BOUNDARY-PRESERVING MAPPINGS OF 3-MANIFOLDS ONTO CUBES-WITH-HANDLES

BY
Alden H. Wright ${ }^{1}$

1. Introduction

Let M^{3} and N^{3} be 3-manifolds with boundary. A continuous mapping $f: M^{3} \rightarrow N^{3}$ is said to be boundary-preserving if $f^{-1}\left(\partial N^{3}\right)=\partial M^{3}$ and $f \mid \partial M^{3}$ is a homeomorphism, where ∂M^{3} and ∂N^{3} denote the boundaries of M^{3} and N^{3} respectively. All manifolds and mappings in this paper will be assumed to be piecewise linear. A cube-with-handles is a 3-manifold homeomorphic to a regular neighborhood of a connected finite graph in S^{3}. A cube-with-holes is a 3-manifold homeomorphic to the closure of the complement of a cube-withhandles in S^{3}. Fox [1] has shown that any compact 3-manifold with connected boundary in S^{3} is a cube-with-holes. Lambert [7], and Jaco and McMillan [5] have given examples of cubes-with-holes for which there exist no boundarypreserving mappings onto cubes-with-handles. Jaco and McMillan also give a necessary and sufficient condition on a cube-with-holes for the existence of a boundary-preserving mapping of it onto a cube with-handles. In Theorem 3.1 we generalize this result to compact orientable 3 -manifolds with connected boundary. Theorems 3.2 and 3.3 are also concerned with the existence of bound-ary-preserving mappings onto cubes-with-handles.

Let M^{3} and N^{3} be orientable 3-manifolds. Let K^{3} be a compact submanifold of M^{3} which has connected boundary, and let H^{3} be a cube-with-handles which is a submanifold of N^{3}. Let $f: M^{3} \rightarrow N^{3}$ be a mapping so that $f \mid K^{3}$ is a boundary-preserving mapping of K^{3} onto H^{3}, and so that $f \mid \mathrm{cl}\left(M^{3}-K^{3}\right)$ is a homeomorphism. In Theorems 2.2 and 2.3 we show that any degree one mapping between closed 3 -manifolds, and any boundary-preserving mapping between compact 3 -manifolds with boundary, is homotopic to a mapping satisfying the conditions given for f above. In the closed manifold case, the genus of ∂K^{3} is determined by the Heegaard genus of N^{3}. In Theorem 4.2 we show that the homeomorphism type of K^{3}, and its embedding in M^{3}, determine the 3-manifold N^{3}.

In Section 5, we describe how any genus n cube-with-handles U in S^{3}, where $\mathrm{cl}\left(S^{3}-U\right)=K^{3}$ is a boundary-retractable cube-with-holes, gives rise to a homotopy 3-sphere M^{3} of Heegaard genus n, and a mapping $f: S^{3} \rightarrow M^{3}$ so that $f \mid U$ is a homeomorphism. Then we give conditions on U and K^{3} which

[^0]imply that M^{3} is homeomorphic to S^{3}. For instance, if K^{3} has genus 2 and contains a nontrivial spanning disk, M^{3} is homeomorphic to S^{3}. And if U has genus 2 and contains a nontrivial unknotted simple closed curve, then M^{3} is homeomorphic to S^{3}.

A disk D in a 3-manifold with boundary K^{3} is called a spanning disk of K^{3} if $D \cap \partial M^{3}=\partial D$. A spanning surface is defined similarly. We will define the genus of an orientable 3-manifold with connected boundary to be the genus of the boundary. A Heegaard splitting of a closed 3-manifold M^{3} is a pair (U, V) where U and V are cubes-with-handles in M^{3} such that $M^{3}=U \cup V$ and $U \cap V=\partial U=\partial V$. The Heegaard genus of M^{3} is the genus of U and of V.

Let M^{2} be a 2-manifold. We can attach a (3-dimensional) 1-handle to M^{2} by identifying two disjoint disks on the boundary of a 3-cell with two disjoint disks on M^{2}. We can attach a 2 -handle to M^{2} along a simple closed curve $J \subset M^{2}$ by identifying an annulus in the boundary of a 3-cell with an annular regular neighborhood of J in M^{2}.

A cube-with-handles of genus n is the 3-manifold obtained by attaching n 1-handles to the boundary of a 3-ball. A set of handle disks for a cube-withhandles H^{3} of genus n is a collection D_{1}, \ldots, D_{n} of pair-wise disjoint spanning disks of H^{3} so that $\bigcup D_{i}$ does not separate H^{3}. Then the closure of the complement of a regular neighborhood of $\bigcup D_{i}$ in H^{3} will be a 3-cell.

2. Degree one mappings from 3-manifolds onto 3-manifolds

Theorem 2.1. Let M^{3} and N^{3} be closed orientable 3-manifolds and let (U, V) be a Heegaard splitting of N^{3}. Let $f: M^{3} \rightarrow N^{3}$ be a degree one mapping. Then f is homotopic to a monotone mapping $g: M^{3} \rightarrow N^{3}$ so that $g \mid g^{-1}(U)$ is a homeomorphism.

Proof. This is a direct consequence of Theorem 8.3 of [12].
Theorem 2.2. Let M^{3} and N^{3} be orientable 3-manifolds with boundary, and let $U_{1}, U_{2}, \ldots, U_{n}$ be a collection of 1-handles in N^{3} attached to ∂N^{3} so that $\mathrm{cl}\left(N^{3}-\bigcup U_{i}\right)$ is a cube-with-handles. Let $f: M^{3} \rightarrow N^{3}$ be a boundary preserving mapping; then f is homotopic to a boundary preserving mapping $g: M^{3} \rightarrow N^{3}$ so that $g \mid g^{-1}\left(\bigcup_{i}\right)$ is a homeomorphism. The homotopy can be chosen to be constant on ∂M^{3}.

Proof. This is a direct consequence of Theorem 8.4 of [12].

3. Boundary-retractable 3-manifolds with boundary

Let K^{3} be a compact orientable 3-manifold whose boundary is a connected surface of genus n. Then K^{3} is said to be boundary-retractable if there exists a wedge P of n simple closed curves in ∂K^{3} and a retraction $r: K^{3} \rightarrow P$.

Theorem 3.1. Let K^{3} be a compact orientable 3-manifold whose boundary is a connected surface of genus n. Then the following are equivalent:
(i) K^{3} is boundary-retractable;
(ii) there exist n pairwise disjoint connected orientable spanning surfaces F_{1}, \ldots, F_{n} in K^{3}, each with connected boundary, so that $\bigcup \partial F_{i}$ does not separate ∂K^{3};
(iii) there is a boundary preserving mapping from K^{3} onto a cube-with-handles of genus n.

Proof. The equivalence of (i) and (iii) is essentially Theorem 3 of [5]. In [5] it is assumed that K^{3} can be embedded in S^{3}, however this assumption is not necessary for the proof. Condition (ii) is an intermediate step in the proof.

Theorem 3.2. Let K^{3} be a compact orientable 3-manifold with connected boundary. Let K_{1}^{3} and K_{2}^{3} be submanifolds of K^{3} so that $K_{1}^{3} \cup K_{2}^{3}=K^{3}$ and $K_{1}^{3} \cap K_{2}^{3}$ is a spanning disk of D of K^{3}. Then K^{3} is boundary-retractable if and only if K_{1}^{3} and K_{2}^{3} are boundary-retractable.

Proof. By using Theorem 3.1 it is easy to see that if K_{1}^{3} and K_{2}^{3} are both boundary-retractable, then K^{3} is boundary-retractable.

So let us assume that K^{3} is boundary-retractable and has genus n. By Theorem 3.1 there is a boundary-preserving mapping $f: K^{3} \rightarrow H^{3}$ where H^{3} is a cube-with-handles of genus n. By Dehn's Lemma [11], $f(\partial D)$ bounds a spanning separating disk E in H^{3}. Let $D_{1}, D_{2}, \ldots, D_{n}$ be a set of handle disks for H^{3}. We will show how to modify $D_{1}, D_{2}, \ldots, D_{n}$ so that $E \cap\left(\bigcup D_{i}\right)=\emptyset$. We suppose D_{1}, \ldots, D_{n} are chosen so that $\bigcup D_{i}$ is in general position with respect to E and so that the number of components of $E \cap\left(\bigcup D_{i}\right)$ is minimal.

Suppose $E \cap\left(\bigcup D_{i}\right)$ contains a simple closed curve component. We choose such a component which is innermost on E. We replace the disk this component bounds on $\bigcup D_{i}$ with the disk it bounds on E and push to one side of E. This will modify $\bigcup D_{i}$ so as to eliminate at least one component of $E \cap\left(\bigcup D_{i}\right)$, so we can assume $E \cap\left(\bigcup D_{i}\right)$ contains no simple closed curve components.

Thus, each component of $E \cap\left(\bigcup D_{i}\right)$ must be an arc. If $E \cap\left(\bigcup D_{i}\right) \neq \emptyset$, let A be a component of $E \cap\left(\bigcup D_{i}\right)$ so that $E=E_{1} \cup E_{2}$ where $E_{1} \cap E_{2}=A$ and $E_{1} \cap\left(\bigcup D_{i}\right)=A$. Then A is contained in some D_{j}. Replace a regular neighborhood of A in D_{j} by two disks, each parallel to E_{1} and on opposite sides of E_{1}. The result will be two disks $D_{j 1}$ and $D_{j 2}$. We claim that at least one of

$$
\partial D_{j 1} \cup\left(\bigcup_{i \neq j} \partial D_{i}\right) \text { and } \partial D_{j 2} \cup\left(\bigcup_{i \neq j} \partial D_{i}\right)
$$

does not separate ∂H^{3}. Suppose $\partial D_{j 1} \cup\left(\bigcup_{i \neq j} \partial D_{i}\right)$ separates ∂H^{3} into two components U and V where $\partial D_{j 2} \subset U$. Let J be a simple closed curve in ∂H^{3} which intersects ∂D_{j} transversely in exactly one point and which does not intersect $\bigcup_{i \neq j} \partial D_{i}$. We can suppose that the one point of $\partial D_{j} \cap J$ is contained in $\partial D_{j 1}$. We also suppose J is in general position with respect to $\partial D_{j 1} \cup \partial D_{j 2}$, and
that each point of $J \cap \partial D_{j 2}$ corresponds to a point of $J \cap \partial D_{j 1}$, and each point of $J \cap \partial D_{j 1}$ except for $J \cap D_{j}$ corresponds to a point of $J \cap \partial D_{j 2}$. Since each point of $J \cap D_{j 1}$ corresponds to a crossing from U to V or from V to U, J intersects $\partial D_{j 1}$ algebraically trivially. Thus, J intersects $\partial D_{j 2}$ algebraically once, and $\partial D_{j 2} \cup\left(\bigcup_{i \neq j} \partial D_{i}\right)$ does not separate K^{3}.

Thus, either $D_{1}, \ldots, D_{j 1}, \ldots, D_{n}$ or $D_{1}, \ldots, D_{j 2}, \ldots, D_{n}$ is a collection of spanning disks of H^{3} whose union does not separate H^{3}, and whose union does not separate H^{3}, and whose union has fewer components of intersection with E than $E \cap\left(\bigcup D_{i}\right)$. This is a contradiction, so we must be able to choose D_{1}, \ldots, D_{n} so that $E \cap\left(\bigcup D_{i}\right)=\emptyset$.

Suppose D_{1}, \ldots, D_{n} are also chosen so the $\bigcup D_{i}$ is in general position with respect to a triangulation of H^{3} for which f is simplicial. Let $F_{i}=f^{-1}\left(D_{i}\right)$ for $i=1, \ldots, n$. Then each F_{i} is an orientable surface with connected boundary. By another cut and paste argument we can modify F_{1}, \ldots, F_{n} so that $D \cap\left(\bigcup F_{i}\right)=\emptyset$. By Theorem 3.1, K_{1}^{3} and K_{2}^{3} are boundary-retractable.

In the following theorem, the homology used has integer coefficients.
Theorem 3.3. Let K^{3} be a genus 2 cube-with-holes. Let J_{1} and J_{2} be disjoint nontrivial simple closed curves on ∂K^{3} which are each homologous to zero in K^{3}. Suppose J_{1} bounds on orientable surface F_{1} in K^{3} with a spine P which is a wedge of simple closed curves each of which has linking number zero with J_{2}. Then J_{2} bounds an orientable surface F_{2} in K^{3} which is disjoint from F_{1}, and K^{3} is bound-ary-retractable.

Proof. Let F_{2} be an orientable spanning surface of K^{3} bounded by J_{2}. Since P does not link J_{2}, we can modify this surface by adding handles so that it does not intersect P. We assume that the resulting surface, still called F_{2}, is in general position with respect to F_{1}. It is not difficult to modify F_{2} to eliminate any simple closed curves of $F_{1} \cap F_{2}$ which bound a disk on F_{1}. Any remaining simple closed curves of $F_{1} \cap F_{2}$ must separate J_{1} from P on F_{1}. If $F_{1} \cap F_{2} \neq \emptyset$, let C be a simple closed curve of $F_{1} \cap F_{2}$ which is innermost on F_{1}. Then C bounds a surface E in F_{1} which contains P and which intersects F_{2} only in C. If C separates F_{2}, we can replace the surface C bounds in F_{2} by E, and push the resulting surface off F_{1} to eliminate C as a curve of intersection. If C does not separate F_{2}, we can replace an annulus regular neighborhood of C on F_{2} with two copies of E_{j} one on each side of F_{1}. Again, the number of components of $F_{1} \cap F_{2}$ is reduced. Proceeding in this fashion, we modify F_{2} so that $F_{1} \cap F_{2}=\emptyset$. A Theorem 3.1 now implies that K^{3} is boundary retractable.

4. A uniqueness theorem

In this section we show that a boundary-retractable cube-with-holes K^{3} embedded in S^{3} uniquely determines a homotopy 3 -sphere M^{3} and a mapping $f: S^{3} \rightarrow M^{3}$ so that $f \mid \mathrm{cl}\left(S^{3}-K^{3}\right)$ is a homeomorphism and $f\left(K^{3}\right)$ is a cube-with-handles. Theorem 4.2 contains a generalized version of this result.

If G is a group, and A and B are subsets of G, let $[A, B]$ denote the subgroup of G generated by all commutators of the form $a^{-1} b^{-1} a b$ where $a \in A$ and $b \in B$. If we let $G_{1}=G, G_{2}=\left[G_{1}, G\right]$, and in general $G_{m+1}=\left[G_{m}, G\right]$, then the sequence $G_{1}, G_{2}, G_{3}, \ldots$ is called the lower central series of G. Each G_{i} is a normal subgroup of G, and $G_{\omega}=\bigcap_{i=1}^{\infty} G_{i}$ is also normal. Theorem 1 of [5] asserts that if h is a homomorphism from G onto a free group F which induces an isomorphism of G / G_{2} onto F / F_{2}, then ker $h=G_{\omega}$.

Lemma 4.1. Let K^{3} be a compact orientable boundary-retractable 3-manifold with connected boundary of genus n. We also suppose that $H_{1}\left(K^{3}, Z\right)$ is isomorphic to the direct sum of n copies of the integers. Let $f_{1}: K^{3} \rightarrow H_{1}^{3}$ and $f_{2}: K^{3} \rightarrow H_{2}^{3}$ be boundary preserving mappings of K^{3} onto cubes-with-handles H_{1}^{3} and H_{2}^{3}. Let J be a simple closed curve in ∂K^{3}. Then $f_{1}(J)$ bounds a disk in H_{1}^{3} if and only if $f_{2}(J)$ bounds a disk in H_{2}^{3}.

Proof. Let $x \in J$, and let

$$
f_{1^{*}}: \Pi_{1}\left(K^{3}, x\right) \rightarrow \Pi_{1}\left(H^{3}, f_{1}(x)\right)
$$

and

$$
f_{2^{*}}: \Pi_{1}\left(K^{3}, x\right) \rightarrow \Pi_{1}\left(H^{3}, f_{2}(x)\right)
$$

be the induced maps on fundamental groups. By Theorem 1 of [5], $\operatorname{ker} f_{1^{*}}=$ $G_{\omega}=\operatorname{ker} f_{2^{*}}$ where G_{ω} is the intersection of the lower central series of $G=$ $\Pi_{1}\left(K^{3}, x\right)$. Using Dehn's lemma, we see that $f_{i}(J)$ bounds a disk in H_{i}^{3} if and only if J represents an element of $\operatorname{ker} f_{i^{*}}=G_{\omega}$ for $i=1,2$.

Theorem 4.2. Let M^{3} be a compact orientable 3-manifold, possibly with boundary. Let K^{3} be a boundary-retractable submanifold with connected boundary. Let $f_{1}: M^{3} \rightarrow N_{1}^{3}$ and $f_{2}: M^{3} \rightarrow N_{2}^{3}$ be mappings onto orientable 3-manifolds N_{1}^{3} and N_{2}^{3} so that for $i=1,2$,
(1) $f_{i} \mid \mathrm{cl}\left(M^{3}-K^{3}\right)$ is a homeomorphism and
(2) $f_{i} \mid K^{3}$ is a boundary preserving mapping onto a cube-with-handles H_{i}^{3}.

Then N_{1}^{3} is homeomorphic to N_{2}^{3}.
Proof. Let $Q=\mathrm{cl}\left(M^{3}-K^{3}\right) \cup \partial K^{3}$. Then N_{1}^{3} is homeomorphic to the identification space formed by identifying Q and H_{1}^{3} using the homeomorphism $f_{1} \mid \partial K^{3}$. Let D_{1}, \ldots, D_{n} be a set of handle disks for H_{1}^{3}. The above identification space can also be constructed in two stages as follows: First attach 2handles to Q along the curves $f_{1}^{-1}\left(\partial D_{i}\right) \subset \partial K^{3}$ for $i=1, \ldots, n$. Then attach a 3-handle to the result so that the 3-handle and the 2-handles form a cube-withhandles which is attached to Q in the same way as H_{1}^{3}.

By Lemma 4.1, the simple closed curves $f_{2} f_{1}^{-1}\left(\partial D_{1}\right), \ldots, f_{2} f_{1}^{-1}\left(\partial D_{n}\right)$ bound disks in H_{2}^{3}. By a standard cut and past argument, these disks can be chosen to be disjoint. Hence, they will be a set of handle disks for H_{2}^{3}. Thus N_{2}^{3} is also homeomorphic to the manifold obtained by attaching 2-handles to Q along the curves $f_{1}^{-1}\left(\partial D_{1}\right), \ldots, f_{1}^{-1}\left(\partial D_{n}\right)$ and attaching a 3 -handle to the result.

5. Mappings from S^{3} onto homotopy 3 -spheres

By a homotopy 3 -sphere we will mean a closed 3-manifold with the same homotopy type as the 3 -sphere S^{3}. A fake 3 -sphere is a homotopy 3 -sphere which is not homeomorphic to S^{3}. A homotopy 3-cell is a compact contractible 3 -manifold with 2 -sphere boundary.

Let M^{3} be a homotopy 3-sphere. It is not difficult to construct a degree one mapping from S^{3} onto M^{3}. Let $M^{3}=B_{3}^{3} \cup B_{4}^{3}$ where B_{3}^{3} is a 3 -cell, B_{4}^{3} is a homotopy 3-cell, and $B_{3}^{3} \cap B_{4}^{3}=\partial B_{3}^{3}=\partial B_{4}^{3}$. Similarly, let S^{3} be the union of two 3-cells B_{1}^{3} and B_{2}^{3}. First map B_{1}^{3} homeomorphically onto B_{3}^{3}. Since $\Pi_{2}\left(B_{4}^{3}\right)=0$, this map can be extended to take B_{2}^{3} onto B_{4}^{3}.

Let (U, V) be a Heegaard splitting for M^{3}. Applying Theorem 2.1, we see that there is a monotone mapping $g: S^{3} \rightarrow M^{3}$ so that $g \mid g^{-1}(U)$ is a homeomorphism. Then $f^{-1}(V)=K^{3}$ is a cube-with-holes in S^{3} which is the closure of the complement of the handlebody $g^{-1}(U)$. (This result is also Theorem 8 of [3] and can be deduced from either [2] or [9].)

Conversely, let U be a genus n cube-with-handles in S^{3}, and let $K^{3}=$ $\mathrm{cl}\left(S^{3}-U\right)$. If K^{3} is boundary-retractable, there is a boundary-preserving mapping f_{1} from K^{3} onto a genus n cube-with-handles V. If we identify U and V along ∂U and ∂V using the homeomorphism $f_{1} \mid \partial U$, we will obtain a 3manifold M^{3} with Heegaard splitting (U, V). A degree one mapping $f: S^{3} \rightarrow M^{3}$ can be defined by letting $f \mid U=$ id and $f \mid K^{3}=f_{1}$. Since f has degree one, $f_{*}: \Pi_{1}\left(S^{3}\right) \rightarrow \Pi_{1}\left(M^{3}\right)$ is an epimorphism by 3.9 (b) of [10], and thus M^{3} is a homotopy 3 -sphere. By Theorem 4.2 the homeomorphism type of M^{3} does not depend on the choice of the map f_{1}. We will call M^{3} the homotopy 3-sphere associated with the cube-with-holes $K^{3} \subset S^{3}$.

Theorem 5.1. Let n be a number so that there are no fake 3-spheres of Heegaard genus less than n. Let K^{3} be a boundary-retractable cube-with-holes in S^{3}, and let M^{3} be its associated homotopy 3-sphere. Suppose $K^{3}=K_{1}^{3} \cup K_{2}^{3}$ where $K_{1}^{3} \cap K_{2}^{3}$ is a spanning disk D of K^{3}, and where $H_{i}^{3}=\mathrm{cl}\left(S^{3}-K_{i}^{3}\right)$ is a cube-with-handles for $i=1,2$. If K_{1}^{3} and K_{2}^{3} have genus less than n, then M^{3} is homeomorphic to S^{3}.

Proof. By Theorem 3.2, both K_{1}^{3} and K_{2}^{3} are boundary-retractable. Let N^{3} be the homotopy 3 -sphere associated with $K_{1}^{3} \subset S^{3}$, and let $f: S^{3} \rightarrow N^{3}$ be a mapping so that $f \mid H_{1}^{3}$ is a homeomorphism and $f\left(K_{1}^{3}\right)$ is a cube-with-handles. Then $\left(f\left(H_{1}^{3}\right), f\left(K_{1}^{3}\right)\right)$ is a Heegaard splitting of genus less than n, so by assumption N^{3} is homeomorphic to S^{3}. Note that f induces a boundary-preserving mapping from H_{2}^{3} onto $f\left(H_{2}^{3}\right)$. If E_{1}, \ldots, E_{m} is a set of handle disks for H_{2}^{3}, by Dehn's Lemma and a cut and paste argument, the simple closed curves $f\left(\partial E_{1}\right), \ldots, f\left(\partial E_{m}\right)$ bound pairwise disjoint disks in $f\left(H_{2}^{3}\right)$. Since $N^{3} \cong S^{3}$ is irreducible, $f\left(H_{2}^{3}\right)$ is a cube-with-handles.

Since $K_{2}^{3} \subset H_{1}^{3}, f$ embeds K_{2}^{3} in N^{3}. Let M_{1}^{3} be the homotopy 3-sphere associated with $f\left(K_{2}^{3}\right) \subset N^{3}$. Again, M_{1}^{3} has Heegaard genus less than n, so
M_{1}^{3} is homeomorphic to S^{3}. But $g f \mid \mathrm{cl}\left(S^{3}-K^{3}\right)$ is a homeomorphism, and $g f\left(K^{3}\right)$ is a cube-with-handles, so by Theorem $4.2 M^{3}$ is homeomorphic to M_{1}^{3}.

Theorem 5.2. Let K^{3} be a genus 2 boundary-retractable cube-with-holes in S^{3} so that $H^{3}=\operatorname{cl}\left(S^{3}-K^{3}\right)$ is a cube-with-handles. Let M^{3} be the associated homotopy 3-sphere. If K^{3} contains a spanning disk D such that ∂D does not bound a disk on ∂K^{3}, then M^{3} is homeomorphic to S^{3}.

Proof. Let $f: S^{3} \rightarrow M^{3}$ be a mapping so that $f \mid H^{3}$ is a homeomorphism and $f\left(K^{3}\right)$ is a cube-with-handles. Let $N(D)$ be a regular neighborhood of D in K^{3}.

Case 1. The disk D does not separate K^{3} and $H^{3} \cup N(D)$ is a cube with a knotted hole. Then cl $\left(K^{3}-N(D)\right)$ is a solid torus, so K^{3} is a cube-withhandles. A homeomorphism from S^{3} onto itself satisfies the conditions of Theorem 4.2, so M^{3} is homeomorphic to S^{3}.

Case 2. The disk D does not separate K^{3} and $H^{3} \cup N(D)$ is a solid torus. By Dehn's Lemma, $f(\partial D)$ bounds a disk F in $f\left(K^{3}\right)$. Let $N(F)$ be a regular neighborhood of F in $f\left(K^{3}\right)$, and let J be a simple closed curve in ∂K^{3} which intersects ∂F transversely in one point and which intersects $N(F)$ in an arc. Let B^{3} be a 3 -cell in $\mathrm{cl}\left(f\left(K^{3}\right)-N(F)\right)$ so that $B^{3} \cap \partial F\left(K^{3}\right)$ is a 2 -cell containing $J-(N(F) \cap J)$ and $B^{3} \cap N(F)$ is two 2-cells. Then $N(F) \cup B^{3}$ is a solid torus, and there is a spanning disk E of $f\left(K^{3}\right)$ so that $N(F) \cup B^{3}$ is the closure of one of the components of $f\left(K^{3}\right)-E$. Then the argument given in the proof of Theorem 3.2 shows that there exists a set of handle disks D_{1}, D_{2} for $f\left(K^{3}\right)$ which are disjoint from E. Thus, $\mathrm{cl}\left(f\left(K^{3}\right)-N(F)\right)$ is a solid torus, and

$$
\left(f\left(H^{3}\right) \cup N(F), \mathrm{cl}\left(f\left(K^{3}\right)-N(F)\right)\right)
$$

is a Heegaard splitting for M^{3} of genus 1. It is well known that any homotopy 3-sphere of Heegaard genus 1 is homeomorphic to S^{3}.

Case 3. The disk D separates K^{3}. Let $K^{3}=K_{1}^{3} \cup K_{2}^{3}$ where $K_{1}^{3} \cap K_{2}^{3}=$ D. If either K_{1}^{3} and K_{2}^{3} is a solid torus, Case 1 or Case 2 applies. If K_{1}^{3} and K_{2}^{3} are both cubes with knotted holes, their complements are solid tori, and Theorem 5.1 applies.

Lemma 5.3. Let U^{3} be a genus n cube-with-handles. If a 2-handle P^{3} is attached to U^{3} so that $\Pi_{1}\left(U^{3} \cup P^{3}\right)$ is free on $n-1$ generators, then $U^{3} \cup P^{3}$ is also a cube-with-handles.

Proof. Let C be the simple closed curve on ∂U^{3} along which P^{3} is attached, and let $x \in C$. The group $\Pi_{1}\left(U^{3} \cup P^{3}, x\right)$ has a natural presentation with n generators and one relation given by C. By Theorem N3, p. 167 of [8], C must represent a primitive element in $\Pi_{1}\left(U^{3}, x\right)$. By [13] or [4], there exists a set of handle disks E_{1}, \ldots, E_{n} for U^{3} so that $C \cap \partial E_{1}$ is a single transverse point of intersection, and $C \cap \partial E_{i}=\emptyset$ for $i=2, \ldots, n$. Thus $U^{3} \cup P^{3}$ is homeomorphic to the closure of U^{3} minus a regular neighborhood of E_{1}.

Theorem 5.4. Let n be an integer so there is no fake 3-sphere of Heegaard genus less than n. Let K^{3} be a genus n boundary-retractable cube-with-holes in S^{3} so that $\mathrm{cl}\left(S^{3}-K^{3}\right)=H^{3}$ is a cube-with-handles. Let M^{3} be the associated homotopy 3-sphere. Let D be a spanning nonseparating disk of H^{3}, and let $N(D)$ be a regular neighborhood of D in H^{3}. If $K^{3} \cup N(D)$ is a cube-with-handles, then M^{3} is homeomorphic to S^{3}.

Proof. Let $f: S^{3} \rightarrow M^{3}$ be a mapping so that $f \mid H^{3}$ is a homeomorphism, and $f\left(K^{3}\right)$ is a cube-with-handles. Let $T^{3}=K^{3} \cup N(D)$ and let D_{1}, \ldots, D_{n-1} be a set of handle disks for T^{3}. By Dehn's Lemma, each simple closed curve $f\left(\partial D_{i}\right)$ bounds a disk in $f\left(T^{3}\right)$, and by a standard cut and paste argument, these disks can be assumed to be pairwise disjoint. Thus, the fundamental group of $f\left(T^{3}\right)$ is free on $n-1$ generators. But $f\left(T^{3}\right)$ is also homeomorphic to the 3-manifold obtained by attaching a 2 -handle to the cube-with-handles $f\left(K^{3}\right)$. By Lemma 5.3, $f\left(T^{3}\right)$ is a cube-with-handles. Then $\left(f\left(T^{3}\right), f\left(\mathrm{cl}\left(H^{3}-n(D)\right)\right)\right)$ is a genus $n-1$ Heegaard splitting for M^{3}, and M^{3} is homeomorphic to S^{3}.

Theorem 5.5. Let K^{3} be a genus 2 boundary-retractable cube-with-holes in S^{3}, where $\mathrm{cl}\left(S^{3}-K^{3}\right)=H^{3}$ is a cube-with-handles. If there exists a nontrivial unknotted simple closed curve J in $S^{3}-K^{3}$, then the associated homotopy 3-sphere M^{3} is homeomorphic to S^{3}.

Proof. Let D be a disk bounded by J which is in general position with respect to ∂K^{3}. Then each component of $D \cap \partial K^{3}$ is a simple closed curve. If one of these simple closed curves bounds a disk on ∂K^{3}, using a standard cut and paste argument, we can modify D to eliminate all such components of $D \cap \partial K^{3}$. We must have $D \cap \partial K^{3} \neq \emptyset$ by our assumption on the nontriviality of J. Let E be a subdisk of D so that $E \cap \partial K^{3}=\partial E$. If $E \subset K^{3}$, then Theorem 5.2 implies that M^{3} is homeomorphic to S^{3}. So we suppose $E \subset H^{3}$. Let $N(E)$ be a regular neighborhood of E in H^{3}. Then $T^{3}=\mathrm{cl}\left(H^{3}-N(E)\right)$ is a solid torus, and $J \subset T^{3}$. Since J is unknotted and nontrivial in T^{3}, it is not hard to see that $\mathrm{cl}\left(S^{3}-T^{3}\right)=K^{3} \cup N(E)$ is also a solid torus. Then it follows from Theorem 5.4 that M^{3} is homeomorphic to S^{3}.

Biblography

1. R. H. Fox, On the imbedding of polyhedra in 3-space, Ann. of Math. (2), vol. 49 (1948), pp. 462-470.
2. W. Haken, On homotopy 3-spheres, Illinois J. Math., vol. 10 (1966), pp. 159-178.
3. -_, "Various aspects of the three-dimensional Poincare problem," in Topology of Manifolds, Proceedings of the University of Georgia Topology of Manifolds Institute, 1969 (edited by J. C. Cantrell and C. H. Edwards, Jr.), Markham, Chicago, 1970.
4. J. Hempel and L. Roelling, Free factors of handlebody groups, to appear.
5. W. Jaco and D. R. McMillan, Retracting 3-manifolds onto finite graphs, Illinois J. Math., vol. 14 (1970), pp. 150-158.
6. K. Johnson, Symmetric maps from S^{3} onto a homotopy 3-sphere, Ph.D. dissertation, Western Michigan University, 1975.
7. H. W. Lambert, Mapping cubes with holes onto cubes with handles, Illinois J. Math., vol. 13 (1969), pp. 606-615.
8. W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
9. E. E. Moise, A montonic mapping theorem for simply connected 3-manifolds, Illinois J. Math., vol. 12 (1968), pp. 451-474.
10. P. Olum, Mappings of manifolds and the notion of degree, Ann. of Math., vol. 58 (1953), pp. 453-480.
11. A. Shapiro and J. H. C. Witehead, A proof and extension of Dehn's Lemma, Bull. Amer. Math. Soc., vol. 64 (1958), pp. 174-178.
12. A. Wright, Monotone mappings and degree one mappings between PL manifolds, Geometric Topology, Proceedings of the Geometrical Topology Conference held at Park City, Utah, February 19-22, 1974 (edited by L. C. Glaser and T. B. Rushing), Springer Verlag, 1975.
13. H. Zieschang, Simple path systems on full pretzels, Math. Sb. (N.S.), vol. 66 (1965), pp. 230-239 (in Russian) (or Amer. Math. Soc. Transl. (2), vol. 92 (1970), pp. 127-137).

Western Michigan University
Kalamazoo, Michigan

[^0]: Received March 7, 1975.
 ${ }^{1}$ Partially supported by the Western Michigan Faculty Research Fund.

