ISOMETRIES INDUCED BY COMPOSITION OPERATORS AND INVARIANT SUBSPACES ${ }^{1}$

BY

Arthur Lubin

1. In this note, we consider some relations between some subspaces of $H^{p}(D)$ invariant under multiplication by z and some classes of isometries induced by linear fractional transformations mapping D onto D (l.f.t.). Here $D=$ $\{|z|<1\}$ and $H^{p}(D), \infty>p \geq 1$, denotes the standard Hardy class of holomorphic functions. Given a l.f.t. ϕ, let C_{ϕ} and V_{ϕ} be defined on H^{p} by $C_{\phi} f=$ $f \circ \phi$ and $V_{\phi} f=\left(\phi^{\prime}\right)^{1 / p} C_{\phi} f$. (Note that the definition of V_{ϕ} depends on its domain H^{p}.) C_{ϕ} is a standard composition operator and is well known to be a bounded linear map of H^{p} onto H^{p} (see [5] for a discussion of composition operators). V_{ϕ} is clearly an isometry of H^{p} onto H^{p}, and further, F. Forelli has shown that for $p \neq 2$, every isometry of H^{p} onto H^{p} has the form $b V_{\phi}$ for some l.f.t. ϕ, where $b \in \mathbf{C},|b|=1$ [4]. We consider here the case where ϕ has a fixed point on $T=\{|z|=1\}$, and for simplicity, we will assume $\phi(1)=1$. Our main results are for H^{2}; in Theorem 1 we show that V_{ϕ} is a bilateral shift, and in Theorem 2 we show that a subcollection of $\left\{V_{\phi}\right\}$ generates a reflexive algebra which is related to a reflexive-type property of some other algebras.
2. For $c>0, t \in \mathbf{R}$, let

$$
\alpha_{c, t}=[t+i(c-1)][t+i(c+1)]^{-1}
$$

and let $\phi_{c, t}(z)=(1-\bar{\alpha})(1-\alpha)^{-1}(z-\alpha)(1-\bar{\alpha} z)^{-1}$ be the unique l.f.t. such that $\phi_{c, t}\left(\alpha_{c, t}\right)=0, \phi_{c, t}(1)=1$. Let $C_{c, t}$ and $V_{c, t}$ denote the corresponding maps induced by $\phi_{c, t}$, and for $r>0$, let

$$
\Delta_{r}(z)=\exp \left[-r(1+z)(1-z)^{-1}\right]
$$

We note that by Beurling's theorem, $\left\{\Delta_{r}(z) H^{p}\right\}$ forms a decreasing family of invariant subspaces of H^{p} with $\bigcap_{r} \Delta_{r} H^{p}=\{0\}$.

Lemma 1. For $\alpha \in D$, there exists a unique $c>0, t \in \mathbf{R}$ such that $\alpha=\alpha_{c, t}$. For $r>0, V_{c, t}\left(\Delta_{r} H^{p}\right)=\left(\Delta_{r c}-1 H^{p}\right)$.

Proof. Consider $\psi: \Pi^{+} \rightarrow D$ by $\psi(w)=(w-1)(w+1)^{-1}$, where $\Pi^{+}=$ $\{\operatorname{Re} w>0\}$. Then $\operatorname{Re} w=c$ iff $\psi(w)=\alpha_{c, t}$, and, in fact,

$$
\alpha_{c, t} \in\left\{z| | z-c(c+1)^{-1} \mid=(c+1)^{-1}\right\}
$$

the circle in D of radius $(c+1)^{-1}$ tangent to T at 1 . A direct computation
${ }^{1}$ Research partially supported by a National Science Foundation grant.
shows that $\Delta_{r}\left(\phi_{c, t}(z)\right)=\Delta_{r c}-1(z) \cdot \exp \left(i t c^{-1}\right)$; since $V_{\phi}\left(H^{p}\right)=H^{p}$, the lemma follows. This can also be seen by observing that

$$
\phi_{c, t}^{\prime}(1)=\left(1-|\alpha|^{2}\right)[(1-\alpha)(1-\bar{\alpha})]^{-1}=c
$$

Theorem 1. $V_{c, t}: H^{2} \rightarrow H^{2}$ is unitarily equivalent to a bilateral shift of infinite multiplicity.

Proof. Our proof will also give a representation for $V_{c, t}: H^{p} \rightarrow H^{p}$. Consider

$$
T_{c, t}: H^{p}\left(\Pi^{+}\right) \rightarrow H^{p}\left(\Pi^{+}\right)
$$

by $\left(T_{c, t} f\right)(w)=c^{-1 / p} f\left((w-i t) c^{-1}\right)$, and

$$
U: H^{p}\left(\Pi^{+}\right) \rightarrow H^{p}(D)
$$

by $(U f)(z)=2^{1 / p}(1-z)^{-2 / p} f\left((1+z)(1-z)^{-1}\right)$. Then $T_{c, t}$ and U are unitary, and

$$
\left(U^{*} f\right)(w)=2^{1 / p}(w+1)^{-2 / p} f\left((w-1)(w+1)^{-1}\right)
$$

We compute

$$
\begin{aligned}
&\left(U T_{c, t} U^{*} f\right)(z) \\
&= U\left(2^{1 / p} c^{1 / p}(w-i t+c)^{-2 / p} f\left((w-i t-c)(w-i t+c)^{-1}\right)\right) \\
&= 2^{2 / p} c^{1 / p}(z(1-c+i t)+1+c-i t)^{-2 / p} \\
& \times f([z(1+c+i t)+1-c-i t][z(1-c+i t)+1+c-i t]) \\
&=\left(4 c(c+1-i t)^{-2}\left(1-\bar{\alpha}_{c, t} z\right)^{-2}\right)^{1 / p} f\left(\phi_{c, t}(z)\right) \\
&= {\left[\phi_{c, t}^{\prime}(z)\right]^{1 / p} f\left(\phi_{c, t}(z)\right)=V_{c, t}(z) }
\end{aligned}
$$

When $p=2$, we take Fourier transforms and we get $V_{c, t}$ unitarily equivalent to $S_{c, t}$ on $L^{2}(0, \infty)$, where

$$
\left(S_{c, t} f\right)(x)=c^{1 / 2} e^{-i t x} f(c x)
$$

Clearly, $L^{2}(1, c) \subset L^{2}(0, \infty)$ is a complete wandering subspace for $S_{c, t}$, so $V_{c, t}$ is a bilateral shift of infinite multiplicity (see [2] for basic facts about shifts).

Corollary 1. The spectrum of $V_{c, t}$ is the whole unit circle T.
For any algebra of operators \mathscr{A}, Lat (\mathscr{A}) denotes the lattice of closed invariant subspaces of \mathscr{A}, and for a lattice of invariant subspaces $\mathscr{L}, \operatorname{Alg}(\mathscr{L})$ denotes the algebra of all operators leaving invariant all elements of \mathscr{L}. An algebra \mathscr{A} is said to be reflexive if $\mathscr{A}=\operatorname{Alg}(\operatorname{Lat}(\mathscr{A})$). Let \mathscr{A} be the weakly closed algebra generated by $\left\{V_{1, t}\right\}_{t \in \mathbf{R}}$.

Theorem 2. Fix $c>0$ and let Φ be a bounded linear map on H^{2}. If

$$
\Phi\left(\left(\Delta_{r} H^{2}\right)^{\perp} \ominus\left(\Delta_{s} H^{2}\right)^{\perp}\right) \subset\left(\left(\Delta_{r c^{-1}} H^{2}\right)^{\perp} \ominus\left(\Delta_{s c^{-1}} H^{2}\right)^{\perp}\right)
$$

for all $0<s<r$, then for any $t, \Phi \in V_{c, t} \circ \mathscr{A}=\left\{V_{c, t} \circ A \mid A \in \mathscr{A}\right\}$.
Proof. By Lemma 1 and the representation obtained in the proof of Theorem 1, we have the spectral representation $V_{1, t}=\int_{0}^{\infty} e^{i t \lambda} d P_{\lambda}$, where P_{λ} is the projection of H^{2} onto $\left(\Delta_{\lambda} H^{2}\right)^{\perp}$. This yields a unitary $\mathscr{F}: L^{2}(0, \infty) \rightarrow H^{2}$ such that $\mathscr{F}^{-1} V_{1, t} \mathscr{F}$ is multiplication by $e^{i t \lambda}$ and

$$
\mathscr{F}\left(L^{2}(s, r)\right)=\left(\Delta_{r} H^{2}\right)^{\perp} \ominus\left(\Delta_{s} H^{2}\right)^{\perp} .
$$

(We note that \mathscr{F} is given by $(\mathscr{F} a)(z)=\sqrt{ } 2 \int_{0}^{\infty} a(\lambda) \Delta_{\lambda}(z)(1-z)^{-1} d \lambda$, which is the map used in [1, p. 195] and [6]. We can also obtain the above spectral representation directly from this by a simple computation.) Hence, \mathscr{F} produces a unitary equivalence between \mathscr{A} and \mathscr{M}, the algebra of bounded multiplication operators on $L^{2}(0, \infty)$. Clearly, Lat $(\mathscr{M})=\left\{L^{2}(E)\right\}$, for $E \subset(0, \infty)$ measurable, where

$$
L^{2}(E)=\left\{f \in L^{2}(0, \infty) \mid f(x)=0 \text { a.e. } x \notin E\right\}
$$

and this lattice is generated by

$$
\left\{L^{2}(s, r) \mid 0<s<r\right\}=\left\{\mathscr{F}^{-1}\left(\left(\Delta_{r} H^{2}\right)^{\perp} \Theta\left(\Delta_{s} H^{2}\right)^{\perp}\right) \mid 0<s<r\right\} .
$$

Thus, if for all $0<s<r,\left(\Delta_{r} H^{2}\right)^{\perp} \Theta\left(\Delta_{s} H^{2}\right)^{\perp}$ is invariant for Φ, all $L^{2}(s, r)$ are invariant for $\mathscr{F}^{-1} \circ \Phi \circ \mathscr{F}$, which must therefore be a multiplication operator. Hence, $\Phi \in \mathscr{A}$ which proves the theorem for the case $c=1$. If

$$
\Phi\left(\left(\Delta_{r} H^{2}\right)^{\perp} \ominus\left(\Delta_{s} H^{2}\right)^{\perp}\right) \subset\left(\left(\Delta_{r c^{-1}} H^{2}\right)^{\perp} \ominus\left(\Delta_{s c^{-1}} H^{2}\right)^{\perp}\right)
$$

for some $c>0,0<s<r$, then choose $u \in \mathbf{R}$ and apply (using Lemma 1) the above case to the map $V_{c^{-1}, u} \circ \Phi$. This gives $V_{c^{-1}, u} \circ \Phi \in \mathscr{A}$, and since $V_{c, t^{\circ}} \circ$ $V_{c^{-1}, u}=I$ where $t=-c u$, we get $\Phi \in V_{c, t} \circ \mathscr{A}$ and the theorem is proved.

Corollary 2. (i) $V_{c, \text { t }}$ induces a one-parameter group given by

$$
\begin{aligned}
& \left(V_{1, t}\right)^{s}=\int e^{i s t \lambda} d P_{\lambda} \text { if } c=1 \\
& \left(V_{c, t}\right)^{s}=V_{c, s} \quad \text { where } \quad u=t\left(1-c^{s}\right)(1-c)^{-1} \quad \text { if } c \neq 1
\end{aligned}
$$

(ii) \mathscr{A} is a reflexive algebra.

Proof. For $c=1$, (i) was shown in the proof of the theorem and for $c \neq 1$, (i) follows from the group structure of the l.f.t.'s; (ii) is a weaker statement than the theorem.
3. If ϕ is a l.f.t. with $\phi\left(e^{i \theta}\right)=e^{i \theta}, e^{i \theta} \neq 1$, then analogous results hold using $\tilde{\Delta}_{r}(z)=\exp \left[-r\left(e^{i \theta}+z\right)\left(e^{i \theta}-z\right)^{-1}\right]$ in place of $\Delta_{r}(z)$. This case does
not exclude the case $\phi(1)=1$, since there exist l.f.t.'s (hyperbolic) fixing two points on T; a l.f.t. with a unique fixed point on T is called parabolic. Since

$$
\begin{aligned}
\phi_{c, t}(z)= & {[(i t-(c+1)) z} \\
& +(-i t+c-1)][-i t-(c+1)+(i t+c-1) z]^{-1}
\end{aligned}
$$

we see immediately (see [3] or [5]) that $\phi_{c, t}$ is parabolic iff $c=1$. If $c \neq 1$, then $\phi_{c, t}(1)=1$ and $\phi_{c, t}(\gamma)=\gamma$ where

$$
\gamma=(t+i(c-1))(t-i(c-1))^{-1}
$$

A l.f.t. without a fixed point on T is called elliptic, but our results do not apply in this case.

Bibliography

1. P. R. Ahern and D. N. Clark, On functions orthogonal to invariant subspaces, Acta. Math., vol. 124 (1970), pp. 191-204.
2. P. A. Fillmore, Notes on operator theory, Van Nostrand Reinhold, New York, 1970.
3. L. R. Ford, Automorphic functions, McGraw-Hill, New York, 1929.
4. F. Forelli, The isometries of H^{p}, Canad. J. Math., vol. 16 (1964), pp. 721-729.
5. E. A. Nordgren, Composition operators, Canad. J. Math., vol. 20 (1968), pp. 442-449.
6. D. Sarason, A remark on the Volterra operator, J. Math. Anal. Appl., vol. 4 (1962), pp. 244-246.

Northwestern University

Evanston, Illinois

