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Introduction

Let XI,..., X, be independent Oaussian variables with mean zero and
variance one.

It is often of interest to determine the distribution of a polynomial in these
variables, the simplest cases being the linear and the quadratic ones.

These two cases are fairly simple and can be best (for our purposes) summed
up as follows. If P(XI,..., X,,) and Q(Xx,... Xn) in short P(X) and Q(X),
have the same distribution, then there exists an orthogonal transformation O
in R" such that

P QoO. (1)

In this paper we study the homogeneous cubic case. Our results are complete
only in the case of a pair of Gaussian variables and thus we limit ourselves to
this special case. The same methods, though, serve to uncover some results both
for the cubic case in an arbitrary number of variables, as well as in the case of an
arbitrary polynomial in two variables.

Preliminaries

We are interested in polynomials of the type

P(x, y)= ax3 + bx2y + cxy2 + dy3

and their distribution function when x and y are independent Gaussian variables
with mean zero and variance one. This means that we are concerned with the
function

l’lP(’) If e-(X2+’2)/2 dx dy where Px {(x, y) e R2 P(x, y) < 2}.

Px

The function/p(2) is called the distribution of the polynomial P and can be
defined in terms of the identity

ei’(x’r)e -(x2+r2)/2 dx dy ex d#,(2) (2)

which holds for all real .
For the cases when P is a linear or a quadratic polynomial (2) can be evaluated

explicitly and one is led directly to conclude that there is a one-to-one relation
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between distribution functions and classes of polynomials equivalent under a
rotation as in (1).
Beyond the quadratic case there is no hope of evaluating (2) explicitly and the

analysis becomes more intricate.
The first thing to do is to parametrize classes of homogeneous cubic poly-

nomials equivalent under a rotation in a convenient way. Write

P(x, y)= rZ[(e3’0 + e-3’0) + (fieiO + fie-i)]

with and fl arbitrary complex numbers, and x r cos 0, y r sin 0.
It is convenient to set

AcosRe’, AsinRe

T 0- 30.
Then, after an appropriate rotation in the plane P(x, y) can be expressed as

P(x, y) 2r3A(cos R cos (30 + T) + sin R cos 0). (3)

It is clear that if the set of all homogeneous cubic polynomials is partitioned
into equivalence classes by the equivalence relation given in (1) then in each class
we have one polynomial such as (3), and the parameters A > 0, 0 < R < n/2,
0 < T < t serve to identify these classes in a one-to-one fashion.
We claim that the polynomials

el(x, y) r 3 COS 0 and P3(x, Y) r 3 cos 30

have the same distribution function, i.e.,/h,(2) /3(2) while they are clearly
not equivalent under a rotation. The contention above follows immediately
from the identity

e 30 dO e 0 dO

In terms of cartesian coordinates we have shown that the polynomials

P(x, y)= x3 + xy2 and Pa(X, y)= xa 3xy2

(plus those equivalent to these by means of rotations, and common scalar
multiples of these) have the same distribution. The rest of the paper is devoted
to showing that this is the only exceptional case. This is the content of the next
theorem.

THEOREM. Let P and Q be two homo#eneous cubic polynomials. If their
distribution functions coincide then either they are equivalent under an appropriate
rotation P QoO, or else one is equivalent to P1 At3 cos 0 and the other one
to P3 Ar3 COS 30.
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Proofof the theorem. Let #e(2) be given. Denote by p, the "moments" of P,
that is

#, P"(x, y)e -(x’-+r’-)/z dx dy 2" d/e(2).
R2

Notice that ]2n+ 0, n >_ 0.
Recall now the parametrization of P given in (3). Notice that 2 2A2

with a universal constant c2, and thus A is known right away. Next we show
that the knowledge of/, and/6 suffices to decide the vanishing of sin R cos R.
This product vanishes exactly if the polynomial in question is equivalent under
a rotation to either Pa At3 cos 0 or Pa At3 cos 30. A straightforward
computation gives

/.t4 c4(3 + 6 COS2 R sin2 R + 4 cos R sin3 R cos T)

/6 c6(l -t- 6 cos2 R sin2 R + 3 cos R sin3 R(sin2 R + 2 cos2 R) cos T)

The constants involve only A but neither R nor T.
Considering/, and ]-/6 as functions of R and T, it is clear that they take the

values 3c, and c6, respectively, if cos R sin R 0 or else if

and

3 cos R
cos T (from P4)

2 sin R

cos T -2
cos R 1

(from ]./6).
sinRsin2R + 2cos2R

These two equalities give

3 cos R cos R 1

4 sinR sinR + cos2R

which has three possible solutions in [0, r/2], namely R 0, re/2 or cos- 1/x/3.
But going back to the first equality with R cos -x l/x/3 one gets cos T
-(3/2)(1/x/2) which rules out cos- l/x/3.
Summing up, if we have/, 3c, and ]26 (?6 then sin R cos R 0 and

vice versa.
From now on we assume sin R cos R # 0.
Before proceeding it is convenient to observe that the knowledge of the

distribution function of P is equivalent to that of the distribution function of P
restricted to the unit circle. Indeed, observe that P(r, 0) r3p(1, 0) and thus

P"(r, O)e-r2/2 dr dO e -r2/2 r3n dr P"(1, 0)dO

showing that the moments of P(r, O) suffice to determine those of P(1, 0). Now
since we are dealing with the finite interval [0, 2hi these moments are enough to
determine the distribution of P(1, 0).
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Since A (see (3)) is already known, we consider for the rest of the paper that
we know the distribution function of

P(O) cosRcos(30 / T) / sinRcos0, 0 < 0 < 2re (4)

defined as
v(2) Lebesgue measure of

Determining R and T

The function v(2) introduced above grows steadily in the interval

min P(O) < 2 < max P(O).
0 _<0 _< 2rt 0 <0 < 2

In this section we aim at finding R and T, in (4), from the behavior of v(2) close
to 2 max P(O). It is convenient to proceed by steps.

(I) An elementary analysis shows that the function P(O) given in (4) takes
its absolute maximum in I-0, 2rc] only once, except in the case when T n and
9cosR > sinR.
Moreover one easily sees that, in the first case the maximum is taken at 0o

with (5/3)rc < 00 Oo(R, T) < 2re while in the second case the maximum is
taken again at 2rt Oo(R, rt). For T t we have the symmetry P(rt + 0)
P(z 0),0 < 0 < .
These facts can be proved analytically quite simply. However a look at the

accompanying Lissajous figures make them quite apparent. These figures can
be used later on to suggest some further facts that will be needed. For T
(k/8)rc, k 0, 1,..., 8 we have plots of x(O) cos (30 + T), y(O) cos 0,
0 < 0 < 2re.
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For fixed values of R and T consider the family of straight lines

cos Rx + sin Ry constant. (5)

The maximum value of P(O) corresponds to that straight line with largest pos-
sible value of (5), which intersects the Lissajous figure in question. A look at the
figures shows that this gives a single value of 0o if T 4: . For T this is the
case exactly if (cos R)/(sin R) > (1/9).

(II) Denote with 0o the (unknown) value of 0 where the absolute maximum
of P(O) is taken. In the case of T z, take (5/3) < 0o < 2. In the neigh-
borhood of 0o, P has a power series expansion

P(O) + (Zn(O 00)n, t2 < 0, max P(O).
n>_2 O_<O_<2n

Locally we get two power series in P by inverting (6), namely

0- 00 E Cen2n/2"- E C2n-1 (2n-1)/2 (7)
n>_l nl

The coefficients C, are determined in a straightforward fashion, the first few
equations are

2

202CIC2 -+- oaC13 0 (8)

02(C22 "k- 2C,C3)q- 3z3C2C2 -b 04C4 0.

It follows easily that the Czn are unambiguously determined while the C2n+1
are determined up to a common change in sign.
The distribution function of P(O), v(2), gives us some information about the

coefficients introduced above. To the left of 2 a the expansion

2n- v(2) b2.-l( 2)(2n-1)/2, ba > 0 (9)
nl

holds for 2 close enough to .
From the observations made earlier, it is now clear that if the absolute

maximum of P(O) is taken only once in 0 0 2, bzn_ 2C2n_ while if
this absolute maximum is taken twice b2,-a 4Czn-x. We postpone an
argument showing how to decide, from v(2) alone which of the two cases hold.
Taking this point for granted we can now compute and the coefficients C2,-
from v(2). From (8) we can find 2, but not 3.
Now notice that

cosRcos(30o + T) + sinRcos0o
(10)

22 --9 cos R cos (30o + T) sin R cos 0o
and we can solve for cos R cos (30o + T) and sin R cos 0o. Then all even-order
derivatives of P(O) at 0o are now known, i.e., we can determine all the
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coefficients 2.. From (8) we get (note that C1 0), C2 -(03C12)/(202) and
substituting in the third equation in (8) we get

4

and thus while 03 is not known directly we have z. But this does the job, since
the first and third derivatives of P(O) at 00 are

3 cos R sin (300 + T) + sinRsin00 0

27 cos R sin (300 + T) + sin R sin 00 603

which give 03 -(4/3)sin R sin 00. But (5/3)r < 00 < 2re, and 03 is thus
nonnegative. Summing up, we have determined the four quantities

sinRcos0o, sinRsin00, cos R cos (300 + T), cos R sin (300 + T).

The ratio of the first two of them (recall that R -: 0, re/2), and the condition
(5/3)t < 00 < 2re gives 00, and a fortiori R. It is now trivial to get T from
cos (300 + T) and sin (300 + T).

(III) In this last step we show how to distinguish from v(2) alone if the
absolute maximum of P(O) is taken once or twice. At this point the Lissajous
figures become quite suggestive.

Start with the observation that v(2), which satisfies v(2) + v(-2) 2n, can be

(a) differentiable for- < 2 < ;
(b) not differentiable for a single value 0 < 21 < ;
(c) not differentiable for more than two values of - < 2 < .

Case (c) calls for T :A n and thus P(O) takes its maximum only once. The other
two cases will be analyzed separately. If (a) holds then we have T n,
9 cos R > sin R only if cos R sin R l/x/2, which leads to

4N/ and 02
3

Now from v(2) one reads off and b l, see (9). T rr, 9 cos R > sin R implies
(4/3)v/(2/3) and bl2 2x/6. If these are the values obtained from v(2) and

the maximum was taken only once we would get t2 -(2/x/6). But the pair

leads to a contradiction since (10) gives

sinRcos0o m9 +
8 4
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and we would have 9/8 + 2/4 v/(50/48) > 1. In brief if (a) holds the case
T t, 9 cos R > sin R is exactly equivalent to

4/ and b2 2x/6.

If (b) holds and T -: r the left derivative of v(2) at 21 is larger than the right
derivative at this point. If T r, and -1 < -(cos R/sin R) < -(1/9) the
right derivative at 2, exceeds the left one, while if -(cos R/sin R) < -1 then
the left derivative at 21 exceeds the right one. On account of this, if (b) holds it
is enough that we learn how to separate the cases T - z and T

cos R
sin R

In the first case consider and 2, as functions of 0 T . (T) is strictly
decreasing while 2(T) increases strictly as T goes from 0 to n, and we have

lim(T) lim21(T) =3.Tn Tn

In the second ease, T n, consider and 2, as functions of -m < -(cos R/
sin R) < -1. We get

2 (3 cos R + sin R)3/ 2 cosR sinR.
3 (12 cos R)/

is first increasing and then it decreases to the value (32/27) for -(cos R/
sin R) -1. 2 steadily decreases from to 0.
The information given above can be used in an elementary analysis to prove

that if (b) holds an inspection of and 2 allows to decide between T and
T , (cos R/sin R) < (1/9). The proof of the theorem is now complete.
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