AN ESTIMATE FOR LINE INTEGRALS AND
AN APPLICATION TO
DISTINGUISHED HOMOMORPHISMS

BY
JoHN B. GARNETT!

We prove an inequality similar to Melnikov’s estimate for Cauchy integrals
over closed curves [4]. As an application we prove a result relating asymptotic
values to the distinguished homomorphisms defined in [3].

1. LetT be a smooth Jordan arc in the plane. Parametrize I" by arc length:
I' = {{(s): 0 < s < I(I)} where I(I') is the length of I'. We assume that {'(s)
is Dini continuous: {’(s) has modules of continuity w(5) where

1.1) 2o(T) = j m%‘s)da < .
0

Also let K be a compact set and denote by A(K, M) the set of functions
analytic on S%\K such that | f(z)| < M, z € S*\K; and f(c0) = 0. The analytic
capacity of K is

wK) = sup {lim |zf(z)|: f e A(K, 1)}.

THEOREM 1. Let I" be a Jordan arc satisfying (1.1), let K be a compact set,

KnT =0,andlet fe AK, 1). Then

I fO | < CMWK) log (z " l(F))

1.2
(1.2) )

where C(I') depends only on y(I').
Inequality (1.2) is sharp; this can be seen by taking K to be a disc
{lz — 2ol < 6},

where dist (zo, T) = |zo — {(0)] = 25 and letting f = 3(z — z¢)~*.
Theorem 1 is a fairly routine consequence of Davie’s extension [1] of
Melnikov’s Theorem:

(1.3)

J O dc’ < ClroMMK)
r

where I' is assumed to satisfy (1.1) and I is closed. The proof follows the
reasoning on pp. 163-166 of [4]. Throughout the proof C;, C,, . . . are universal
constants and C;(I') denote constants depending only on yo(I').
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Proof. Since yxo(I') and both sides of (1.2) are dilation invariant, we may
assume /(I') = 1. We may also assume y = y(K) is small.

Partition the plane into squares S; of side y and let V; be an open square
concentric with S; but having side 5y/4. Write K; = K n V;, y; = (K;). On
p. 157 of [4] it is shown that

(1.4) X7 < Coy,

and as on pp. 148-151 of [4] we can write f = Y f;, f; € A(K;, C;). The in-
equality

Cyy;
1.5) /i)l < st (2. K) Ky’

a consequence of Schwarz’s Lemma, is on p. 145 of [4].
We estimate ¥; |fr f;({) d(| by taking three cases.

Case (i). If dist (K, I') > 7, then by (1.5) we have

(1.6)

f £ dt
r

ds 1
< ] —— < -.
< Cyy; L Gt 0O, K)) = Cy(T)y; log ;

Case (ii). Let E be the endpoints of I'. Assume dist (K;, I) < y but
dist (K;, E) > 2y. We can continue I to a closed curve I" such that [ satisfies
(1.1) with xo(f) < Csxo(I) + C, and such that dist (K;, T\I) > y. Then
jf\l- i) d{ can be estimated as in case (i), and using (1.3) we get (1.6) in this
case also.

Case (iii). The remaining K; satisfy dist (Kj, E) < 2y. Because of the
smoothness of I" there is a subset F; of I such that

dist (K, T\F) > 2y and I(F) < Cy(D)y.

j F; f T\F,;
just as with case (i).

Now there are at most 50 K; for which case (iii) applies, and when we sum
(1.6) over the other indices and use (1.4), we obtain (1.2).

We get

1
< GGy + Gy logy—
j

+

j O dc‘ <

2. H®(D) denotes the bounded analytic functions on a plane domain D.
Let z, € 8D and let A4, be the annulus {27""! < |z — z5| < 27"}. In [3] the
Melnikov condition

Q.1 :20 %(A\D) < oo
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was seen to be equivalent to the existence of a unique homomorphism ¢, of
H*(D) satisfying:

(1) @o(f) = f(zo) if f extends continuously to z,;
(i) there is a positive measure y on D such that

2.2) bo(f) = f fdu, feH*D).

Some time ago M. Behrens and T. W. Gamelin asked me the following question:

Problem 1. If (2.1) holds for z, € 0D and if f € H®(D) has limit L along some
curve in D terminating at z,, then is L = ¢o(f)?

Although the problem in general is unsolved we can give an affirmative answer
when the curve is sufficiently smooth.

THEOREM 2. Assume (2.1) holds at zy € 0D. Let I be a Jordan arcin D L {z,}
with endpoint z,. Assume I satisfies (1.1). If f € H*(D), and if limp, ., f() =
L, then L = ¢o(f).

Proof. We assume |f(z)] < 1. We begin with a well known localization
procedure [2, II 1.7]. Let 4, = 4,_; U A, U 4,,,. Choose ¥, e C¥(4,)
such that0 < ¢, < 1, |grad y,| < C;2", 3 ¢, = 1 on |J 4,. Definef = Oon

C\D and write
F2) = J Jf(w) 162 g, g,
w—z

Then F, € A(E,, C) where E, = A,\D, and we have

C3?(En)
(2.3) |F(2)] < m,

which is really the same inequality as (1.5). By Theorem 1, p. 166 of [4], for
example, (2.1) yields

2.9 Y 2"W(E,) < .

From (2.3) and (2.4) follow

(2.5) | _;Zs |Fu(2)] < C4 _Z 2%(E,), z€A,
(2.6) ZZ |Fu(zo)| < C4”Z 2%(E,).

Let ¢ > 0, take n, so that
2.7 Y 2"(E,) < s,

n>no
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and setg = Y,., F,. Then by (2.5), g € H*(D) and by (2.2) and (2.5),
do(g) = 22 do(F,) = ; Fy(2o)-

Hence |po(g)] < Ce by (2.6). Moreover, f — g is analytic on each 4,;, k > n,
by II 1.7 of [2]. The singularity at z, is then removable and we have

lim (f©) — 9(0) = ¢o(f) — do(9).

I's{—~zg

To complete the proof it is therefore enough to show

2.8) lim [g(0)] < Cslog .
&

Ta{-z
Let I', be the last arc of I joining the two boundary curves of 4,. By (2.5) and
Q.7
|F(2)] < C¢ onT;.

n>ng,|n—k| >3

For |[n — k| < 3 we apply Theorem 1 to obtain

1

< C(D)2(E,) log B

|2" J‘ F (0 d¢

Hence

SCslogl,
€

2 j o(0) dt
| 9%

and because I' is smooth this is the same as (2.8).

3. The proof of Theorem 2 shows that the hypothesis (1.1) can be weakened
to lim infy_, , xo(IW) < oo. More seriously, the proof shows that Problem 1 is
almost equivalent to the following question.

Problem 2. Let T be a continuous curve joining |z| = % to |z]| = 1. Let E
be a compact subset of {|z| < 4}, ENnT = 0, and let fe A(E, 1). Assume
Y(E) < 6, supr |f(§) — L| < ¢. If 6 and ¢ are small, must L be small, uniformly
inT?

Clearly a yes answer to Problem 2 would solve Problem 1. If Problem 2 has
a counterexample in which I' joins 4 to 1 and in which F = {} < |z| < 1} we
would have a negative answer to Problem 1.
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