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Let V be an algebra of subsets of a space X and let P(X) denote the sigma
algebra of all subsets of the space X. For any Banach space Y, let a(V, Y) and
ca(V, Y) denote respectively the space of finitely additive and countably additive,
Y-valued functions on the algebra V. Elements of the space a(V, Y) are referred
to as vector charges and elements of the space ca(V, Y) are referred to as vector
measures.
For each vector charge # a(V, Y), the semivariation

p(., P(X) [o, oo3
is defined on a set E P(X) by the relation

p(E, ) sup (I/(A)I: A V, A
_

E).

The semivariation is increasing on the sigma algebra P(X) and subadditive on
the algebra V. Denote by ab(V, Y) the space of charges/ a(V, Y) for which
p(X,/) < and set cab(V, Y)= ab(V, Y)c ca(V, Y). Elements of the
spaces ab(V, Y) and cab(V, Y) are called respectively bounded charges and
measures. A vector charge/ a(V, Y) is said to be strongly bounded (abbre-
viated s-bounded) on the algebra V if lim,/t(A,) 0 for each disjoint sequence
A, V, n N. Denote by R(V, Y) the space of s-bounded vector charges on the
algebra V. The space R(V, Y) was introduced by Rickart [17] who gave a gen-
eral Lebesgue type decomposition of the space R(V, Y) for V a t-algebra.
Rickart [17], also has shown the general inclusion R(V, Y) = ab(V, Y). In [3]
it is noted that these spaces coincide for the class of Banach spaces introduced
by Gould [8] which can be seen to coincide with the class of Banach spaces not
containing the space o of sequences of scalars converging to zero.
The space ab(V, Y) is a Banach space with the norm 1[. p(X, .) and the

subspaces R(V, Y) and cab(V, Y) are norm closed. In addition, the space
ab(V, R) is a Banach lattice with the total variation norm and the order induced
by the cone

ab+(V, R) {/t ab(V, R):/(A) > 0 for all sets A e V}.

Peressini [16, pp. 41-42] gives a detailed discussion of the Banach lattice struc-
ture of the space ab(V, R).
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Let R/ denote the nonnegative reals and denote by C(V) the space of all
subadditive and increasing functions p" V- R+ which vanish at the empty
set. Elements of the space C(V) are referred to as contents on the algebra V. A
charge p ab(V, R) is said to be p-continuous for p C(V) if it is a continuous
function on the algebra Vin the topology generated by the semimetric p(A, B)
p(A + B) for A, B V, where + denotes the symmetric difference operation
in the algebra V. For a content p C(V), denote by ab(p, V, R) the space of
all p-continuous elements in the space ab(V, R). Two contents p, P2 C(V)
are said to be equivalent if p is p continuous for i, j 1, 2. For a charge
v ab +(V, R), the space ab(v, V, R) is topologically closed and forms a band.
Bochner and Phillips [1] have shown that the space ab(v, V, R) is the band
generated by the charge v ab + (V, R).

In this paper, the Lebesgue decomposition theorem for the space of Rickart
vector charges on a a-algebra, Rickart [17] is used to generate a general de-
composition in the space of s-bounded vector charges for each band in the
Banach lattice of scalar charges. The general decomposition theorem contains
the Lebesgue type decompositions given by Darst [5], Rickart [17], Nakamura
and Sunouski [12]. The decomposition theorem motivates a vector extension
of the notion of pure finite additivity. It is shown that the spaces of countably
additive and purely finitely additive vector charges are complementary when
restricted to the space of s-bounded vector charges. Extensions of the type
developed in this paper have been given by Traynor [18], [19], Huff [10],
Ohba [14], [15] and Uhl [21].

1. Band decompositions of the space of strongly bounded vector charges

Let V be an algebra of subsets of a space X and let Y be a Banach space. Let
Coo(V) denote the space of all subadditive, nonnegative extended functions on
the algebra V which vanish at the empty set. Elements of this space are referred
to as extended contents on the algebra V. Rickart [-17, Theorem 4.5, pp. 664-
665] established the following general decomposition.

THEOREM 1. Let W be a a-algebra ofsubsets ofa space X and let p Coo(W)
be a sigma subadditive, extended content. Then for each vector measure

kt cab(W, Y) there exist unique vector measures Pl, P2 cab(W, Y) and a set
N W such that:

(1)
(2)
(3)

P /’/1 "-l" 2"
The vector measure p is p-continuous.
For each set A W, p2(A N) 2(A) and p(N) O.

Application of the general Rickart decomposition requires the following
proposition. It may be established by applying the general properties of the
band projection operators given in Peressini [16, pp. 35-43] and Nakano [13,
pp. 18-28].
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PROPOSITION 1. Let V be an algebra ofsubsets ofa space X, let B c ab( V, R)
be a band and let w ab + (V, R) be arbitrary. Then

Pa(ab+ (w, V, R)) ab +(Paw, V, R)

where Pa denotes the projection operator generated by the band B (Peressini [16,
pp. 35-43]).

Before applying Proposition to Rickart’s theorem, it is appropriate to review
the construction and properties of the Brooks control measure for s-bounded
vector measures. Let/ R(V, Y) be arbitrary and note that the s-boundedness
insures that for each number e > 0, there exists a finite set Yl, Y2,. Y;, Y’,
all ofnorm one, and a number 6 > 0 such that Y /[(A) < 6 for k 1, 2,...,
n and A V yields I/(A)I < e (see [20] or [2]). Applying this property suc-
cessively for the sequence e, 1In, n N, one obtains a family yj Y’,
j 1, 2,..., k(n), n N of functionals of norm one, and a sequence of num-
bers 6,, n N such that lY;, pl(A) < 6, for j 1, 2,..., k(n) and A V
yields [/(A)I < 1/n. Set

1 lY.j /l (’)

and note that v(.) ab(V, R) and if v(A) < an/2n" k(n) for some set A V, then
]y;, p[(A) < 6, for j 1, 2,..., k(n) and consequently [p(A)I < 1/n. Thus,
the vector measure/t is v-continuous on the algebra V. Moreover, since the
charge v(.) is monotone, we have that p(., #) is v-continuous on the algebra V.

THEOREM 2. Let W be a sigma algebra of subsets of the space X and let
B c cab(W, R) be a band. Then for each vector measure I cab(W, Y) there
exists a unique decomposition # lt + 12, u cab(W, Y), 1, 2, such that
Y’ 1 B and y’ !2 B +/- for each functional y’ Y’. Moreover, if a measure
w cab+(W, R) is topologically equivalent to the semivariation p(., l) on the
sigma algebra IV, then the vector measure l is Paw-continuous and the vector
measure !2 is Pa_w-continuous.

Proof Let w cab +(IV, R) generate a uniformity equivalent to that of the
semivariation p(.,/0 (see [2, Theorems 1, 2, 3-1) and let v Paw. By the general
Rickart decomposition, there exist vector measures/a,/2 cab(W, Y) and a
set N W such that # / + /2,/t is v-continuous,/2(A) /2(A N) for
each set A IV and v(N) O.

Since the vector measure/1 is v-continuous, each signed measure y’ o/a for
y’ Y’, belongs to the band generated by the measure v (denoted Iv]). More-
over, I-v] c B so that y’ o/ B for each functional y’ Y’. From the charac-
terization of the complementary band Iv] +/- as those measures singular with
respect to v [1, pp. 319-320-1, and the relation y’o/2(A) y’ o/2(A c N) for
y’ e Y’ and A IV we conclude that y’ o/2 Iv] +/- for each functional y’ Y’.
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The existence of the decomposition is complete if it can be shown that
y’ o/22 c B for each y’ c Y’. Indeed, let u Pa+/-w and from the Riesz theorem
[16, pp. 39-401, u + v w p(., #). Applying the Rickart decomposition to
the charge #2 cab(W, Y) relative to the measure u cab/(IV, R), there exist
vector measures/22,1,/22,2 cab(IV, Y) and a set N’ IVwith/22 =/22,1 +/22,2,
the measure/22,1 is u-continuous, u(N’) 0 and for each set A c W,/22,2(A)
/22,2(A N’). Since the measure /22,1 is u-continuous and u(N’)= 0, for
each set A IV we have/22,1(A N’) /22,1(A c N c N’) 0. From the
representation/22,2 /22 /22,1 and the fact that/22 is supported by N and
/22,2 is supported by N’, we obtain

V2,2(A) V2,2(A c N N’)

for all A IV. Since the set N c N’ is a w-null set, the representation #
/21 "" //2,1 "" /22,2 yields/22,2(A ( N Nt) 0 for all A IV. Consequently,
/22, 2 0 and/2 /21 + /22.
To see that the decomposition is unique, assume that there are two decom-

positions /2 /2 + /2 with /2j cab(W, Y), for i, j 1, 2, and y’o/2 c B,
Y’ /22 B- for 1, 2, and all functionals y’ Y’. Then for each functional
y’ r’, y’o (/2 /22) y’o (/22 /2) and since the bands B and B +/- are
complementary, we conclude/2 /22 and/2 /222.
The last part ofthe theorem follows from the fact that the projection operators

Pa and Pus preserve absolute continuity.
Using the Stone representation of an algebra of sets as the algebra of open/

closed subsets of a totally disconnected compact Hausdorff space, (see Dunford
and Schwartz [7, pp. 38-44]) and the observation (which follows from the
existence of the Brooks control measure) that a vector charge is s-bounded on
an algebra V if and only if its image in the Stone space has a countably additive
extension to the generated a-algebra, it is possible to reformulate Theorem 2 for
algebras of sets.

THEOREM 3. Let V be an algebra ofsubsets ofa space Xand let B c ab( V, R)
be a band. Thenfor each vector charge/2 R(V, Y), there exists a unique decom-
position/2 /21 + /22, with/2i R(V, Y), for 1, 2, andfor each functional
y’ y’, y’ o/21 Bandy’ o/22 B-t. Moreover, ifw ab+(V, R) is topologically
equivalent to the semivariation p(.,/2) on the algebra V, then the charge/21 is

Paw-continuous and the charge/22 is Pazw-continuous on the algebra V.

Proof. Let V denote the Stone representation of the algebra V as the algebra
of open/closed subsets of a totally disconnected, compact Hausdorff space X
(see Dunford-Schwartz [7, pp. 38-44]) and let V denote the sigma algebra
generated by the algebra V. As noted above, the charge/2 c R(V, Y) generates
a vector measure e eab(, Y). The assertion of the theorem follows from
Theorem 2 applied to the charge cabV, Y) after noting that the image
B cab(V, R) of the band B is a band. This follows from the fact that the
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Hahn extension is a vector lattice, topological isomorphism between the spaces
cab(V, R) and cab(, R).
For the band of scalar charges continuous with respect to a nonnegative

charge, Theorem 3 is the standard Lebesgue decomposition. For the a-algebra
generated by the closed subsets of a locally compact, Hausdorff space, Theorem
3 gives the decomposition into regular and antiregular charges as discussed in
Ohba [14], [15]. The decomposition corresponding to the bands of countably
additive and purely finitely additive scalar charges are discussed in Section 2.
For each algebra of sets V, each Banach space Y, and each band B c ab(V, R),

one may introduce a projection operator on the space R(V, Y) as follows. For
each charge p R(Y, Y), set p* VB/ if and only if y’ #* pB(y’ 10 for
each functional y’ Y’. The corresponding operator for the complementary
band B +/- is defined analogously. Theorem 3 insures that the operator 1/ is well
defined and has the properties" Va2 l/n, p(., Vnp)< p(.,/t), R(V, Y)=
B(Y) @ B+/-(Y), where B(Y) Va(R(V, Y)) and BL(Y) I/B.(R(V, Y)).

2. Purely finitely additive vector charges

Let V be an algebra of subsets of the space X and let Y be a Banach space. A
vector charge # ab(V, Y) is said to be purely finitely additive if the only
p(., p)-continuous, countably additive scalar charge is the identically zero charge.
That is, a charge/ e ab(V, Y) is purely finitely additive if and only if

cab(p(., p), V, R) (0).
Denote bypfa(V, Y) the space ofpurely finitely additive, bounded vector charges
on the algebra V. It is clear that the definition of pure finite additivity extends
the scalar definition and as in the scalar case, cab(V, Y) pfa(V, Y) (0).
Moreover, in the space of s-bounded vector charges, the condition of countable
additivity (pure finite additivity) is equivalent to weak countable additivity (weak
pure finite additivity).
The equivalence of weak and strong countable additivity is an immediate con-

sequence of the Orlicz-Pettis theorem. To see that weak pure finite additivity
implies pure finite additivity, consider a vector charge # R(V, Y) for which
y’o la pfa(V, R) for each functional y’ Y’. From the strong boundedness
of the charge p, the set of scalar charges

{Y’ P(’)" Y’ Y’, ly’l 1}
is equivalent to a scalar charge v ab +(V, R) (the Brooks’ control measure).
Moreover, from the construction there exists a countable family y, Y’, lyl
1, for n e N, and a summable sequence Cn R, n N of positive numbers such
that v(.) n CnlY, Pl(’)" Since the sequence of partial sums is an increasing
sequence of charges (in the vector lattice order in the space ab(V, R)) we have
v(.) (sup, w.)(.) where

Wn(’) c, lY’, #1(’).
k=l
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Since the space pfa(V, R) is a band in the vector lattice ab(V, R), and w,
pfa(V, R) for all n N, we conclude v(.) pfa(V, R). Since the charge v
ab+(V, R) is topologically equivalent to the semivariation p(., 12), we have
12 pfa(V, Y).
The properties of the equivalent content noted above may be formalized in

the following proposition.

PROPOSITION 2. Let V be an algebra of subsets of the space X. Thefollowing
are equivalent for a charge 12 R(V, Y).

(1) The vector charge 12 is purely finitely additive.
(2) If a scalar charge w ab(V, R) is p(., 12)-continuous, then w pfa(V, R).

Theorem 3 may be used to show that in the space of s-bounded vector charges,
the spaces of countably additive and purely finitely additive vector charges are
complementary.

THEOREM 4. Let V be an algebra ofsubsets ofa space X and let Y be a Banaeh
space. Then

R(V, Y) caR(V, Y) pfaR(V, Y)
where

eaR(V, Y) R(V, Y) c ca(V, Y), and pfaR(V, Y) R(V, Y) pfa(V, Y).

Proof Theorem 3, applied to the band B cab(V, R), asserts that each
vector charge 12 R(V, Y) has a unique decomposition, 12 121 + 122, with
121, 122 " R(V Y) and for each functional y’ Y’, [y’[ 1, y’ 121 cab(V, R),
Yt 122 pfa(V, R). The observations made prior to stating the theorem yield
121 cab(V, Y) and 122 pfa(V, Y). Since these spaces have only the null
element in common, the proof is complete.

Remark. Diestel ]-6] has given a similar theorem for vector measures taking
values in a vector lattice.

Heider [9] and Lloyd [10] have developed characterizations of the bands
cab(V, R) and pfa(V, R) in terms of the corresponding Stone representations.
The existence of the finitely additive control measure for elements of the space of
s-bounded vector charges permit the scalar characterizations to be used to
establish the corresponding vector formulations.

Let V be an algebra of subsets of a space Xand denote the Stone representa-
tion of the algebra V as the algebra of open/closed subsets of a totally discon-
nected, compact Hausdorff space X. As noted above, each vector charge
12 R(V, Y) generates a vector charge / cab( , Y), where denotes the
a-algebra generated by the algebra . It is not difficult to see that the a-algebra
V is precisely the it-algebra of Baire sets in the space X. Heider [9] has shown
that a scalar charge 2 ab(V, R) is countably additive if and only if the cor-
responding Baire measure cab(, R) vanishes on the class of Baire sets of the
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first category, and the charge . ab(V, R) is purely finitely additive if and only
if the Baire measure cab(, R) is supported by a Baire set of the first cate-
gory. Thus, a vector charge # R(V, Y) is countably additive if and only if its.
image in the Stone space e cab(V, Y) vanishes on Baire subsets of the first
category. To see that an analogous characterization holds for the subspace
pfa(V, Y), consider a vector charge p pfaR(V, Y) and let v ab+(V, R)
be chosen as above to be equivalent to the semivariation p(., #). Then
v pfa+(V, R) and thus there exists a Baire set of the first category which sup-
ports the finite Baire measure cab+(V, R). Since the vector measure

cab(V, Y) is -continuous, it too is supported by a Baire set of the first cate-
gory. Conversely, assume that a charge # R(V, Y) has a property that its
Stone extension cab(V, Y) is supported by a Baire set of the first category.
Then the semivariation p(., ), defined by sets in the tz-algebra , is zero out-
side a Baire set of the first category. Moreover, the semivariations p(., ) and
p(.,/) generate equivalent semimetrics on the algebra V and the algebra is
dense in the t-algebra in the semimetric generated by the semivariation
p(’, fi). Now if w cab(V, R) is p(., p)-continuous, the Stone image
cab(F, R) is p,(’, )-continuous on the algebra . Thus, the extension

cab(V, R) is p,(’, )-continuous on the a-algebra . Thus, the Baire mea-
sure g vanishes outside a Baire set of the first category. Since the zero measure
is the only countably additive measure with this property, we conclude g 0.
Thus, the charge It R(V, Y) is purely finitely additive.
The above arguments may be summarized.

THEOREM 5. Let V be an algebra of subsets of a space X and let denote the
Baire a-algebra in the Stone representation space of the algebra V.

(1) A vector charge p R( V, Y) is countably additive if and only if its Baire

extension cab(F, Y) vanishes on all Baire sets of the first category.
(2) A vector charge p R(V, Y) is purely finitely additive if and only if its

Baire extension t cab(F, Y) is supported by a Baire set of the first category.
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