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In this note we combine many of the facts known about spaces of homeo-
morphisms on two manifolds with some results from the theory of infinite
dimensional manifolds to obtain a topological description of the pair
(H(M), PLH(M)), for every closed piecewise linear 2-manifold M. In the
above H(M) denotes the space of all homeomorphisms of M onto itself under
the supremum topology and PLH(M) the subspace of piecewise linear homeo-
morphisms. The key ingredients are the work of Hamstrom and others [7-1,
[8-1, [9-1, [10], [11] concerning the homotopy groups of H(M) (see the proof
of Lemma 3), some information obtained by Lickorish and others 1-1 ], [2], [15],
[16-1 in their study of the homeotopy groups of 2-manifolds (see the proof of
Lemma 2), some infinite dimensional topology theorems obtained by Henderson,
West and others [12], [20] (see the proof of the theorem) and the fact that
(H(M), PLH(M)) is an (12,/2Y)-manifold pair (see Lemma and the comments
that follow it).

Notation. The pair (X1, Y1) is said to be homeomorphic to the pair (X2, Y2)
if there exists a homeomorphismfof Xa onto X2 such thatfrestricted to Y is a
homeomorphism of Y onto Y2. Throughout this paper, S" will denote the
n-sphere, T the 2-torus, P" real projective n-space, K the Klein bottle, Z the
countable discrete space, and Z, the discrete space with n elements.

Let 12 denote the hilbert space of square-summable sequences and lY2 the sub-
space consisting of those sequences having only finitely many nonzero entries.
A pair (X, X’) is an (/2, 12Y)"manifold pair if X is an 12-manifold (i.e., a separable
metric space which is locally homeomorphic to 12) for which there is an open
cover q/ and open embeddings {fv: U 121U e q/} such that for each
U e ql, fv(U X’) fv(U) IY2.
In [5] Geoghegan and Haver proved the following:

LEMMA 1. Let M be a compact piecewise linear 2-manifold; then (H(M),
PLH(M)) is an (12, lY2)’manifold pair.

The proof makes use of previous work of Luke and Mason [17], Torfinczyk
[19], Geoghegan [4], Edwards-Kirby [3-1, Keesling-Wilson [13], and Haver [6].
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LEMMA 2. H(P2) has one component, H(S2) two components, H(K) four
components. For any other closed two manifold, M, H(M) has a countable num-
ber of components.

Proof Let Ho(M) denote the identity component of H(M). The group
H(M)/Ho(M) is known as the homeotopy group of M and has been studied
extensively by Lickorish, Chillingworth, Birman, and others [1], [2], [15], [16].
For our purposes we are only interested in the cardinality of the homeotopy
group. It is known that H(S2)/Ho(S2) has two elements, that H(p2)/Ho(P2) is
trivial (c.f. [10-]) and that H(K)/Ho(K) has four elements [16]. The homeotopy
group of any other closed 2-manifold has cardinality No as the following argu-
ment indicates: Since the homeotopy groups are finitely generated (c.f. [2],
[15]), it suffices to show that H(M)/Ho(M) has cardinality at least N0. Since
M is not S2, p2, or K, there is a 2-manifold N such that M is the connected sum
of N and a torus T with the connected sum formed at the disk D. Let a and b
be simple closed curves in T D such that [a] and [b-] generate Hi(T). Let
be a map of T # N onto T which is the identity on T D. Let h be a homeo-
morphism ofM onto itself which is a Lickorish twist (c.f. [2], [ 15]) about a that
is the identity off a neighborhood of a which is contained in T D. We need
only show that for n :# m, h (the n-fold composition of h) is not isotopic to hm.
If h is isotopic to hm, then b,h $,h. But

,h([fl]) (n[cz], [fl]) and b,h([fl]) (mid’I, [/3])
which are different elements of Hi(T).

LEMMA 3. For each closed 2-manifold, M, there is a CW complex KM and a
homotopy equivalence between Km and Ho(M).

Proof. Since Ho(M) is an/2-manifold (and hence has the homotopy type of
a CW-complex), it suffices to show that for each M, there is a weak homotopy
equivalence between Ho(M) and a CW complex K (c.f. [18, p. 405]). Kneser
[14] showed that SO(3), the space of rotations of S2, is a deformation retract
of Ho(S2). Since SO(3) is homeomorphic to pa, this implies immediately that
p3 and Ho(S2) are homotopy equivalent. Hamstrom proved directly in [10]
that Ho(P2) is also weakly homotopy equivalent to SO(3) p3.

In [9-] Hamstrom showed that zr(Ho(T))= r(T) and that R(Ho(T))=
0 /rk(T), k > 1. Hence T is an Eilenberg-Maclane CW complex and Ho(T)
is an Eilenberg-Maclane space, both of type ( (T), 1). Therefore T and Ho(T)
are weakly homotopy equivalent (c.f. Whitehead [22]). A similar argument
holds for K, since r(Ho(K)) Z and 7rkHo(K) 0 for k > [10]. Hence S
and Ho(K) are both of type (zc(S), 1) and hence are weakly homotopy equiv-
alent. Finally, if M is orientable of genus > or nonorientable of genus > 2,
Hamstrom [-11 ] showed that for all n, z,(Ho(M)) 0 and it follows that Ho(M)
is homotopy equivalent to a point.
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THEOREM.
(H(S), PLH(S)) (Z2 x pa x 12, Z2 x p3 x /{),
(H(T),PLH(T)) (Z T x 12, Z x T x /2f),
(H(P), PLH(P)) ({pt} x p3 x 12, {pt} x p3 x /2Y),
(H(K),PLH(K)) (Z, x S x 12, Z4 x S x /2f),

(H(M), PLH(M)) ({pt} x Z x 12, {pt) x Z x l),
for any other closed 2-manifoM M.

Proof. We first shall prove the absolute version of the theorem. Note that
the first factor in each product on the right is a discrete space of the same
cardinality as the homeotopy group (Lemma 2) and hence that the product of
the first two factors is a finite simplicial complex of the same homotopy type as
the space of homeomorphisms (proof of Lemma 3). But the product of any
finite simplicial complex with 12 is an/2-manifold [20]. The absolute case then
follows since in each case the space of homeomorphisms is an/2-manifold and
two/2-manifolds of the same homotopy type are homeomorphic [12].
By Lemma l, (H(M), PLH(M)) is an (/2,/{)-manifold pair for any 2-manifold

M. Since for any complex K, (K x 12, K x /{) is an (/2,/{)-pair, in each case
the pair on the right is also an (/2,/{)-pair. The relative version then follows
immediately since by [21] if (i", Y) and (X, Z) are (/2,/{)-pairs then (X, Y)
and (i", Z) are pair homeomorphic.
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