SEMISIMPLICITY OF 2-GRADED LIE ALGEBRAS, II

BY
D. Ž. DJoković and G. Hochschild

1. Introduction

As in [2], we consider finite-dimensional graded Lie algebras over a field F of characteristic 0 . The grading is by integers mod 2 and enters into the defining identities as follows. Let L_{0} and L_{1} be the homogeneous components of the 2-graded Lie algebra L, let $x \in L_{\alpha}, y \in L_{\beta}, z \in L$. Then $[x, y]$ lies in $L_{\alpha+\beta}$,

$$
[x, y]=-(-1)^{\alpha \beta}[y, x]
$$

and

$$
[x,[y, z]]=[[x, y], z]+(-1)^{\alpha \beta}[y,[x, z]]
$$

We call such a Lie algebra semisimple if all its finite-dimensional 2-graded modules are semisimple, i.e., have the property that every homogeneous submodule has a homogeneous module complement.

It has been made apparent in [2] that the requirement that a 2-graded Lie algebra be semisimple in this representation-theoretical sense is a very severe restriction, ruling out all the examples that come to mind first, excepting, of course, the ordinary semisimple Lie algebras L with $L_{1}=(0)$. The main result we obtain here is the complete determination of all semisimple 2-graded Lie algebras over an algebraically closed field F of characteristic 0 . It turns out that the sole example given in [2] is the first member of an infinite sequence of scmisimple, oddly generated and simple 2 -graded Lie algebras $L(n)$, which are obtained in a natural way from the ordinary simple Lie algebras of type C_{n}. This is the symplectic sequence given in Section 4 below. In the algebraically closed case, every semisimple 2-graded Lie algebra is a direct sum of members of this sequence and ordinary semisimple Lie algebras. In view of this result, the general theory given in Sections 2 and 3 below essentially completes its life cycle right here.

From the viewpoint of classical representation theory of Lie algebras, the feature singling out the type C_{n} as the only possibility in the above is that it is the only type in which the extremal (highest) roots are divisible by 2 in the group of weights. This is seen quite clearly in the proof of Proposition 3.2.

It should be emphasized that almost all questions concerning simple, not necessarily semisimple, oddly generated 2-graded Lie algebras are still open. We merely exhibit two interesting new sequences of examples in Section 5.

2. A semisimplicity criterion

Let F be a field of characteristic 0 , and let $R=R_{0}+R_{1}$ be a 2 -graded F-algebra. Let A and B be 2-graded R-modules, and let $\operatorname{Hom}_{F}(A, B)$ denote the F-space of all F-linear maps from A to B. The 2-gradings of A and B define a 2-grading of $\operatorname{Hom}_{F}(A, B)$, where $\operatorname{Hom}_{F}(A, B)_{0}$ consists of the degree preserving maps (i.e., of the morphisms of the category of 2-graded F-spaces), while $\operatorname{Hom}_{F}(A, B)_{1}$ consists of the F-linear maps sending A_{0} into B_{1} and A_{1} into B_{0}.

Suppose that $S=S_{0}$ is an F-subalgebra of R_{0}. We denote by $\operatorname{Hom}_{S}(A, B)$ the homogeneous subspace of $\operatorname{Hom}_{F}(A, B)$ consisting of the elements f such that $f(s \cdot a)=s \cdot f(a)$ for every s in S and every a in A.

Finally, we define the homogeneous F-subspace $\operatorname{Hom}_{R}(A, B)$ of $\operatorname{Hom}_{F}(A, B)$ as follows. The component $\operatorname{Hom}_{R}(A, B)_{\eta}$ consists of the elements f of $\operatorname{Hom}_{F}(A, B)_{\eta}$ such that

$$
f(r \cdot a)=(-1)^{\eta \rho} r \cdot f(a)
$$

for all elements a of A and all elements r of R_{ρ}. Clearly, $\operatorname{Hom}_{R}(A, B) \subset$ $\operatorname{Hom}_{S}(A, B)$, and the morphisms of the category of 2-graded R-modules are the elements of $\operatorname{Hom}_{R}(A, B)_{0}$.

The 2 -graded R-module B may be viewed naturally as a 2 -graded S-module. If K is any 2 -graded S-module, we have the functor $\operatorname{Hom}_{S}(K$,$) from the$ category of 2 -graded R-modules to the category of 2 -graded F-spaces. On the other hand, we consider the 2 -graded R-module $R \otimes_{S} K$ and the functor $\operatorname{Hom}_{R}\left(R \otimes_{S} K,\right)$. As in the usual ungraded case, these two functors are naturally equivalent. The isomorphism $\operatorname{Hom}_{S}(K, B) \rightarrow \operatorname{Hom}_{R}\left(R \otimes_{S} K, B\right)$ is as follows. If f belongs to $\operatorname{Hom}_{S}(K, B)_{\eta}$ then the corresponding element f^{\prime} of $\operatorname{Hom}_{R}\left(R \otimes_{S} K, B\right)_{\eta}$ is characterized by $f^{\prime}(r \otimes k)=(-1)^{\eta \rho} r \cdot f(k)$ for every k in K and every r in $\boldsymbol{R}_{\boldsymbol{\rho}}$. The inverse map is obtained in the evident way from the canonical map $K \rightarrow R \otimes_{S} K$.

Now let us consider an exact sequence

$$
(0) \rightarrow U \rightarrow V \rightarrow W \rightarrow(0)
$$

in the category of 2-graded R-modules. Assume that this sequence is split when viewed as an exact sequence in the category of 2 -graded S-modules. Then the induced sequence

$$
(0) \rightarrow \operatorname{Hom}_{S}(K, U) \rightarrow \operatorname{Hom}_{S}(K, V) \rightarrow \operatorname{Hom}_{S}(K, W) \rightarrow(0)
$$

in the category of 2-graded F-spaces is exact. Because of the above natural equivalence of functors, this implies that the sequence
$(0) \rightarrow \operatorname{Hom}_{R}\left(R \otimes_{S} K, U\right) \rightarrow \operatorname{Hom}_{R}\left(R \otimes_{S} K, V\right) \rightarrow \operatorname{Hom}_{R}\left(R \otimes_{S} K, W\right) \rightarrow(0)$ is exact.

Now let L be a 2-graded Lie algebra over F. Let R be the universal enveloping algebra $\mathscr{U}(L)$, and let S be the universal enveloping algebra $\mathscr{U}\left(L_{0}\right)$. As usual, we identify 2 -graded L-modules with 2 -graded $\mathscr{U}(L)$-modules. Let A and B be

2-graded L-modules. Then $\operatorname{Hom}_{F}(A, B)$ has a 2 -graded L-module structure, as follows. For x in L_{p} and f in $\operatorname{Hom}_{F}(A, B)_{\eta}$, the transform $x \cdot f$ in $\operatorname{Hom}_{F}(A, B)_{\eta+\rho}$ is given by

$$
(x \cdot f)(a)=x \cdot f(a)-(-1)^{\eta \rho} f(x \cdot a)
$$

If y is an element of L_{σ}, one must verify that

$$
x \cdot(y \cdot f)-(-1)^{\rho \sigma} y \cdot(x \cdot f)=[x, y] \cdot f
$$

We leave this verification to the reader. It is clear from the definitions that $\operatorname{Hom}_{R}(A, B)$ coincides with the L-annihilated $\operatorname{part} \operatorname{Hom}_{F}(A, B)^{L}$ of $\operatorname{Hom}_{F}(A, B)$, and that $\operatorname{Hom}_{S}(A, B)=\operatorname{Hom}_{F}(A, B)^{L_{0}}$.

We regard F as a trivial L-module, with $L \cdot F=(0)$, choosing the 2-grading such that $F=F_{0}$. As in [2], we let \otimes_{0} indicate tensoring with respect to $S=\mathscr{U}\left(L_{0}\right)$. Now we are fully prepared for the following semisimplicity criterion.

Theorem 2.1. Let L be a finite-dimensional 2-graded Lie algebra over the field F of characteristic 0 . Then L is semisimple if and only if the following two conditions are satisfied. (1) L_{0} is semisimple. (2) There is an element u_{0} in $\left(\mathscr{U}(L)_{0} \otimes_{0} F\right)^{L}$ whose canonical image in F is not 0 .

Proof. Condition (2) is evidently equivalent to the condition that the exact sequence

$$
(0) \rightarrow L \mathscr{U}(L) \otimes_{0} F \rightarrow \mathscr{U}(L) \otimes_{0} F \rightarrow F \rightarrow(0)
$$

coming from the trivial $\mathscr{U}(L)$-module structure of F be split as a sequence in the category of 2 -graded L-modules. This makes it evident that condition (2) is necessary. We know from Theorem 4.3 of [2] that condition (1) is necessary.

Now suppose that conditions (1) and (2) are satisfied. Let (0) $\rightarrow A \rightarrow B \rightarrow$ $C \rightarrow(0)$ be an exact sequence of finite-dimensional 2 -graded L-modules. It is clear that our definition of $\operatorname{Hom}_{F}(A, B)$ as a 2 -graded L-module makes $\operatorname{Hom}_{F}(C$,$) a functor from the category of 2-graded L$-modules to itself. Since F is a field, this functor is exact. Therefore, applying $\operatorname{Hom}_{F}(C$,$) to$ our above sequence, we obtain the following exact sequence in the category of 2-graded L-modules

$$
(0) \rightarrow \operatorname{Hom}_{F}(C, A) \rightarrow \operatorname{Hom}_{F}(C, B) \rightarrow \operatorname{Hom}_{F}(C, C) \rightarrow(0) .
$$

Since L_{0} is semisimple, this sequence is split as a sequence of L_{0}-modules. In other words, it is split as a sequence in the category of 2 -graded S-modules. From our introductory discussion in this section, we know that therefore the sequence obtained by applying the functor $\operatorname{Hom}_{R}\left(R \otimes_{0} F\right.$,) is exact. Since condition (2) is satisfied, we may identify the trivial L-module F with a direct 2 -graded R-module summand of $R \otimes_{0} F$. This implies that the functor $\operatorname{Hom}_{R}(F, \quad)$ has the same exactness property as the functor $\operatorname{Hom}_{R}\left(R \otimes_{0} F, \quad\right)$. Clearly, for every 2 -graded L-module U, we have $\operatorname{Hom}_{R}(F, U) \approx U^{L}$. Hence,
applying the functor $\operatorname{Hom}_{R}(F, \quad)$ to our above sequence, we find that the sequence

$$
(0) \rightarrow \operatorname{Hom}_{F}(C, A)^{L} \rightarrow \operatorname{Hom}_{F}(C, B)^{L} \rightarrow \operatorname{Hom}_{F}(C, C)^{L} \rightarrow(0)
$$

is exact. In particular, the map $\operatorname{Hom}_{F}(C, B)^{L} \rightarrow \operatorname{Hom}_{F}(C, C)^{L}$ is surjective. Let I denote identity map $C \rightarrow C$. This is evidently an element of $\operatorname{Hom}_{F}(C, C)_{0}^{L}$, and therefore is the image of an element f of $\operatorname{Hom}_{F}(C, B)_{0}^{L}$. Thus, f is a morphism of 2-graded L-modules $C \rightarrow B$ whose composite with the given morphism $B \rightarrow C$ is the identity map $C \rightarrow C$. The existence of such a morphism f means precisely that the given sequence $(0) \rightarrow A \rightarrow B \rightarrow C \rightarrow(0)$ is split as a sequence of 2-graded L-modules. We have shown that conditions (1) and (2) imply that L is semisimple, so that Theorem 2.1 is now established.

The trivial part of Theorem 2.1, namely, the necessity of condition (2) gives the following very useful necessary condition for semisimplicity.

Proposition 2.2. Let L be a semisimple 2-graded Lie algebra over the field F, and let a be a nonzero element of L_{1}. Then $[a, a] \neq 0$.

Proof. Suppose that $0 \neq a_{1} \in L_{1}$ and $\left[a_{1}, a_{1}\right]=0$. Choose elements a_{2}, \ldots, a_{n} in L_{1} so that $\left(a_{1}, \ldots, a_{n}\right)$ is an F-basis of L_{1}. Then 1 and the monomials $a_{i_{1}} \cdots a_{i_{q}}$ with $i_{1}<\cdots<i_{q}$ constitute a free right $\mathscr{U}\left(L_{0}\right)$-basis of $\mathscr{U}(L)$ (cf. [2, Section 2]). Let u be an element of $\mathscr{U}(L) \otimes_{0} F$ whose canonical image in F is 1 . Then u is the canonical image of an element v of $\mathscr{U}(L)$ that has the form

$$
v=1+x+a_{1} y
$$

where x is a linear combination of basis elements $a_{i_{1}} \cdots a_{i_{q}}$ with $1<i_{1}$, and y is such a linear combination plus an element of F. Since $\left[a_{1}, a_{1}\right]=0$, we have $a_{1} a_{1}=0$ in $\mathscr{U}(L)$, whence $a_{1} v=a_{1}+a_{1} x$. This is a nonzero F-linear combination of elements of our $\mathscr{U}\left(L_{0}\right)$-basis of $\mathscr{U}(L)$, whence $a_{1} \cdot u \neq 0$. Thus, condition (2) of Theorem 2.1 is not satisfied, contradicting the assumption that L is semisimple. This proves Proposition 2.2.

3. Implications of simplicity

Proposition 3.1. Suppose that L is a semisimple 2-graded F-Lie algebra having no homogeneous ideals other than (0) and L. Then L_{1} is simple (or (0)) as an L_{0}-module, and L_{0} is simple (or (0)).

Proof. By [2, Theorem 4.3], L_{0} is semisimple as an ordinary Lie algebra, and $\left[L_{0}, L_{1}\right]=L_{1}$. We assume that $L_{1} \neq(0)$, because otherwise there is nothing to prove. Then we have also $L_{0} \neq(0)$. Now $L_{1}+\left[L_{1}, L_{1}\right]$ is clearly a nonzero homogeneous ideal of L, whence $\left[L_{1}, L_{1}\right]=L_{0}$.

Let U be any nonzero ideal of L_{0}, and put $A=L_{1}^{U}$. First, we show that $A=(0)$. Clearly, A is an L_{0}-submodule of L_{1}, so that L_{1} is a direct L_{0}-module
$\operatorname{sum} A+M$, with $[U, M]=M$. We have

$$
[A, M]=[A,[U, M]]=[U,[A, M]] \subset U
$$

whence $[[A, M], A]=(0)$. On the other hand, $[[M, M], A]=(0)$, because it is contained in both A and M. Since

$$
L_{0}=\left[L_{1}, L_{1}\right]=[A, A]+[M, M]+[A, M]
$$

it follows that

$$
A=\left[L_{0}, A\right]=[[A, A], A]
$$

Now $[[A, A], M]=(0)$, because it is contained in both M and A. Hence we have

$$
[A, M]=[[A, A],[A, M]] \subset[A, A]
$$

and it is now clear that $[A, A]+A$ is a homogeneous ideal of L. If this coincided with L, we would get the contradiction $U=\left[L_{0}, U\right]=[[A, A], U]=$ (0). Therefore, we must have $A=(0)$, i.e., $L_{1}^{U}=(0)$.

Now let S be any nonzero simple L_{0}-submodule of L_{1}. Make a direct $L_{0^{-}}$ module decomposition $L_{1}=S+T$. As above, $[[S, S], T]=(0) . \quad$ By Proposition 2.2, $[S, S] \neq(0)$. By the above, with $U=[S, S]$, we have $T=(0)$ so that $L_{1}=S$. Thus, we have shown that L_{1} is simple as an L_{0}-module.

In showing that L_{0} is simple, let us first deal with the case where F is algebraically closed. Suppose that L_{0} is the direct sum $X+Y$ of two nonzero ideals X and Y. Since L_{1} is simple as an L_{0}-module, with $L_{1}^{X}=(0)=L_{1}^{Y}$, and F is algebraically closed, it follows from standard basic theory of semisimple F algebra modules that L_{1} is a tensor product module $A \otimes B$, where $Y \cdot A=$ $(0)=A^{X}$ and $X \cdot B=(0)=B^{Y}$. By decomposing A and B into weight spaces with respect to Cartan subalgebras of X and Y, respectively, we see that there are nonzero elements a in A, b in B, x in X, y in Y, and α, β in F, such that $x \cdot a=\alpha a$ and $y \cdot b=\beta b$. Let u be the element $a \otimes b$ of L_{1}. By Proposition 2.2, we have $[u, u] \neq 0$. On the other hand, $[x,[u, u]]=2 \alpha[u, u] \in X$, whence $[u, u]$ is a nonzero element of X. Similarly, operating with y, we see that $[u, u]$ is a nonzero element of Y. This contradicts the assumption $X \cap Y=$ (0). Therefore, L_{0} is simple.

Now let us consider the general case. Assume that $L_{0}=X+Y$, as above. Let T be an algebraically closed field containing F. Since $L_{0} \otimes_{F} T$ is semisimple, it therefore follows from Theorem 2.1 that $L \otimes_{F} T$ is semisimple as a 2 -graded Lie algebra over T. Clearly, $\left(L \otimes_{F} T\right)_{0}$ is the direct sum of the two nonzero ideals $X \otimes_{F} T$ and $Y \otimes_{F} T$. By the above, the simple components of $L \otimes_{F} T$ have the simple components of $\left(L \otimes_{F} T\right)_{0}$ as their degree 0 parts. Therefore, $L \otimes_{F} T$ is a direct 2-graded Lie algebra sum $U+V$, where $U_{0}=X \otimes_{F} T$ and $V_{0}=Y \otimes_{F} T$. If both U_{1} and V_{1} are (0) then $L_{1}=$ (0). Therefore, we may suppose that $U_{1} \neq(0)$. Now we have $\left[V_{0}, U_{1}\right]=(0)$, whence $\left(L_{1} \otimes_{F} T\right)^{Y} \neq(0)$. Clearly, this implies that $L_{1}^{Y} \neq(0)$, which contradicts what we have found in proving the first part of our proposition. The proof of Proposition 3.1 is now complete.

Proposition 3.2. If the base field F is algebraically closed, then the simple Lie algebra L_{0} of Proposition 3.1 is of the symplectic type $C_{n}(n=1,2, \ldots)$.

Proof. Let μ denote the highest weight of the simple L_{0}-module L_{1}, and let u be a nonzero element belonging to the weight subspace $\left(L_{1}\right)_{\mu}$ of L_{1}. By Proposition 2.2, $[u, u]$ is a nonzero element of L_{0}. Clearly, it belongs to the root subspace $\left(L_{0}\right)_{2 \mu}$ of L_{0}. Since $\left[L_{1}, L_{1}\right]=L_{0}$, it is clear that 2μ is therefore the largest root of L_{0}. Thus, a necessary condition for L_{0} is that its largest root be divisible by 2 in the group of weights, for any choice of a Cartan subalgebra and ordering of the roots.

The following facts are easily collected from the tables given at the end of [1]. In all of the exceptional types $G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$, in B_{n} for $n>2$, and in D_{n} for $n>3$, the largest root is listed as one of the fundamental weights. In A_{n} for $n>1$, the largest root is the sum of the first and the last fundamental weights.

Since the fundamental weights constitute a free basis of the group of weights, all these types are thus ruled out. This leaves only C_{n} for $n=1,2, \ldots$ (note that $\left.A_{1}=B_{1}=C_{1}, B_{2}=C_{2}\right)$.

4. The symplectic sequence

The standard representations of the ordinary simple Lie algebras of type C_{n} give rise to an infinite sequence of semisimple (and simple) 2-graded Lie algebras $L(n)$ such that $L(n)_{0}$ is the ordinary simple Lie algebra of type C_{n}. Let us recall the standard representation of C_{n}.

Let V be an F-space of dimension $2 n(n=1,2, \ldots)$. Choose an F-basis $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)$ of V, and let π be the skew symmetric nondegenerate bilinear form on $V \times V$ such that $\pi\left(a_{i}, a_{j}\right)=0=\pi\left(b_{i}, b_{j}\right)$ for all i and j, while $\pi\left(a_{i}, b_{j}\right)$ is equal to 1 if $i=j$ and equal to 0 otherwise. Let L_{0} be the Lie algebra of all those linear endomorphisms of V which annihilate π, i.e., the elements of L_{0} are the linear endomorphisms e such that $\pi(e(u), v)+\pi(u, e(v))=0$ for all elements u and v of V. Then L_{0} is a simple Lie algebra of type C_{n}, and V is the standard simple L_{0}-module. We define L_{1} to be the L_{0}-module V. Thus, for x in L_{0} and v in V, the Lie product $[x, v]$ is defined as $x(v)$.

Now let u and v be elements of V. We must define $[u, v]$ as an element of L_{0}. The definition is actually obtained in the usual way, using the isomorphism between V and its dual coming from π. Explicitly, we define $[u, v]$ to be the linear endomorphism of V given by

$$
[u, v](w)=\pi(v, w) u+\pi(u, w) v
$$

A direct check shows that $[u, v]$ indeed belongs to L_{0} (i.e., annihilates π). Since $[u, v]=[v, u]$, there is an F-linear map $\eta: S^{2}\left(L_{1}\right) \rightarrow L_{0}$, where $S^{2}\left(L_{1}\right)$ denotes the homogeneous component of degree 2 of the symmetric algebra built over L_{1}, such that $\eta(u v)=[u, v]$ for all elements u and v of L_{1}. A part of the Jacobi identity for 2-graded Lie algebras says that η is a homomorphism of $L_{0}-$ modules. This is verified directly, as follows. Let x be an element of L_{0}. Then,
in $S^{2}\left(L_{1}\right)$, we have $x \cdot(u v)=x(u) v+u x(v)$. Hence, with w in V,

$$
\begin{aligned}
\eta(x \cdot(u v))(w) & =\pi(v, w) x(u)+\pi(x(u), w) v+\pi(x(v), w) u+\pi(u, w) x(v) \\
& =x(\pi(v, w) u+\pi(u, w) v)+\pi(x(v), w) u+\pi(x(u), w) v \\
& =x([u, v](w))-\pi(v, x(w)) u-\pi(u, x(w)) v \\
& =x([u, v](w))-[u, v](x(w)) \\
& =[x,[u, v]](w) \\
& =[x, \eta(u v)](w)
\end{aligned}
$$

Thus we have, indeed, $\eta(x \cdot(u v))=[x, \eta(u v)]$.
The remaining part of the Jacobi identity says that, for u, v and w in L_{1}, we should have

$$
[\eta(u v), w]+[\eta(v w), u]+[\eta(w u), v]=0
$$

(cf. [2, Section 4]). This is seen immediately from the definitions, using that π is skew symmetric. Now we have established that L is a 2 -graded Lie algebra. Since η is a nonzero L_{0}-module homomorphism and since L_{0} is simple as an L_{0}-module, η is surjective. The dimensions of $S^{2}\left(L_{1}\right)$ and L_{0} are both equal to $n(2 n+1)$. Therefore, η is actually an isomorphism.

An ideal of L is an L_{0}-submodule of L. Since the L_{0}-module L is the direct sum of the two nonisomorphic simple L_{0}-modules L_{0} and L_{1}, an ideal must therefore be one of (0), L, L_{0}, L_{1}. Clearly, L_{0} and L_{1} are not ideals of L. Therefore, L is simple, in the sense that its only ideals (homogeneous or not) are (0) and L. As we know from [2, Section5], this does not imply that L is semisimple (in our representation-theoretical sense).

We shall now use the criterion of Theorem 2.1 in order to prove that L is semisimple. It suffices to exhibit an element u_{0}, as in condition (2) of Theorem 2.1. Working in $\mathscr{U}(L)$, put $t_{i}=a_{i} b_{i} \in \mathscr{U}(L)_{0}$. Let u_{0} be the canonical image in $\mathscr{U}(L) \otimes_{0} F$ of the element

$$
\left(1-t_{1}\right)\left(3-t_{2}\right) \cdots\left(2 n-1-t_{n}\right)
$$

of $\mathscr{U}(L)_{0}$. Since the canonical image of u_{0} in F is not zero (being the product of the odd integers from 1 to $2 n-1$), it remains only to show that u_{0} is annihilated by every element of L. In order to see this, we examine some commutation relations in $\mathscr{U}(L)$, as follows.

First, let us note that if u, v and w are elements of L_{1} then, in $\mathscr{U}(L)$, we have $u v+v u=[u, v]$, etc., whence

$$
u v w-v w u=[u, v] w-v[u, w] .
$$

In particular,

$$
u t_{j}-t_{j} u=\left[u, a_{j}\right] b_{j}-a_{j}\left[u, b_{j}\right] .
$$

We have $\left[u, a_{j}\right] b_{j}=\left[\left[u, a_{j}\right], b_{j}\right]+b_{j}\left[u, a_{j}\right]$. Hence we have

$$
u t_{j}=t_{j} u+u+\pi\left(u, b_{j}\right) a_{j}+b_{j}\left[u, a_{j}\right]-a_{j}\left[u, b_{j}\right] .
$$

Now let i be an index other than j. Then this gives

$$
a_{i} t_{j}=t_{j} a_{i}+a_{i}+b_{j}\left[a_{i}, a_{j}\right]-a_{j}\left[a_{i}, b_{j}\right]
$$

and

$$
b_{i} t_{j}=t_{j} b_{i}+b_{i}+b_{j}\left[b_{i}, a_{j}\right]-a_{j}\left[b_{i}, b_{j}\right]
$$

Multiplying the second relation by a_{i} from the left and then substituting for the resulting $a_{i} t_{j}$ the right-hand side of the last equation but one, we obtain
$t_{i} t_{j}=t_{j} t_{i}+t_{i}+b_{j}\left[a_{i}, a_{j}\right] b_{i}-a_{j}\left[a_{i}, b_{j}\right] b_{i}+t_{i}+a_{i} b_{j}\left[b_{i}, a_{j}\right]-a_{i} a_{j}\left[b_{i}, b_{j}\right]$
Next, we note that

$$
\left[a_{i}, a_{j}\right] b_{i}=a_{j}+b_{i}\left[a_{i}, a_{j}\right] \quad \text { and } \quad\left[a_{i}, b_{j}\right] b_{i}=b_{j}+b_{i}\left[a_{i}, b_{j}\right]
$$

Hence we have

$$
b_{j}\left[a_{i}, a_{j}\right] b_{i}-a_{j}\left[a_{i}, b_{j}\right] b_{i}=b_{j} a_{j}+b_{j} b_{i}\left[a_{i}, a_{j}\right]-t_{j}-a_{j} b_{i}\left[a_{i}, b_{j}\right]
$$

and

$$
t_{i} t_{j}=t_{j} t_{i}+2\left(t_{i}-t_{j}\right)+d_{i j}
$$

where $d_{i j}$ lies in $\mathscr{U}(L) L_{0}$. We shall not need the precise expression for $d_{i j}$ (as obtained from the above), but only the following fact. Let V_{k} be the F-subspace $F a_{k}+F b_{k}$ of L_{1}. Let $\left[V_{i}, V_{j}\right]$ be the F-subspace of L_{0} spanned by the elements $[u, v]$ with u in V_{i} and v in V_{j}. Then $d_{i j}$ lies in $\left[a_{j}, b_{j}\right]+\mathscr{U}(L)\left[V_{i}, V_{j}\right]$.

It follows immediately from this last result that, for every q in F, and in particular for every integer q, we have

$$
\left(q-t_{i}\right)\left(q+2-t_{j}\right)-\left(q-t_{j}\right)\left(q+2-t_{i}\right) \in\left[a_{j}, b_{j}\right]+\mathscr{U}(L)\left[V_{i}, V_{j}\right]
$$

Now observe that if neither i nor j is equal to k then, in $\mathscr{U}(L)$, every element of [V_{i}, V_{j}] commutes with every element of V_{k}. It follows from this and the last result that, if σ is any permutation of $(1, \ldots, n)$, the image in $\mathscr{U}(L) \otimes_{0} F$ of

$$
\left(1-t_{\sigma(1)}\right) \cdots\left(2 n-1-t_{\sigma(n)}\right)
$$

coincides with u_{0}.
Since $\left[L_{1}, L_{1}\right]=L_{0}$, it suffices to prove that u_{0} is annihilated by every element of L_{1}. Therefore, it suffices to show that $a_{i} \cdot u_{0}=0=b_{i} \cdot u_{0}$ for every i. Because of the above symmetry with respect to permutations of the indices, it is clear that it suffices to prove that u_{0} is annihilated by a_{1} and b_{1}. It is easy to verify directly that both $a_{1}\left(1-t_{1}\right)$ and $b_{1}\left(1-t_{1}\right)$ lie in $\mathscr{U}(L)\left[V_{1}, V_{1}\right]$. Since the elements of [V_{1}, V_{1}] commute with the elements of every V_{k} with $k>1$, it follows immediately that

$$
V_{1}\left(1-t_{1}\right) \cdots\left(2 n-1-t_{n}\right) \subset \mathscr{U}(L)\left[V_{1}, V_{1}\right] \subset \mathscr{U}(L) L_{0}
$$

whence $V_{1} \cdot u_{0}=(0)$. This completes the proof that L is semisimple.
We note that the case $n=1$ is the unique lowest dimensional odd (i.e., generated by L_{1}) semisimple 2 -graded Lie algebra, whose simple modules have been determined explicitly in [2, Section 6].

Theorem 4.1. Let F be an algebraically closed field of characteristic 0 , and let L be a finite-dimensional 2-graded Lie algebra over F. Then L is semisimple if and only if it is a direct sum of 2-graded Lie algebras each of which is either a member of the symplectic sequence or an ordinary simple Lie algebra.

Proof. All that remains to be shown is that if L is as in Proposition 3.2 then it is a member of the symplectic sequence (the sufficiency of our condition is clear from Theorem 4.1 of [2]). Let $L(n)$ be the member of the symplectic sequence such that $L(n)_{0}=L_{0}$. The proof of Proposition 3.2 has shown that, as an L_{0}-module, L_{1} is determined up to isomorphisms by L_{0}. Therefore, we may identify L_{1} with $L(n)_{1}$. Let η_{n} and η denote the L_{0}-module homomorphisms $S^{2}\left(L_{1}\right) \rightarrow L_{0}$ of $L(n)$ and L, respectively. Since each of these is an isomorphism and since L_{0} is simple, we must have $\eta=c \eta_{n}$, where c is a nonzero element of F. Choose an element d in F such that $d^{2}=c$. Then the map $L \rightarrow L(n)$ that coincides with the identity map on L_{0} and with the scalar multiplication by d on L_{1} is clearly an isomorphism of 2-graded Lie algebras. This establishes Theorem 4.1.

5. Other simple 2-graded Lie algebras

Let us call a 2-graded Lie algebra L simple if its only homogeneous ideals are (0) and L. The classification of these is probably quite difficult. The most natural family of such 2-graded Lie algebras has been briefly discussed in [2, Section 5]. The fact that they are not semisimple is now seen immediately from Proposition 2.2.

We shall describe two sequences of simple 2-graded Lie algebras that arise in an interesting way from the classical type A_{n}. Let n be a positive integer, and let V be an $(n+1)$-dimensional vector space over the field F of characteristic 0 . Let L_{0} be the simple Lie algebra of all linear endomorphisms of trace 0 of V. Let $S^{2}(V)$ and $E^{2}(V)$ denote the homogeneous components of degree 2 of the symmetric and exterior, respectively, algebras built on V. We regard these as L_{0}-modules in the natural way. Let ${ }^{\circ}$ indicate dual space (and L_{0}-module), and let L_{1} be the direct sum of the L_{0}-modules $S^{2}(V)$ and $E^{2}(V)^{\circ}$. Define the linear map $\eta: S^{2}\left(L_{1}\right) \rightarrow L_{0}$, indicated also by writing $\eta(u v)=[u, v]$, as follows:

$$
\left[S^{2}(V), S^{2}(V)\right]=(0)=\left[E^{2}(V)^{\circ}, E^{2}(V)^{\circ}\right]
$$

Next, let f be an element of $E^{2}(V)^{\circ}$, and let a, b, x be elements of V. Let $a b$ denote the canonical image of $a \otimes b$ in $S^{2}(V)$, and let $a * x$ and $b * x$ denote the canonical images of $a \otimes x$ and $b \otimes x$ in $E^{2}(V)$. Then the bracketing with f is defined so that

$$
[a b, f](x)=f(a * x) b+f(b * x) a=[f, a b](x)
$$

It is easy to verify that the map η so defined is indeed an L_{0}-module homomorphism $S^{2}\left(L_{1}\right) \rightarrow L_{0}$. Since L_{0} is simple, it follows from the evident fact that $\eta \neq 0$ that η is surjective. In order to verify that we have now the structure of
an odd 2-graded Lie algebra, it suffices to show that, for all elements u, v, w in L_{1}, one has

$$
[[u, v], w]+[[v, w], u]+[[w, u], v]=0 .
$$

This verification is somewhat lengthy, but automatic. The fact that L is simple is easily established, using that L_{0} is simple and that $S^{2}(V)$ and $E^{2}(V)$ are simple L_{0}-modules.

The other sequence of simple 2-graded Lie algebras is obtained from the same V and L_{0}, but with L_{1} the direct sum of $S^{2}(V)^{\circ}$ and $E^{2}(V)$. As above, only the mixed brackets are different from 0 , and the critical part of the definition of η is as follows. Let g be an element of $S^{2}(V)^{\circ}$, and let a, b, x be elements of V. Then

$$
[g, a * b](x)=g(a x) b-g(b x) a=[a * b, g](x)
$$

The required verifications are very similar, in the two cases.

References

1. N. Bourbaki, Groupes et algèbres de Lie, Ch. 6, Hermann, Paris, 1968.
2. G. Hochschild, Semisimplicity of 2-graded Lie algebras, Illinois J. Math., vol. 20 (1976), pp. 107-123 (this issue).

Waterloo, Ontario
University of California
Berkeley, California

