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O. Introduction

In a recent paper [10], Helen Robinson gives an improvement of a theorem
of Dax relating smooth and topological embeddings of manifolds in the meta-
stable range. Their result is also a consequence of the techniques of Morlet [9].
In this paper we extend the results of Robinson using Morlet’s idea of relating
embeddings and immersions, and recent results of Millett on PL-immersions
[8]. What we show is that in a range of dimensions above the metastable
(Corollary 3 of Theorem A) the obstructions to deforming higher homotopy
groups of topological embeddings to smooth embeddings lie in the Haefliger
knot groups. We also relate topological and piecewise linear (PL) embeddings.
In Section 2, we relate PL embeddings to the space of maps, extending a result
of Lusk [6]. For a range of dimensions, this reduces the computation of the
homotopy groups of spaces of topological, piecewise linear and smooth em-
beddings to a purely homotopy problem.

1. The relationship between smooth and topological embeddings

Let (Mp, COM) c (N", cON) be smooth manifolds, M compact (with possibly
cOM 0, cON 0). Let Et(M, N) (resp. Ea(M, N)) be the space of locally flat
topological (resp. smooth) embeddings rel cO. These may be treated as spaces
with the C-O topology (resp. C-topology) or as A-sets (see Appendix for a
detailed discussion). Im (M, N) (resp. Ima (M, N)) will be the corresponding
spaces of immersions rel cO. Also Maps (M, N) will be the space of continuous
maps tel cO. Let T be a closed normal tube of M in N, and an open normal
tube containing T, defined with respect to some metric on N. Then Et(T, N)
(resp. Ea(T, N)) will denote the space of locally flat (smooth) embeddings of
T in N rel T c cON; and similarly for E(T, ). Finally, let E(T, mod M) be
the subspace of E(T, ) of embeddings fixed on M u (T c cON). We assume
n _> 5 throughout this paper.
By the isotopy extension theorem (see [2]) the restriction map E(T, N) -E(M, N) is a fibration (i.e., E(T, N) is a fibre space over a union of components

of E(M, N)) with fibre E(T, N mod M). In either category, E(T, mod M)
is a deformation retract ofE(T, N mod M). Thus (up to homotopy equivalence)
the following are fibrations in both categories:

E(T, mod M) - EfT, N) - E(M, N),
(a)

E(T, mod M)- E(T, )- E(M, ).
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Likewise the restriction map lm (T, N) Im (M, N) is a fibration with fibre
Im (T, N mod M). Since M is compact, an immersion of T in N fixed on M is
an embedding in a neighborhood of M, and E(T, mod M) is a deformation
retract of Im (T, N mod M). Thus (up to homotopy equivalence) the following
are fibrations in both categories"

E(T, mod M) Im (T, N) Im (M, N),
(b)

E(T, mod M) Im (T, ’) Im (M, r).
Writing d(E(M, N)) for s(E’(M, N), Ed(M, N)), etc., we have (cf. [9])"

THEOREM A (t/d).

rcd(Im (M, N)) z’Jd(E(M, U)) - zd(E(M, T)), j > O.

Proof By (a) and (b) we have in both categories"

(c) ts(E(T N), E(T, )) - rt/(E(M, N), E(M, )), j > 0,

(d) rc/(lm (T, N), Im (T, ]P))
_

t/(Im (M, N), Im (M, ]P)), j > 0,

(e) zrs(Im (T, N), E(T, N)) - zcs(Im (M, N), E(M, N)), j > O.

By Theorem 3.1 of [1],

(f) rce(E(T, N)) zre(Im (T, N)) and rce(E(T, )) - ne(Im (T, T)),
j>0.

Thus if we can prove

(g) zte(lm (T, )) - zre(Im (T, N)), j > 0,

the result will follow. In fact, by (e) and (f),

rr/(lm’ (M, N), E’(M, N)) - rrj(Im’ (T, N), E’(T, N))_
/(Ime (T, N), Ee(T, N))_
s(Ime (M, m), Ee(M, m)),

or

e(Im (M, N)) - e(E(M, N)), j > O,

proving the first isomorphism.
By (f) and (g), zn(E(T, N)) rdj/n(E(T, ]P)), and by (c),

1(E’(M, N), E’(M, )) - zcs(E’(T, N), Et(T, ’))_
(E"(T, m), E(T, ))- z1(En(M, m), E(M, )),

or

te(E(M, N)) - zcn(E(M,
proving the second isomorphism.

j>0,
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Proofof(g). If zN denotes the tangent bundle of N, we have by the covering
homotopy property a fibration in both categories"

(h) Ro(zT, z) - R(zT, zN) --. Maps (M, N),

where R(zT, zN) is the space of bundle monomorphisms and Ro(zT, z’) are
bundle monomorphisms over the inclusion. Similarly,

Ro(zT, z’) R(zT, z) --. Maps (M, ).(h’)

Thus

(i) rca(R(’rT, "rN))
_

zd(Ro(zT, z)) 7tj/d(R(zT, z)), j > O.

Since by the Immersion Theorem (see Ill), we have in both categories

(j) .(R(’rT, zN))
_

z/(Im (T, N)) and 7rj(R(vT, z)) - /(Im (T, )), all j,
(g) follows.

Example. Taking M Dp, we have T D", and since Et(Dt’, D") is con-
tractible by the Alexander trick, we get (up to homotopy equivalence) the
fibrations

(1) Ed(D, D") Ed(D", N) --. E’(D, N)

(2) Ed(D, D") Imd (Dp, D") Im (Dp, D").

COROLLARY (t/d). y(E(M, N)), j > O,’depends only on M and its normal
bundle v in N.

Let V and Vd , O(n)/O(n -p) be the topological and smooth Stiefelt, p /, p

manifolds of germs of embeddings of R’ in R". Let vTM be the homotopy--n, p

theoretic fibre of the inclusion Vd -- V
/1, p tt, p"

COROLLARY 2 (t/d). The fibre of Ed(M, N) E’(M, N) is the space of
sections F(K(v)) of afibre space K(v) over M with fibre vTM

--n, p"

Proof Since by Theorem A,

d(Im (M, )) Tcd(E(M, )) 7c]/d(E(M, V)),

we need to find the fibre of Imd (M, ) --+ Im (M, ). By [4], Im (M, ) is
the space of sections of a fibre space over M with fibre V,, p, and the result
follows.

Remark. Corollary 2 means, for example, that the obstructions to deforming
a class in rcj(E’(M, N)) into a class in rcj(Ed(M, N)) lie in

H (.J-’ (M/M), Tci(Vt,,/,dp)),

where if c3M O, M/3M M w pt.
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Applying the proof of Theorem A with EP(M, N) in place of Ed(M, N) we
obtain for M and N piecewise linear manifolds"

THEOREM A (t/pl).

P/(Im (M, N)) TcV’(E(M, N)) Tcpl(E(M, )), j > O.

We also get a similar theorem for pl/d or rather pd/d, pd piecewise smooth.
To use these theorems we need information on V.,,.
THEOREM (Haefliger-Millett [8]). lf n p 3,

is an epimorphismfor 2n p 3 and an isomorphismfor < 2n p 3.

Remark. Millett’s proof applies equally well to the topological category, so
that their theorem holds for V

Now taking M D, N D" in Theorem A (t/pl) and using the fact that
E’(D, D") and Et(D, D") are trivial by the Alexander trick, we have
g(Im (D, D")) 0. Since Im (D, D") fl(V.,) we get gj(V)
n1(V’.,) is an isomorphism for j > p. Combining this with the Haefliger-
Millett Theorem we have"

PROPOSITION (t/pl). If n p >_ 3, Vp, Vt.,p is a homotopy equivalence.

Remark. If p n Vp PL. and V Top. and by [5]
Top/PL K(Z2, 3), n 5.

By the argument of Corollary 2 with E in place of Ed, this gives the theorem
of Morlet, Rourke-Sanderson, Kirby’Siebenmann.

COROLLARY 2 (t/pl). If n p 3, EVI(M, N) E’(M, N) is a homotopy
equivalence.

(That the components map surjectively follows from the taming theorem,
Theorem .51 of [11].)

Remark. Ifp n 1, (E(M, N)) (E(M, N)) is a monomorphism
ifj 3 and an epimorphism ifj 4.

Next for v/d
-, v we have by the Haefliger-Millett Theorem

W/d n(G, O, G_v)forj 2nPROPOSmO (t/d). Ifn p 3,

_
( . ,

p-3.

Hence Corollary 2 implies"

THOREU (Dax, Robinson). nd(E(M, N)) Ofor j 2n 3p 3.
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Proof 7ri(G, O, G,_ p) 0 for i_< 2n 2p 3 by [7]. Now j_< 2n
3p- 3impliesj +p < 2n- 2p- 3 < 2n-p- 3. Also3p_< 2n- 3im-
plies the components are surjective.
More generally we have"

COROLLARY 3. For 0 < j < 2n 2p 3 the obstructions to the existence of
a lift ofa class in zrj(E(M, N)) to 7rj(Ea(M, N)) and to the uniqueness of the lifts
of a class in rcj_ I(Et(M, N)) lie in ztj+k(G, 0, G,_p), 0 < k < p.

Now let CE(M, N) (resp. C Im (M, N)) be the space of embeddings (immer-
sions) f:M I N Isuch thatfl M 0worM inclusion and
f-l(N 1) M 1. Then by the same argument as in Theorem A we have"

THEOREM A (C).

7a(C Im (M, N)) - ze(CE(M, N)) - zd(CE(M, )), j > 0.

(Similarly for t/pl and pd/d.)

COROLLARY (C). e(CE(M, N)), j > O, depends only on M and its normal
bundle v in N.

Let P(X, Y) be paths in X beginning at the base point and ending in Y.

COROLLARY 2 (C). The fibre of CEd(M, N) CE’(M, N) is the space of
sections F(L(v)) of a fibre space L(v) over M with fibre P( Vt/d VTMn+ 1, p+ 1 --n,

COROLLARY 3 (C). lfn p > 3, rctja(CE(M, N)) Oforj < 2n 2p 3.

Remark. One may of course go from information on rrd(E(M, N))or
Vt/azaCE(M, N) to information on _,, p, as we did for --n,Vr/plp" In fact, one may ob-

tain Millett’s improvement of Haefliger’s theorem this way. Also using informa-
tion on stability, i.e., on when rcCEa(M, N) --+ rrCEa(M I, N I) is an
isomorphism. We get information on when

j(V V’ )---+ l(V Vn+l,p+l n,p TCj+ n+2, p+2 n+l,p+l)

is an isomorphism. This last will appear in a forthcoming paper on stability.

2. The space of PL embeddings

Let Mp, N" be compact PL manifolds, n p > 3.

TrIEOREM (Casson, Haefliger, Sullivan [12]). Let

f: (M, M) (N, (3N)

be a map such that f M is a PL embedding andf is (2p n + 1)-connected.
Thenf is homotopic rel M to a PL embedding.
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Now assume (Mv, OM) c (N", ON) and let V(M, N) be the A-set of block
embeddings of M in N [2], with base point the inclusion. This is a Kan A-set
and rj(Vl(M, N)) concordance classes of PL embeddings t: DJ M
D x N such that 0(D x M) inclusion. By the above theorem we have:

TI4EOREM B. If ri(N, M) Ofor <_ t, then

zc(Maps(M,N),P(M,N)) 0 forO <j < n + r- 2p- 1.

Write rce(EV(M, N)) rj(V(M, N), EP(M, N)). The following theorem
is essentially due to Millett [8] (.see remarks below).

THEOREM C. Let Mv Dp w handles of dimension greater than l, and let
N" be a k-connected (k _< n 4/frcl(0N) -# 0). Then

rcTI(E(M,N)) 0 forj < n + -p- 2, inf(k,n-p + l- 1).

Proof (a) By Theorem 2.8 of [2],

7r}el(E(Dq, N)) 0 for j < n + k q 2 (k _< n 4 if zrx(0V) :/: 0).

(b) By Theorem 3.20 of [8], re’(E(Dq x Sv-q, Dq x s"-q)) 0 for j _<

2n-p-q-3.

From the fibrations

(c) E(D Dv-q, Dq D"-q) ---> E(Dq Sv-q, Dq x S"-q; mod Dq x O)

E(Dq Rv-a, Dq x R"-q; mod Dq x 0),

E(D Sv-q,Dq x S"-q; mod Dq O) E(Dq x Sp-q,Dq x S"-q)

E(D,Dq Sn-),

and the corresponding fibrations for/ we get

rrj.l(E(D Rv-, D R"-q; mod Dq 0))_
rT(E(D Sv-, D x S"-q mod Dq x 0))
_red sp-q, Dq S7cj ,r_,(Dq -q)) for j < 2n- 2q 3,

since
Tc)e’(E(Da x Dp-q, Da x Dn-q))--_feb’ripr t D") O,

and
zrI(E(D,D S"-o)) 0 for j_< 2n- 2q- 3

by (a).

(d) By (b) and (c)" Forp > q,

zcrl’E Rv-q,D R"-q" 0)) 0 for j< 2n-p- q- 3.t (Dq x x mod Dq

NowM- 3 0Mw handles of dimension p- l- 1. Letq dim
of lowest dim handle in this decomposition (q 0 if OM 0). Let M’
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M open normal tube of Dq in M, and N’
N. Then we have the fibrations

N open normal tube of Dq in

(e) E(M, N; mod Dq) ---} E(M, N) E(D, N),

E(M’, N’)---} E(M,. N; mod D) E(D x Rp-a, D x Rn-q; mod Da x 0)

and similarly for/.

(f) By (a) and (d),
relz.elE(M,/V’) --} 7z.el(E(M, N; mod D) ---} 7tj E(M, N))

is surjective for j < n + k’ q- 2, k’ inf (k, n -p 1).

Further rcj(N’) tog(N- Dq) 0 for j_< inf(k,n- q- 2). Hence it
follows by induction on the dimensions of the handles that

(g) rci(E(D, No)) ---} 7ri(E(M, N)) is surjective for

j<_n+k’-p+l- n + (k’ +l+ 1)-p- 2,

where No N open normal tube of (M /)n) in N.

Further, ztg(No) 0 forj < k"= inf (k, n -p + l- 1).
Applying (a) to E(Dp, No) we get rcj(E(Dn, No)) 0 forj < n + k" p 2,

and

(h) rtg(E(M,N)) 0 for j < n + k -p 2,

k inf(k’ + l+ 1, k")

inf(k + l+ 1, n-p + l,k,n-p + l- 1)

inf(k,n-p + l- 1).

Remarks. (i) This differs from Millett’s result in [-8] in three respects"
(1) He assumes M Dp w handles of dim between + and p

if t3M # 0, and the foregoing union a p-handle if t3M 0.
(2) He omits the condition k < n 4 if rcl(t3V) # 0. This is because he

claims that (a) holds without this condition.
(3) His result states that 7-el(E(M, N)) 0 for j _< n + r p 2, r

inf(k,n-p- 1).
(ii) If M is an/-connected manifold, then M satisfies the hypothesis of the

theorem, provided _< p 4 if rcl(t3M) :fi 0.

By Theorems B and C we have"

THEOREM D. Ifzri(N Ofor < k (k < n 4 ifzr(t3N) : 0), 7zi(M) 0

for < l, and 7ti(N, M) Ofor <_ r, then

rc(Maps (M, N), E(M, N)) 0

for0 <j < n + -p 2, inf(r-p + 1, k,n + l-p + 1).
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Theorem B may be improved in the sense that 7r,j(ff, pl(M, N)) may be obtained,
up to extensions, from homotopy data for all j >_ 1. The result is more com-
plicated (and even less computable) than Maps (M, N). (cf. [8].)

Let (N) be the space of homotopy equivalences of N fixed on cN. One may
also consider the A-set (N) of block homotopy equivalences. However, the
singular complex of vf(N) is a deformation retract of t(N) and we will sup-
press the symbol . Let W N 7". Let S be the frontier of T, i.e., the
normal sphere bundle ofM in N. Let T be the closure of ’, T T w S x I.
Then as in [2-1 we have the fibrations:

(a)
(b)
(a’)
(b’)

A"(N mod M) A’(N) (M, N).
A"(W) A"(N mod M) /(T, N mod M) - /(T, ]P mod M).
(T mod M)-+ /(T)--+ (M, 5) /(M, Tl).
A"(S x I) A’(T1 mod M) --* / (T, mod M).

Thus we have since (b’) is a subbundle of (b)"

(C) 7ci((W)/AS I)) 7c,(.(N mod M)/(Ti mod M)), all/> 0.

Now using that (a’) is a subbundle of (a), we get, using (c)"

(d) --> u,(A’(W)/.,(S x I)) u,(.,(N)/.,(T,)) z,(ff.(M, N), (M, ))
z,_I((W)/(S x I))-

is exact, > 1.

Now Theorem 3.5 (5) of [0] gives a (natural) exact sequence"
(e) --+ L,+i+ (z) ---> /eL,(N) --+ [Zi(N/cN), G/PL] --+ L,+i(n), > 0, where

zc(N), L],(zc) is the Wall surgery group, and N/ON N w pt if ON 0.

Taking the sequence (e) with W in place of N, and using the inclusion
(N, ON) --+ (N, T w ON) we get a map of the W sequence into the N sequence
and hence

(f) Tc/PL((N)/(W))
_

[Z’(T w N)/ON, G/PL], > O.

Applying the same argument to T and S x /, we get

(f’) 7c/PL((T1)/(S I))
_

[Z’(T w OT/OTi), G/PL], > O.

Since T w OTa/Tx T w N/ON, we have

(g) /e(Z(Ta)/(S x I)) /e(Z(N)/(W)), or

Hence from (d) we get,

(h) --+ T,(d/f(W), oCf(S I)) z,(oVf(N), 34(T,)) --* z,(/(M, N),/(M, ))
---> zi-, ((W), d/g(S x I)) --+

is exact, > 1.

That is, is an open normal tube containing T.
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Now by Theorem B,

tj(Maps (M, T1),/(M, T1)) 0, j > 0,
and

rcj(/(M, T1)) zc(Maps (M, T1)) rc(M), j > 0.

This gives2"

THEOREM B’.
--} zti((W), d/f(S x I)) ---} rc,((N), f(T,))

rci(E(M N), (M)) --} rci_,(d/f(W), f(S x I))

is exact, > 1.

Finally, by Theorem C we have"

THEOREM D’. Theorem B’ holds with E(M, N) in place of E(M, N) for
< < n + -p- 2, inf(k,n-p + l- 1),

where N is k-connected, and M is #connected.

We also note (see [8]),

THEOREM D". IfN is k-connected and M is l-connected,
rcjCE(M,N) 0 for j < n + k -p 3, k inf(k,n -p + l- 1).

Final Remark. Consider the case where N is noncompact, but cON is compact
(or empty) and N has only a finite number of tame ends. It follows from
Siebenmann’s thesis (Princeton) that if X N is compact, there exists a com-
pact submanifold K, X K N, such that zri(N, K) 0 for < n 3. It
follows that Theorem B holds for such N provided r <_ n 4. Likewise
Theorem C holds. Thus Theorem D holds under the above assumptions.
Similarly, Theorem D". Finally, Theorem D’ holds under these assumptions
provided we interpret /-f(W) and /f(N) as homotopy equivalences with compact
support.

Appendix. Spaces of topological embeddings

Let (M, COM) (N, c3N) be a compact locally flat submanifold of the compact
manifold N with n m >_ 3. Let et(M, N) be the space of topological em-
beddingsf: M N with f- 1(CON) COM and f c3M inclusion and with the
C-O topology. Let LF(M, N) be the subspace of locally flat embedding. Finally
let E’(M, N) be the semisimplicial complex for which a p-simplex is an embed-
ding 9: A’ M Ap N such that:

(a) 9 commutes with projection onto

Note that by definition fig(M, T) (M, ).
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(b) g-I(AP x 0N)= Ap x t3M.
(c) g lAg x 0M inclusion.
(d) g satisfies the locally isotopy extension condition: For each (t, x)

Ap x M, there exists a neighborhood U of in Ap, a neighborhood V of x in M,
and an embedding h: U x V x R"-" U x N commuting with projection
onto Uandwithh[ U V 0 =g[ U x V.

Then we have the obvious inclusions E(M, N) SCtLF(M, N) Sgt(M, N)
where S denotes the singular complex.

THEOREM 1. If n rn > 3 and n > 5, the above inclusions are homotopy
equivalences.

This theorem follows from the results of Cernavskii (Topological embeddings
of manifolds, Soviet Math. Dokl., vol 10 (1969), pp. 1037-1041), which in turn
depend on work of Homma, Bryant and Seebeck, R. D. Edwards and Richard T.
Miller. That the first inclusion is a homotopy equivalence follows immediately
from Cernavskii’s isotopy extension theorem for the space g.v(M, N); i.e.,
isotopy extension implies local isotopy extension; so in fact Et(M, N)=
StLF(M, N) for n > 5, n m > 3.
For the second inclusion we need the following:

LEMMA. Let (X, A) be a pair ofmetric spaces. IfA is dense in X and locally
p-connectedatpoints ofXfor 0 <_ p <_ n, then q(X, A) Ofor 0 < q < n 1.

DEFINITION. A is locally p connected at points ofX if for any x X and e > 0
there is a 6 > 0 such that if 9: SP - A with d(9(s), x) < 6 for s S; then 9
extends to : Dp+ A with d(O(s), x) < e for s Dp+ 1.

Thus the fact that SgF(M, N)- St(M, N) is a homotopy equivalence
follows from the lemma and the result of Cernavskii et al:

THEOREM 2. If n m > 3 and n > 5, gF(M, N) is dense in gt(M, N) and
is locally p connected at points of gt(M, N)for all p.

(Actually Cernavskii states a slightly weaker result than this in the above
reference, but as pointed out by Edwards and Miller, Notices A.M.S., vol 19
(1972), A-467, by using the stronger form of Bryant and Seebeck’s engulfing
lemma the stronger statement above holds.)

Also we note that Corollary 2 (t/pl) and Theorem above imply:

THEOREM 3. IfM andN are compact PL manifolds with n > 5 and n rn >
3 then EV(M, N) Sg(M, N) is a homotopy equivalence.

Theorem 3 is also claimed by R. Stern. The above argument depends crucially
on ideas of Richard Miller, and indeed Miller has proved Theorem 3 for M an
arbitrary finite PL space of codimension 4 (Fiber preserving equivalenceto
appear in Trans. AMS).

Conversely, Theorem 3 and Theorem imply Corollary 2 (t/pl).
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