ON FINITE LINEAR GROUPS OF DEGREE 16

BY
HARVEY 1. BLAU

1. Introduction

The main result of this paper is:

THEOREM 1. Let G be a finite group with a faithful irreducible complex
representation of degree 16. Then if P is a Sylow p-subgroup of G for p > 19 and
Z is the center of G, either P <1 G or p = 31 and G/Z ~ PSL,(31).

Theorem 1 has several consequences bearing on the situation of a group with
a complex representation of degree smaller than a prime dividing its order. We
state them here, using the same notation as above.

THEOREM 2. Let p be a prime. Assume that |P| = p, P <4 G, and G has a
Jfaithful irreducible complex representation of degreed < p — 1. Let t|N: C| =
p — 1, where N, C are the normalizer, resp. centralizer, of P in G. If t > 3
thent > 8.

It is known that if # > 3 then ¢ > 6 [13]. In view of [2], Theorem 1 elimin-
ates the only remaining numerical case when ¢t = 6, namelyp = 19 and d = 16.
This case was also listed as unresolved in [1, Section 8] as p = 19, d = 16,
e = 3.

THEOREM 3. Assume p > 1. Let G have a faithful irreducible complex repre-
sentation of degree d < max {(7p + 1)/8, p + (3/2) — (p + 5/4)'/%}. Then
either P<a G or G/Z ~ PSL,(p)andd = (p + 1)/2.

For the exceptions to Theorem 3 when p < 7 see [9, Section 8.5] (or Theorem
4 below for the casesd < p — 1).

THEOREM 4. Assume G has a faithful irreducible complex representation of
degree d < 27. Suppose p is a prime, p > d + 1. Then one of the following
must occur:

i P=G;
(i) G/Z ~ PSLy(p),d = (p + 1)/2;
(iii) p = 17,d = 15, G ~ SLy(16) x A where A is abelian,
iv) p=7,d=4,and G|Z ~ A,;

V) p=5,d=3,and G|Z ~ A,
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In the proof of Theorem 1, the case p = 19 is the only one which does not
follow quickly from known results. Handling this case involves a fairly straight-
forward application of the modular-theoretic techniques of [6] and [1], block
separation, and a recent result of Walter Feit [10, Theorem 4]. The author
would like to thank Professor Feit for informing him of this theorem, and also
wishes to acknowledge several useful conversations with Professors Feit and
Henry S. Leonard.

2. Notation and preliminary results

Throughout the paper G is a finite group, p a prime, P a Sylow p-subgroup
of G. If H is a subgroup, and S a subset, of G, then Ny(S), Cy(S) denote,
respectively, the normalizer and centralizer of S in H. Z(H) is the center of H,
N = Ng(P), C = Cg4(P), and Z = Z(G). By(p) is the principal p-block of G.

Fix p and a positive integer d < p — 1. We consider two sets of hypotheses:

(*) G has a faithful irreducible complex representation of degree d.
(**) G is not of type L,(p), |P| = p, G = G’ and G|Z is simple.

The following sort of reduction argument, based on the main result of [5],
appears in [7, Section 6], [ 10, Section 4], and [15]. The proof here is essentially
that of [7], with a few more details provided.

PROPOSITION 2.1. Fix p and d. Suppose there is no group satisfying both (*)
and (**). Then if G is any group satisfying (*), either P <1 G or G/Z ~ PSL,(p)
andd = (p + 1)/2.

Proof. Suppose (*) holds for G and P <4 G. Let 0 be the given faithful
irreducible character of G with 6(1) = d. Since the degree of each irreducible
constituent of 85 is a power of p, it follows that each constituent is linear and
hence P is abelian.

Let G, be the subgroup of G generated by all p-elements in G. Thus G, < G,
P < G, and P < G,. The main theorem of [5] says there is a subgroup
P, = P with |P: Py| = p and Py < G. Thus P < Cy(P,) < G implies the
normal subgroup generated by P centralizes Py, i.e. Gy = Cg(Py).

Let G, be the p-commutator subgroup of G, whence G; <« G. The transfer
of G, into P has kernel G, and image P n Z(N¢ (P)) 2 P, [16, Chapter V,
Theorem 7]. If P n Z(Ng,(P)) = P, then G, has the normal p-complement
G,, as well as a faithful complex representation of degree d < p — 1, a con-
tradiction [15, (2.1)]. Thus the image of the transfer is P,, and it is easy to see
that the transfer maps P, onto itself. Hence G, = G, x P,. LetP; = P n G,.
Then P = P, x P, and P, <4 G,.

Let H be a normal p’-subgroup of G,. If P, <4 P, H then P, H has a faithful
representation of degree d in a field of characteristic p [8, II1.3.4] contrary to
Theorem B of Hall and Higman [12]. Thus P, <« P{H and so H < C¢,(P,).
Since G, is the smallest normal subgroup of G, generated by P,, it follows that
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H < Z(G,) and G,/Z(G,) is simple. If P, ¢ G; then G, has a normal p-
complement, a contradiction. So P, < G; < G implies G; = G.

Let 05, = Xj_; w; where each w; is an irreducible character of G;. Now
w(l) = o,(1) fori = 1,...,s, as the w; are conjugate under G. Soif s > 1,
w,(1) < 3(p — 1). Let K, be the kernel of w;. If P, € K, then K; = G, =
K;, whence G, is in the kernel of 6, a contradiction. So K, is a p’-group and
K, € Z(G,). Thus P, < P,K,. [l1] implies P,K,/K, < G,/K,, hence
P, < G4, a contradiction. So s = 1 and 0, is irreducible. Thus if g € C4(G,)
then g is represented by scalars in the representation of G which affords 6, and
so g € Z. Hence Z(G,) = Z n G, and G,C¢,(G,) = G, Z.

If G, is not of type L,(p) then G satisfies (*) and (**), which contradicts our
hypothesis. So G, is of type L,(p). Then G,/Z(G,) ~ PSL,(p). Thus G, ~
PSL,(p) or G; =~ SL,(p) since the Schur multiplier of PSL,(p) has order 2.
Therefore d = (p + 1)/2 and 0 assumes different values on the two conjugate
classes of nontrivial p-elements in G, [4, Theorem 71.3], [3, (47b)]. Since any
g € G fixes 0g, (acting by conjugation), g must fix each conjugate class of
p-elements in G,. It is not hard to see that an automorphism of SL,(p) or
PSL,(p) which fixes each conjugate class of p-elements must be an inner auto-
morphism. Thus G = G,C4(G,) = G,Z and G/Z = G/Z(G,) ~ PSL,(p).

The next result seems to be well known.

PROPOSITION 2.2. Let p be a prime such that p | |G|. Let y be an irreducible
character in By(p) such that y is rational on all p-elements, and no p-element
(except 1) is in the kernel of y. Let v,(x(1)) = m. Then x(1) = p™(p — 1).

Proof. Let x be an element of order p in Z(P). Then K, the conjugate class
of x, has order prime to p. Since yx(x) is rational, x(x) and x(x)|K|/x(1) are
rational integers and v,(x(x)) = v,(x(1)). x € Bo(p) implies x(x)|K|/x(1) = |K|
(mod p) (see [4, Theorem 61.2]). Let ¢ = p™. Then

(xx®)/)IK| = |K| (mod p) implies Zﬂ_’f_) = AQ (mod p).
x(D/q q g

Let y be a faithful linear character of {x), and let n be its multiplicity as a
constituent of y.,,. Then x(x) # x(1) and y(x) rational imply » > 0 and each
of the p — 1 algebraic conjugates of y occurs in ., with multiplicity n. Hence

x(x) = n(=1) + (x(1) — n(p — 1) = x(1) — np.

Therefore (x(1) — np)/q = x(1)/q (mod p) implies g | n. Now x(1) = n(p — 1)
yields the result.

PROPOSITION 2.3. Assume that |P| = p and |N: C| = 3. If the Brauer tree
corresponding to By(p) is not an open polygon then p = 1 (mod 4).

Proof. Since |[N: C||p — 1, we have p = 1 (mod 3). The discussion in
[14, Section 5] shows that the map sending each ordinary or modular irreducible
character to its complex conjugate reflects the tree across a unique real stem.
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The exceptional vertex lies on the stem. Thus if the graph is not an open polygon,
it must have the form

where 1 is the principal character, n(1) = 1 (mod p), 7 is the complex conjugate
of n, the yx; are exceptional characters, and y;(1) = 3 (mod p) for i = 1,...,
(r — 1)/3. Hence y,(Hn(#n(1) = 3 (mod p). Now x;(1)n(1)#(1) is the square
of a rational integer [10, Theorem 4], so that 3 is a quadratic residue mod p.
Quadratic reciprocity implies p = 1 (mod 4).

3. Proof of Theorem 1

By Proposition 2.1, it suffices to assume G satisfies (**) and then show such
a group cannot exist.

Now Cg(P) = P x Z (so that N/P is abelian) and z = |Z]| | 16 [7, (2.1)].
Then the situation of [1, (4.3)] holds. (**) and [14] imply 16 > (p + 1)/2,
whence 16 = p — e, wheree = [N: C||p — 1. Since e < (p — 1)/3 (so that
16 > (2p + 1)/3), it follows that p = 19, e = 3.

So the theorem is proved for all primes ¢ > 19. If g | |G| for some prime
q > 19 then no Sylow g¢-subgroup is normal, since G/Z is simple. Hence
q = 31 and G/Z ~ PSL,(31), a contradiction. Thus no prime larger than 19
divides |G]|.

Let R be the ring of integers in a 19-adic number field F so that both F and
K = R/I are splitting fields for all subgroups of G, where I is the maximal ideal
of R. Let X be an R-free RG-module affording a faithful irreducible character
0 of degree 16 such that L = X/XI is an indecomposable KG-module. Then L
is faithful, as G has no proper normal 19-subgroup.

Let Ly = V,;4(4) in the notation of [1]. L is irreducible [1, Proposition 6.1].
We have [1, (5.2), (5.3)]

15
(L® LYy = V(1) @ Vi(@) @ Vs(“z) @ _Z V19(°‘

where a: N — K, a linear character of order 3, is defined in [1, Section 2].
LRIL* =Ly ®L ®L,®Q
where L, is the one-dimensional trivial KG-module, Q is projective, and
Ly = Vi) ® Z Vig(@), Lyy = Vs(@) @ Y Vig(o)

je& je&L2
where &, and &, are sets of integers with || + |#,| < 13. Let m; = | &},
i =1,2. Then

dlmL, = 2i + 1 + 19m,~, mi > 0, ml + mz S 13.
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If x is an exceptional character in By(19) then x(1) = 3 (mod 19) by [7, (2.1)]
and [7, (4.1)] applied to 0 and its complex conjugate. Then Proposition 2.3
implies there are only two possibilities for the graph of B,(19):

LO M2 M18

— . @)
n

1 Xi ¢
where the x; are exceptional characters, 1 < i < 6, £ and # are nonexceptional
characters with £(1) = 1 (mod 19), (1) = —1 (mod 19), and M, and M4 are
irreducible KG-modules. Since L, and M, are the only constituents of a KG-
module with socle L, [8, 1.17.12], [1, Proposition 4.5] implies M, has Green

correspondent V,(«?). Similarly, M, and M, are the only constituents of a
KG-module with socle M,, so M4 has Green correspondent V;g(«).

LO M17 M3
. . . (ii)
1 n ¢ Xi
where again £(1) = 1 (mod 19), n(1) = —1 (mod 19), and M,,, M; have
Green correspondents V,,(«?), V3(a) respectively. (So M; = L,.)

G (D) = 22, &1) = 77, n(1) = 56 in either (i) or (ii).

Proof. Suppose (i) holds. By [1, Lemma 2.4], the npmv’s of V,(a*) ® V,(x)
are > = 1 and a~!. Hence M, ® L, contains a nonzero invariant (as a
KG-module) [1, Theorem 4.1]. Since M, ~ M% and L; =~ L%, we see that
M, < socle (Ly) and M, = L,/rad (L,). Thus M, is a constituent of L; with
multiplicity at least two.

Now V() ® V3(x) has 1 as a npmv [1, Lemma 2.6]. Then as above, Mg
is a constituent of L, with multiplicity at least two. Similarly, M, occurs at
least twice as a constituent of L,. Let dim M, = 2 + 19a, a > 0, and

dim Mys = 18 + 19b, b > 0. Then

implies
4a + 2b + 2 < 13. 3.2

Now x,(DEMR(1) = B + 19a)(1 + 19(a + b + 1))(18 + 19b) is the square of
a rational integer [10, Theorem 4]. But the only values of a > 0, b > 0 satisfy-
ing (3.2) for which this is true area = 1, 5 = 2. Hence x,(1) = 22, ¢(1) = 77,
n(l) = 56.

Suppose (i) holds. As above, we see that M5 and M, , are both constituents
of L, with multiplicity at least two. Let dim L; = 3 + 19¢, ¢ > 0, and
dim M, = 17 + 19f, f = 0. Then

3dimL, + 2dim M,; <dimL, + dimL, <8 + 13:19
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implies 3¢ + 2f < 11. Since
11 (MnEA) = B + 190)(18 + 191 + 19(c + f + 1))

is the square of an integer, it follows that ¢ = 1, f = 2. (3.1) is established.
(3.3) 4]z

Proof. [7, Theorem 1] implies z > 1. Suppose z = 2. Then there are two
19-blocks of positive defect, say By(19) and B. L and L* both lie in B. Since L
separates three vertices from the exceptional vertex, we see that L ~ L* (see
[1, Section 4]). Then [1, Lemma 3.3] implies m, < 7, m, < 6. But in case (i),
we have

22 + 19) + 2319 — 1) = 2(dim M, + dim M) < dim L, <3 + 197,
a contradiction. In case (ii),
23 + 19) + 2(17 + 2-19) = 2(dim M5 + dim M;;) < dim L, <5+ 196,

again a contradiction. Since z | 16, the result follows.
There are two possible configurations for the block B which contains L:

— . @
0; v 1 14

where 6,(1) = 16,1 < i < 6,yY(1) = —1 = {(1) (mod 19), u(1) = 1 (mod 19).
Since L and W, are the only constituents of a KG-module with socle L, [1,
Proposition 4.5] implies the Green correspondent of W, is V,(«?). Similarly,
Wig <> Vig(da).

(b)

where 0; = 16, ¢(1) = —1 (mod 19), p(1) = y(1) = 1 (mod 19), and W, <
Vi(a), Uy & Vi(Aa?).

(3.4) If (a) holds, then y(1) = {(1) = 56 and u(1) = 96. If (b) holds, then one
of (1) = 132, p(1) = 96, y(1) = 20, ¢(1) = 132, p(1) = 20, y(1) = 96, or
¢(1) = 56, p(1) = 20 = y(1) is true.

Proof. Suppose By(19) satisfies (i). Then M,, = V,(2*) @ V,4(0). Since Z
is in the kernel of all ordinary and Brauer characters in By(19), 6 € (a). Then
[1, Lemma 2.3] and the fact that G = G’ forces the action of any element of G,
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on any KG-module, to have determinant 1 imply ¢ = 1. Now by [1, Lemma
2.4, Lemma 2.5],

15
(L ® My)y = Vi,(a?) @ Vis(a) @ ‘;0 Vio(Aa™). (3.5

Let L,,, L5 be the indecomposable KG-modules such that L, <> V;,(la?),
L5 o V;5(Ja). (3.5)implies dim L;, + dim L;5 < 32 + 19-16. [1, Lemma
2.3] says that L* < V,¢(A7Y), Wie V,(A71?), Wio Vig(A e, LY,
Vi2(A71a?), Lfs & Vis(A™ ).

[1, Lemma 2.6] implies 1 is a npmv of both V;s(A™") ® V;;(A«*) and
Vi;(A"'a?) ® V;6(1). Hence, both L* ® L, and L¥, ® L have a nonzero
invariant [1, Theorem 4.1], so that L = L,, and L € L,/rad L,,. Thus the
multiplicity of L as a constituent of L, is at least two.

Suppose (a) holds. By the method used above, we see that the multiplicity
of W, as a constituent of L,,, and the multiplicities of L, W,, and W,z as con-
stituents of L, s, are all at least two.

Letdim W, = 2 + 19a,a > 0, and’'dim Wz = 18 + 195, b > 0. Then

416 + 2 + 19a) + 2(18 + 19b) = 4(dim L + dim W,) + 2 dim W,

<dimL;s + dmL;; <32+ 19-16
implies
2a + b < 6. 3.6)

Since W, and W, are constituents of L,

Wi = Vz(/loc2) @ Z V19(1°‘_i), Wisy = Vig(Aa) @ Z V19()~°‘_i)‘

i(aterms) i(b terms)
We set determinants equal to 1 (as G = G’) and apply [1, Lemma 2.3] to obtain
1 = }’2+19acxn — 118+19bam

for some integers n and m. Since a is trivial on Z, 1 = (A2+1%9), = (A18%19%),,
Since L is faithful, A is faithful on Z and Z is cyclic [1, Proposition 5.1]. Thus
by (3.3), 4/z|2 + 19a, 4|z|18 + 19b; hence a = b = 2 (mod 4). Then (3.6)
implies @ = b = 2. So dim W, = 40, dim W,z = 56, and the result follows
if (i) and (a) are true.

Still assuming B,y(19) satisfies (i), suppose (b) holds. As above, we see that
W, < L5, U, € Lysfrad L5, U, € L5, W, € Lyfrad L;;, L = L5, and
L c Lis/rad Lis. Letdim W, = 1 + 19w,dim U, = 1 + 19u. Then

4 dim L + 2(dim W, + dim U,) < dim L,5 + dim L,, < 32 + 19-16

implies v + w < 7. As before, G = G’, [1, Lemma 2.3], [1, Proposition 5.1]
and (3.3) imply4 |1 + 19w, 4|1 + 19u. Thenu = w = 1 (mod 4). It follows
that either w = 1 and u = 5 (hence ¢(1) = 132, p(1) = 20, y(1) = 96),w = 5
and u = 1 (hence ¢(1) = 132, y(1) = 20, p(1) = 96), or w = 1 = u (and
¢(1) = 56, p(1) = 20 = y(1)).
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Now suppose (ii) holds for B,(19). By the method applied to M, in case (i),
we see that M5, = Vi(@) @ V;o(1). By [1, Lemma 2.4, Lemma 2.5],

(L ® Mj3)y = Vig(ha) @ Vie(d) @ V14(/1°‘2) ® ";o V19()-°‘_i)- 3.7

Let L;g > Vig(Aa), L4+ V 4(Ax*) under the Green correspondence. Of
course, L & V,4(4). Then (3.7) implies dim L, + dim L,, < 32 + 16-19.

Suppose (a) holds. Then L, = W;3. We see, by the method used above,
that both L and W, occur as constituents of L,, with multiplicity at least two.
Let dim W, = 2 + 19a, dim W;3 = 18 + 19b. Then

18 + 195 + 2(16 + 2 + 19a) = dim L, + 2(dim L + dim W,)

implies 2a + b < 14. As before, G = G', [1, Lemma 2.3], [, Proposition
5.1] and (3.3) imply 4 | 2 + 19a, 4| 18 + 195. Then a = b = 2 (mod 4). It
follows that one of a = b =2, a=6and b = 2, or a = 2 and b = 6 must
hold. But the last two cases imply u(1) = dim W, + dim W3 = 172 = 4-43.
Hence 43 | |G|, a contradiction. Therefore a = b = 2, and (3.4) is true if (a)
holds.

Suppose (b) holds. As before, L is a constituent of L, with multiplicity at
least two, and each of W,, U, are constituents of both L,z and L,,. Again, let
dim W, =1+ 19w,dim U; = 1 + 19u4. Then

216 + 1 + 19w + 1 + 194) = 2(dim L + dim W, + dim U,)
< dim L, + dim L,,
<32+ 19-16

implies # + w < 7. Since u = w = | (mod 4), we again have one of w = 1
andu = 5,u=1landw = 5, orw = u = 1. Thus (3.4) holds in all cases.

We use 19-11 block separation to complete the proof. Since &(1) = 77,
11 | |G|. Because the centralizer of a nontrivial 19-element has order 19z, z | 16,
the centralizer of a nontrivial 11-element has order prime to 19. Since the
exceptional characters in a 19-block of positive defect agree on 19'-elements,
they must agree on the centralizer of a nontrivial 11-element. If they are zero
on all 11-singular elements, then each is in its own 11-block of defect zero
[8;1V.3.13, IV.4.20]. Otherwise, they are all in the same 11-block by Brauer’s
second main theorem.

Since ¢ is the only character of degree 77 in B,(19), which is invariant under
algebraic conjugation, it follows that ¢ is rational. Since G/Z is simple, the
kernel of £ is precisely Z. Then Proposition 2.2 implies & ¢ By(11).

Now block separation [8, IV.4.23] says that 3" t(1)t(x) = 0 (mod 11™) where
{x) =P, m =v,(G]), and t ranges over all irreducible characters in
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By(19) n By(11). Since Y; yi(x) = —1, the only possibilities for > t(1)t(x)
divisible by 11 are 1-56 and 1-56-22. Hence 11% } |G]|.

Now for any 11-block of G of positive defect, there is an integer n # 0
(mod 11) and an integer r | 10 such that all degrees of irreducible characters
in the block are congruent (mod 11) to +# or +rn [3]. Let B’ be the 11-block
of the 0;.

If (a) holds, then (3.4) and block separation imply B < B’. But 6(1) = 5
(mod 11), u(1) = —3 (mod 11), and {(1) = 56 # +5 or +3 (mod 11), a
contradiction.

If (b) holds and ¢(1) = 132, then ¢ ¢ B’. Then block separation implies p,
y (and all the 6;) are in B’ n B. However, 6(1) = 5 (mod 11), and p(1), y(1)
are congruent (mod 11) to 8, 9 in some order, a contradiction.

So (3.4) implies the character degrees of B are 16 (6 of them), 20 (2), and 56.
Then block separation forces B < B’. But 20 # +56 or +16 (mod 11), a final
contradiction.

4. Proofs of the consequences

Proof of Theorem 2. Either d > (p + 1)/2 or G/Z ~ PSL,(p) [14]. But
the latter implies ¢+ = 2, a contradiction. Since G has a faithful indecomposable
representation of degree d in characteristic p, we see that d = p — (p — 1)/t
[1, (4.3)]. Assume 3 < ¢ < 8. By Proposition 2.1 there is a group Gy, not of
type L,(p), with a faithful irreducible complex representation of degree d, a
Sylow p-subgroup of order p, G, = G4, and G,/Z(G,) simple. Since d, and
hence ¢ (again by [1, (4.3)]) are the same for G and G,, we may assume G = G,.

[2] implies p < t> — 3t + 1. Sot > 3. Ift =4thenp=5ande =1,
whence d = p — 1, a contradiction. If # = 5 then p < 11. Since e = 2, we
musthavep = 11,e = 2,d = 9. This contradicts [9, 8.3.4.iii], [10, Theorem 2]
(and was eliminated in [13]). If # = 6 then p = 19 and d = 16, contradicting
Theorem 1. If ¢t = 7 then e is even. [7, (2.1)] implies |Z] is odd. This con-
tradicts [7, Theorem 1].

Proof of Theorem 3. 1If G exists satisfying the hypothesis but not the con-
clusion, then Proposition 2.1 implies we may assume G is not of type L,(p) and
|P| = p. Then [14] and [1, (4.3)] imply d = p — e, where e = |[N: C| <
(p — 1)/3. Theorem 2 yields ¢ > 8,s0d = (7p + 1)/8. [2] impliesd > p +
(3/2) — (p + 5/4)'/?, a contradiction.

Proof of Theorem 4. 1f p = 3 then G is abelian. If p = 5 the result follows
by [15]. So assume p > 5. Then we may suppose d < p — 2 [9, 8.3.4.ii],
[10]. Hence we may assume p > 7 [15]. It suffices to show (i) or (ii) must hold.
By Proposition 2.1, [14], and Theorem 2, we may assume that |P| = p, G is not
of type Ly(p), and d = p — (p — 1)/t where ¢|N: C| = p — 1, ¢t = 8. Then
p=>311Ifp=31,d =31 —30/10=28. Ifp >37,d>(Tp + 1)/8 > 32.
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