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1. In this note, we consider some relations between some subspaces of H’(D)
invariant under multiplication by z and some classes of isometries induced by
linear fractional transformations mapping D onto D (l.f.t.). Here D
{[z[ < 1} and H(D), > p _> 1, denotes the standard Hardy class of holo-
morphic functions. Given a 1.f.t. b, let C, and V, be defined on H’ by C,f
f b and V,f (dp’)/’C,f. (Note that the definition of V depends on its
domain H.) C is a standard composition operator and is well known to be a
bounded linear map of H onto H (see [-5] for a discussion of composition
operators). V is clearly an isometry of H onto H, and further, F. Forelli has
shown that for p # 2, every isometry of H onto H has the form bV for some
1.f.t. q, where b C, [b[ [4]. We consider here the case where tk has a
fixed point on T ([z[ }, and for simplicity, we will assume b(1) 1.
Our main results are for H2; in Theorem we show that V is a bilateral shift,
and in Theorem 2 we show that a subcollection of {V} generates a reflexive
algebra which is related to a reflexive-type property of some other algebras.

2. Forc > 0, tR, let

c,t It + i(c- 1)-I]-t + i(c + 1)] -1,
and let CPc, t(z) (1 )(1 )-l(z )(1 z)-1 be the unique l.f.t.
such that b, t(, t) O, b, t(1) 1. Let Cc, and Vc, denote the corre-
sponding maps induced by bc, t, and for r > O, let

At(z) exp I-r(1 + z)(1 z)-x].
We note that by Beurling’s theorem, {Ar(z)H’} forms a decreasing family of
invariant subspaces of H with (], A,H {0}.

LEMMA 1. For D, there exists a unique c > O, R such that , t.

For r > 0, V, t(A,H) (A,c-,HI’).

Proof Consider ," ]--[ + D by (w) (w 1)(w + 1)- 1, where 1-[ +

{Re w > 0}. Then Re w e iff (w) , t, and, in fact,

c,, {zllz- c(c / 1)-Xl- (c / 1)-1},
the circle in D of radius (c + 1)-x tangent to T at 1. A direct computation
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shows that A,(, ,(z)) A,c-,(z) exp (itc-); since V(Hv) Hp, the lemma
follows. This can also be seen by observing that

’c,,(1) (1 -[[2)r(1 t)(l )-]-x c.

H2 2THEOREM 1. Vc -o H is unitarily equivalent to a bilateral shift of
infinite multiplicity.

H -o Hv.Proof Our proof will also give a representation for Vet
Consider

<, ," H,’(I-I +) __> H,,(H +)

by (Tc, ,f)(w) c- ilvf((w it)c- ), and

U: HV(I-[ +) - BY(D)

by (Uf)(z) 21/V(l z)-2/vf((1 + z)(1 z)-X). Then Tc, and U are
unitary, and

(U*f)(w) 2i/V(w + 1)-:/f((w- l)(w + l)-l).

We compute

(UTc,,U*f)(z)

U(211PCl/P(W- it + c)-ZlPf((w- it- c)(w- it + c)-l))

2Z/el/’(z(1 e + it) + + e it)-2/

f([z(1 + e + it) + c- it][z(1 c + it) + + c- it])

(4c(c + it)-2(1 Re, tz)-2)/l’f(c,t(z))
[dp’<, ,(z)]Xlvf(c ,(z)) Vc, ,(z).

When p 2, we take Fourier transforms and we get Vc,, unitarily equivalent to
Sc,, on L2(0, ), where

(Sc,,f)(x) c’12e-UXf(cx).

Clearly, L2(1, c)c L2(0, o) is a complete wandering subspace for Sc,, so
Vc, is a bilateral shift of infinite multiplicity (see [2] for basic facts about
shifts).

COROLLARY 1. The spectrum of V, is the whole unit circle T.

For any algebra of operators , Lat (’) denotes the lattice of dosed in-
variant subspaces of , and for a lattice of invariant subspaees , Alg ()
denotes the algebra of all operators leaving invariant all elements of Av. An
algebra ’ is said to be reflexive if Alg (Lat ()). Let be the weakly
closed algebra generated by {Vx,}R.
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THEOREM 2. Fix c > 0 and let do be a bounded linear map on n2. If
O((ArH2)+/- (ASH2)+/-) c ((Arc_ill2)+/- (Asc_lH2)+/-)

for all 0 < s < r, then .for any t, do Vc, sd Vc, A IA }.

Proof By Lemma and the representation obtained in the proof of Theorem
l, we have the spectral representation Vl,t j’ eta dP:t, where P is the
projection of H2 onto (A,H2)+/-. This yields a unitary " L2(0, o0) - H2 such
that -1V1,t is multiplication by eira and

’(L2(s, r)) (ArH2)+/- @ (ASH2)+/-.

(We note that is given by (oa)(z) x/2 j’ a(2)A(z)(l z) -1 d2, which
is the map used in [1, p. 195] and [6]. We can also obtain the above spectral
representation directly from this by a simple computation.) Hence, " produces
a unitary equivalence between and d//, the algebra of bounded multiplication
operators on L2(0, o). Clearly, Lat (d//) {L2(E)), for E c (0, c) measur-
able, where

L2(E) {f L2(0, )If(x) 0 a.e. x E},

and this lattice is generated by

{L2(s, r) 10 < s < r} {- ((AH2)+/- ) (AsH2)+/-)I0 < s < r}.

Thus, if for all 0 < s < r, (AH2)+/- (ASH2)+/- is invariant for , all L2(s, r)
are invariant for -1o -, which must therefore be a multiplication
operator. Hence, a’ which proves the theorem for the case c 1. If

O((AH2)+/- (A,H2)+/-) = ((A,c_tH2)+/- (A,c-tn2)+/-)

for some c > 0, 0 < s < r, then choose u R and apply (using Lemma 1) the
above case to the map Vc-,,u . This gives V-,,, o. , and since Vc, to
Vc_, I where -cu, we get Vc, M and the theorem is proved.

COROLLARY 2. (i) V,, induces a one-parameter croup eiven by

(V,t)" f e’t dP if c 1,

(Vc, t)= Vc,,, where u t(1 cS)(1 c)- tf c=/= 1.

(ii) z is a reflexive algebra.

Proof For c 1, (i) was shown in the proof of the theorem and for c 4= 1,
(i) follows from the group structure of the 1.f.t.’s; (ii) is a weaker statement
than the theorem.

3. If tk is a 1.f.t. with tk(e) e, e # 1, then analogous results hold
using z(z) exp [-r(e + z)(e z)-] in place of A,(z). This case does
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not exclude the case (1) 1, since there exist 1.f.t.’s (hyperbolic) fixing two
points on T; a l.f.t, with a unique fixed point on T is called parabolic. Since

pc,,(z) [(it- (c + 1))z

+ (-it + c- 1)]I-it- (c + 1) + (it + c- 1)z] -x,
we see immediately (see [3] or [5]) that qc,, is parabolic iff e 1. If e - 1,
then bc, ,(1) and b, ,() where

? (t + i(c- 1))(t- i(c- 1)) -a.
A l.f.t, without a fixed point on T is called elliptic, but our results do not apply
in this case.
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