x, y e P, x y, then Hx Hy 0. Consequently, in each fiber, there
is only a single element of P and hx kx if and only if h, k T; (hx). There-
fore, by 3.5, we have

0 {) x P ) is constant on sets of the form (1)}.
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We conclude this section with the following proposition"

PROPOSITION 4.3. Conditions (1) and (2) in the definition ofa Q I semitIroup
imply condition (3).

Proof. If E is the set of idempotents of U, then we assert that E is isomorphic
to U’. Givenae U’andx, yq-l(a),wehavexU=yU. To see thatxy
q-l(a), first note that Lxr (Lx)(Lr) (Lx)(Lx) Lx, since U’ is idempotent.
Therefore, x xy(modulo ), from which we conclude that xy q- (a) and
hence, q- (a) is also compact. Thus, q- (a) contains an idempotent element e,
and we can write q-l(a) Le. We have just seen that Le He, and con-
sequently, Le is a group with identity element e. Moreover, since Le is a group,
it can contain only one idempotent, namely e. Therefore, q [E is one-to-one and
onto and hence, an isomorphism.
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