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Let p:E B be a fibration over a connected space B with fiber F. The
Eilenberg-Moore spectral sequence ofp is a second quadrant spectral sequence
which tries and sometimes fails to converge strongly to the homology of F (see
1-53). The purpose of this paper is to determine what the spectral sequence does
converge to. An abstract answer (Theorem 1.1) is that the spectral sequence
almost always converges to the homology of the fiber of the nilpotent completion
of the map p. A concrete answer (Theorem 2.1) is that under certain natural
conditions on B and certain finiteness hypotheses the spectral sequence con-
verges weakly to the homology of F with the nl(B) filtration.
As an aid to understanding these theorems, recall the similar behavior of the

mod q Adams spectral sequence of a spectrum X. In absolute generality the
spectral sequence converges only to the homotopy groups of some completion
of X [1]. However, if X is connected and suitable finiteness conditions are
satisfied, the spectral sequence converges to the actual homotopy groups of X
with the "power of q" filtration. Note also that the spectral sequence converges
strongly to the homotopy ofX only in the rare case that each rX is a q-group of
finite exponent.

Sections 3 and 4 are devoted to applications of the convergence theorems in
Section and Section 2. In Section 3 we compute, in a certain sense, the
homology of the universal cover of the nilpotent completion of a space X. In
Section 4 we show that the cohomology of certain nilpotent groups is gener-
ated, in the sense of matric Massey products, by classes of degree one.
Throughout Section and Section 2 we will work with the fixed fibration p

described above. R will be a ring of the form Z/qZ (q prime) or a subring of the
rationals, and A will be a fixed R-module. We will freely use the ideas and con-
ventions of [5]. In particular, we will associate to the fibration p a certain aug-
mented cosimplicial space F F, called the Eilenberg-Moore object of p. The
mod A Eilenberg-Moore spectral sequence ofp is understood to be the homo-
topyspectral sequence oftheaugmentedtower offibrations A (R) F { TotsA (R) F}s.

1. An abstract computation

Recall that for any space X, and any ring such as R, Bousfield and Kan ([2])
construct a functorial augmented tower of fibrations X {RX}. According
to Dror ([4]), it is natural to think of this tower as the R-completion of X. For
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s > 0, let F be the ordinary fiber [2] of Rp: RE RB. The spaces F form
a tower {F}, which is called the fiber of the R-completion of the map p.

THEOREM 1.1. IrE and F are connected, the mod A Eilenberg-Moore spectral
sequence ofp converges to the mod A homology of the fiber of the R-completion
ofp.

Remark. The proof requires only that E be connected and that p induce an
epimorphism Ha(E, R) Hi(B, R).

The meaning of this theorem is as follows. Let F be the Eilenberg-Moore
object of Rs(p). By naturality there are maps

F + {F,}s {F,},.
The middle object here is of course a tower of cosimplicial spaces. For each
> 0 this diagram gives rise to another pair of tower maps

{rciTot,A (R) F}, + {rcTot,(A (R) F,)}, ,-- {rA (R) F,},.
By definition the conclusion of (1.1) means that, for each > 0, both of these
maps are pro-isomorphisms. This is called convergence of the spectral sequence
by analogy with [5: 3.3].
The proof of (1.1) consists in piecing together lemmas to show separately that

each of the required arrows is a pro-isomorphism.

LEMMA 1.2. For every >_ 0 and > O, the map

rci(A (R) F,) {ziTot(A (R) F,)}
induced by the augmentation Ft F is a pro-isomorphism.

Proof The lemma claims that the mod A Eilenberg-Moore spectral sequence
of Rp converges strongly to H,(F, A) (see [5]). By the ordinary convergence
theorem, this is true iff rlRB acts nilpotently on each H(F, A). However,
RtE and RrB are both nilpotent spaces, and by ]-2; I, 6.2] the fiber F of
Rtp: RE RB is connected, so the argument of [2; II, 5.4] gives the desired
result.

LEMMA 1.3. For each > 0 the map of towers

{r,(A (R) F)} {zriTot(A (R) F)}
is a pro-isomorphism.

Proof This follows from (1.2) and the Diagonal Lemma below.

The other arrow of (1.1) requires two technical lemmas.

LEMMA 1.4. Let X {Y,}t be a map from the fibrant cosimplicial space X
([2]) into the tower {Yt}t offibrant cosimplicial spaces. Suppose that for each
pair (i, s) of nonnegative integers, the induced map

X --, { Y},
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is a pro-isomorphism. (Here X is the "codimension s" part of the cosimplicial
space X, and Yt bears the same relation to Yr) Then the induced maps

rciTotX {rTotYt}t

are also pro-isomorphisms.

Proof. The proof is by induction on s, using [-2; X, 6.3] and the five lemma
for pro-isomorphisms.

For the statement of the next lemma, let I-[ (X) denote the n-fold cartesian
product of the space X with itself.

LEMMA 1.5. For any nonneyative inteyers and n, the map

induced by E {RE} and B {RB }s, is a pro-isomorphism.

Proof This follows from ]-2; III, 6.5] and the finite product lemma I-2; I, 7.2]
The proof of (1.1) is completed by:

LEMMA 1.6. For each > 0 the natural map

{rtiTot,(A (R) F)} {rtiTot(A (R) F,)},

is a pro-isomorphism.

Proof By (1.5) and [2; X, 4.9], Lemma 1.4 can be applied to the map

A (R) F {A (R) F}.

An application of the Diagonal Lemma finishes the proof.

LEMMA 1.7. (Diagonal Lemma). Let {G, }, - {G, }i, be a map of
double towers of abelian yroups. Suppose that the induced tower map {G, }y
{G,} is a pro-isomorphism for each fixed > O. Then the diayonal tower map
{Gi, } - {G, } is also a pro-isomorphism.

Proof. The lemma is easy to obtain from the fact that a map of towers is a
pro-isomorphism iff both its kernal and cokernal are pro-trivial.

Remark. In both applications of the Diagonal Lemma above, the double
tower {G,}, is constant in the second variable.

2. A concrete computation

The purpose of this section is to show that, in some situations not covered by
[5], the Eilenberg-Moore spectral sequence converges to a limit closely related
to the homology of the fiber F. The main theorem is:

THEOREM 2.1. Suppose that B is a nilpotent space. Then, under suitable
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finiteness hypotheses, the mod A Eilenberg-Moore spectral sequence of p con-
verges to H,(F, A) with the tel(B)filtration.

Remark. The connected space B is nilpotent ([2]) if
(a) zcl(B) is a nilpotent group and
(b) the natural action of tea(B) on each of the higher homotopy groups of B

is nilpotent.

Remark. Theorem 2.1 will be proved under the assumptions that
(2.2a) each ri(B) (i > 1) is a finitely generated group and
(2.2b) each Hi(F, A) (i _> 0) is a finitely generated module over the integral

group ring of ra(B).

Somewhat weaker finiteness hypotheses will suffice. For instance, (2.2b) can be
replaced by the assumption that

(2.2b)’ for each > 0 there is a subring S of Q such that Hi(F, A) is a
finitely generated S[ni(B)]-module.

The technical meaning of Theorem 2.1 is as follows. The family (<I).) is
called a filtration of H,(F, A) if, for each > 0,

Hi(F, A) <
_

<b _’"

_
d _...

is a descending chain of subgroups inside Hi(F, A). Let Z[u] be the integral
group ring of rc tel(B), and let I

_
Z[rc] be the augmentation ideal. Each

group Hi(F, A) is a natural Z[rc]-module, so a canonical filtration of H,(F, A)
can be defined by

( I’. H,(F, A).

(Here 1’ (s > 0) stands for the s’th power of I; I is Z[rc].) This is the
filtration referred to in (2.1). A given filtration q of H,(F, A) is said to be
equivalent to the xl(B) filtration if for every pair (s, i) of nonnegative integers
there is a k > 0 such that

(I) +k CS I{/. and I+ktSS (I)..

Let E denote the Eilenberg-Moore spectral sequence of p. Then, by,j

definition, the conclusion of Theorem 2.1 means that

(a) for each pair (i,j) such that + j >_ 0, < 0, there is an N with the
property that Es E andi,j i,j

(b) there is some filtration W of H,(F, A), equivalent to the rI(B) filtration,
such that the augmentation of the spectral sequence induces natural isomorph-
isms

-s,s+i :i,:i S > 0, > 0.
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Remark. The rl(B) filtration tI) is the most rapidly descending nl(B)-
equivariant filtration of H.(F, A) with the property that each quotient group

is atrivial rxtI) i/tlli + (B)-module.

Before proving Theorem 2.1 it is convenient to reformulate the convergence
claim in the language of towers.
As before, let I be the augmentation ideal of the integral group ring of n

n(B). For any n-module M and positive integer s, let QM be the n-module
M/P+M. The obvious projections Q+M QM provide structure maps
that make {QM} into a tower of n-modules, and the quotient maps M QM
furnish this tower with a natural augmentation by M.

Consider the n-equivariant Eilenberg-Moore augmentations

(A F) {TotA @ F}, 0.

The argument of [5; Section 2] shows that nTot,(A F) can be constructed
from trivial n-modules by making no more than s extensions. (In other words,
nTotA @ F is a n-module of nilpotency class s + 1.) This implies that the
Eilenberg-Moore augmentations factor through natural tower maps

{Qn(A F)} {nTotA F}.

LEMA 2.3. The mod A Eilenbery-Moore spectral sequence ofp converges to

H,(F, A) with the n(B)filtration iff each of the tower maps

{Q,(A @ F)L {zTotA L, O,

is a pro-isomorphism.

Proof This is an algebraic consequence of the definitions.

The next lemma is the key to (2.1).

LEPTA 2.4. Suppose that B is a nilpotent space which satisfies (2.2a), and
that M is afinitely generated module over the integral group ring ofnx(B). Then
the augmentation M {QM} induces pro-isomorphisms

H,(B, M) {H,(B, QM)}
for each O.

The homology groups of B which appear in the lemma are, of course, twisted
homology groups. Lemma 2.4 will be proved below.
The proof of Theorem 2.1 now goes along the lines of the proof of the main

result in [5]. Recall from [5; Section 4] that there is a tower of first-quadrant
spectral sequences

{E(i, j) H(B, TotA F)}

which is augmented by the Serre spectral sequence of p:

E2(i,j) Hi(B, zj(A (R) F)).
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On the E2-1evel this augmentation is induced by the maps

nj(A (R) F) {njTotsA ( F)s j

_
O.

At "E this augmentation is covered by pro-isomorphisms in each dimension
between the limit of the Serre spectral sequence and the limit of the tower.
Assume by induction that the tower map

is a pro-isomorphism for each j < n. (This is certainly true for n 0.) We
must show that the map is also a pro-isomorphism in the case j n. By the
induction hypothesis, and Lemma 2.4, it is clear that the maps

E2(i, j) {E(i, j)}

are pro-isomorphisms for j < n and all 0. The comparison theorem
[5; 4.3] implies that

Ez(0, n) {E(0,
is a pro-isomorphism and

E2(1, n) {E2(1,

is a pro-epimorphism. From this it is easy to deduce that

{Ho(n, Qsn,(A (R)

is a pro-isomorphism, and

{Hi(n, Qsn,(A (R)

-, {Ho(, .TotA (R)

--, {Hx(n, n,TotsA (R)

is a pro-epimorphism, where n n:(B). However, both

{Qsnn(A (R) F)}s and {n,TotsA (R) F}s

are towers of nilpotent n-modules, so by [5; 4.4] the map between these two
towers is a pro-isomorphism. This completes the inductive step and concludes
the proof of (2.1).

Proof of Lemma 2.4. Let I be the augmentation ideal of the integral group
ring of n nl(B), and let Ms P+IM. The family {Ms}s forms a tower,
which lies in a short exact sequence"

0 {Ms} --, M {QsM}s 0.

To prove Lemma 2.4 it is enough to show that {H(B, Ms)}s is pro-trivial for each
> 0. Only two properties of the tower {Ms}s are relevant:

(2.5a) {Ho(n, Ms)}s is pro-trivial and
(2.5b) each Ms is a finitely generated Z[n] module.
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Property (a) is easy, while (b) follows from the fact that Z[n] is left and right
noetherian [9].

Remark 2.6. Properties (2.5a) and (2.5b) surprisingly imply that the towers
{Hi(n, Ms)} are pro-trivial for all > 0 (see [6]).

Let/ be the universal cover of B. For each s there is a first quadrant Serre
spectral sequence (cf. [- 11])"

E2(i, j) Hi(n, Hj(/, M)) - Hi +j(B, M).

The action of n on H(/, M) which figures here in E2 is a diagonal action which
is built from the topological action of n on and the algebraic action of n on
M. These spectral sequences stack together into a tower {E(i, j)} of spectral
sequences, which converges to the graded tower {H.(B, M)}.

In the light of the lemma below, the universal coefficient theorem, and
Remark 2.6, it is not hard to see that all of the towers

{H(B, M)), j >_ 0,

have the strong acyclicity property of (2.6)" {Hi(n, H(/, M))) is pro-trivial
for all > 0. This is exactly the statement that the whole E2-term of the above
spectral sequence tower is pro-trivial. Evidently the limit of the spectral sequence
tower is pro-trivial too. This completes the proof of (2.4).
For the duration of this final lemma, the respective symbols (R) and will

denote tensor and torsion product over the integers. The tensor or torsion
product of two n-modules is again a n-module in a natural diagonal way.

LEMMA 2.7. Let n be a finitely #enerated nilpotent #roup, and let N be a
finitely generated nilpotent n-module. Suppose that {M) is a tower ofn-modules
which satisfies (2.5a) and (2.5b). Then both of the towers {M (R) N} and
{M N} also satisfy (2.5a) and (2.5b).

Remark. If n is as above and N is a nilpotent n-module, then N is finitely
generated as a Z[n]-module iff N is finitely generated as an abelian group.

Proof of 2.7. Suppose to begin with that N is a trivial n-module. Choose
finitely generated free abelian groups F1 and F2 such that the sequence

O- FI --} F2.-} N- O

is exact. Give F and F2 the trivial n-module structure, so that the above be-
comes a short exact sequence of n-modules. There is an induced exact sequence
of towers of n-modules:

0 {M N} {M (R) F} {M (R) F2} {M (R) N} O.

Each of the middle towers is a direct sum of a finite number of copies of the
original tower {Ms}; thus both of these middle towers satisfy (2.5a) and (2.5b).
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The noetherian property of Z[rr] implies that {Ms (R) N}s and {Ms * N}s both
satisfy (2.5b). Moreover, the surjectivity of the arrow {Ms (R) F2}s
{Ms (R) N}s immediately gives that the tower {Ms (R) N}s has property (2.5a).
Thus all of the towers in this sequence have the property of Remark 2.6, except
perhaps {Ms * N}s. An easy long exact sequence argument shows that {Ms * N}s
also has this strong acyclicity property and therefore, afortiori, property (2.5a).
The proof of (2.7) can be finished by using similar arguments in an induction

on the nilpotency class of N.

3. Applications: Homology of the universal cover of the completion

In this section X will be any connected space and R will be the ring of integers.
The tower {RsX}s is then the Bousfield-Kan integral completion tower of the
space X. Let denote the universal covering space functor. We are interested
in computing the towers {Hi(RsX, R)}s. According to the conventions of Sec-
tion 1, these towers give the homology of the universal cover of the completion
of X.

PROPOSITION 3.1. Suppose that rc 71(X) is afinitely generatedgroup. Then,
for all > O,

{n,(RsX,

Remark. Here R[n] is the integral group ring of n with augmentation ideal
I =I[rt]. The symbol denotes the equivalence relation between towers of
groups which is generated by pro-isomorphisms.

Remark. This is completely parallel to the classical formula

The first step in the proof of (3.1) is to determine the behavior of Eilenberg-
Moore spectral sequences over certain nilpotent K(G, 1)’s.

LEMMA 3.2. Suppose that v is a finitely generated nilpotent group, and that
p: E --. K(v, 1) is a fibration. Let F be the Eilenberg-Moore object ofp. Then,
for all >_ O,

{rc,TotsR (R)

Remark. The homology groups in the right-hand tower are twisted by the
map nl(E) v induced by p.

Proof. Let P be the Eilenberg-Moore object of the path fibration over
K(v, 1). There is a projection map from F into the constant cosimplicial space
E which has (essentially) P as the inverse image of the basepoint. Using this
map, and the techniques of I-5; Section 5-1, it is possible to construct a tower of
first quadrant spectral sequences

{E(i, j) Hi(E, TcjTotsR
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By Theorem 2.1, the tower {njTotsR (R) P}s is pro-trivial if j > 0 and pro-
isomorphic to {R[v]/P[v]L if j 0. This implies that the tower of spectral
sequences collapses into the isomorphism claimed by the lemma.
To prove (3.1), let Ft(n) (t > 1) be the tth lower central series subgroup of

n ([2]). Let vt n/Ft, and let pt: X K(vt, 1) be the natural map. Note that
vt is a finitely generated nilpotent group. Let F, be the fiber of the map

Rsf Rs(K(vt, 1)).
The assembly {Fs, }, is a double tower, and, according to the argument below,

(3.3) {H,(RsE, R))s (H,(Fs, s, n)}, >_ 0.

By (3.2) and (1.1),

{H,(F,, t, n)}s {H,(E, R[vt]/IS[vt])}s, >_ O.

Thus, by the Diagonal Lemma 1.7,

{H,(Fs, s, R)}s {Hi(E, R[vs]/P[vsl)}, >_ O.

It is an easy algebraic exercise to show that the map n vs induces an iso-
morphism R[n]/P[n] R[v]/P[v]. This proves the proposition.
To prove (3.3), let qs, t: RE K(nxRsK(v, 1), 1) be the composite of ps,

with the natural projection, and let

r: RsE --+ K(nxRsE, 1)
be the natural map. Let Us, be the fiber of qs, r There is a commutative
diagram

{nsK(v,, 1)}, ," ,{K(n,R,E,
{K(n,RK(v, 1), 1)

Using the techniques of [2; IV: 2.4, 5.1] it is straightforward to show that both
of the extreme lower arrows are weak pro-homotopy equivalences, i.e., induce
pro-isomorphisms of all homotopy groups. From fibration long exact homotopy
sequences it immediately follows that the two topmost arrows are also weak pro-
homotopy equivalences. Equation (3.3) is a direct consequence.

4. Applications: The sufficiency of Massey products

Gugenheim and May have proven in [8; 5.17] that the algebraic cohomology
of many connected Hopf algebras is generated, in the sense of matric Massey
products, by classes of cohomological degree 1. Theorem 2.1 allows their tech-
nique to be applied to certain nonconnected algebras.

Suppose that R is a field of the form Q or Z/pZ, p prime.
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PROPOSITION 4.1. Let zr be afinitely generated nilpotent group. Then H*(rc, R)
is generated by H l(rc, R) in the sense ofmatric Massey products.

Remark. Note that H*(zr, R) is the same as the algebraic cohomology ring
of the discrete Hopf algebra R[zr]. The conclusion of (4.1) fails if either of the
two conditions on 7r is removed. To see this, let R Z/pZ, and let rr be either a
large alternating group or the abelian group Q/Z.

To prove (4.1) it is necessary to check that the "Eilenberg-Moore" spectral
sequence of [5] is correctly named.

LEMMA 4.2. The Eilenberg-Moore spectral sequence of I-5] coincides with the
cobar construction spectral sequence of [7-1, at least when coefficients are taken
inR.

Proofof4.1. Consider the mod R Eilenberg-Moore spectral sequence of the
path space fibration over K(rc, 1). By (2. l) this spectral sequence converges to a
limit which is concentrated in degree zero. Therefore the cohomology bar
construction spectral sequence of this fibration, which is dual to the cobar
construction spectral sequence, also converges to a degree zero limit. The
argument of !-8] shows that this implies the conclusion of the proposition.

Proof of 4.2. Let p: E B be a fibration with Eilenberg-Moore object F.
There are two distinct ways of exploiting F to get a homology spectral sequence"
one of these is the method of [5-1, the other is the homology version of the
method of Rector ([10]). By [3], both methods give exactly the same spectral
sequence. Rector, however, shows that the end product of his technique is
isomorphic to the (co-)bar construction spectral sequence.
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