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1. Introduction

A useful result in the study of differential systems of the form

(1.1) U’ AU + BV, V’ CU- A*V

is that, in certain cases, the system (I.1) is disconjugate in some neighborhood
of oo if and only if the obverse system [2, p. 173]

(1.2) U’ -A*U + CV, V’ BU + A V

is disconjugate in some neighborhood of oo. Given certain assumptions of a
variational nature, Reid [4] has established that system (1.1) is disconjugate in
a neighborhood of oo if and only if there exists a solution which is principal at
oo. Therefore, in those cases where both sets of hypotheses hold, system (1.1)
has a principal solution at if and only if system (1.2) has a principal solution
at oo. The question considered in [-2] was that of when a principal solution
(Uoo; V) gives rise to a principal solution (U; V1) (Voo; Uoo) of (1.2), i.e.,
in the terminology used there, the question of when a principal solution is also
coprincipal. The present paper gives a number of conditions which are equiv-
alent to the condition of a solution being principal at oo if and only if it is co-
principal at oo. These conditions involve limit type behavior for every con-
joined basis. The statements of these conditions which are given in Section 4 are
unchanged in the two cases of B and C having either the same or opposite signs
for their associated quadratic forms. The coefficients B and C may be singular
if certain "normality" assumptions are included. Whereas the previous work
primarily concerned the case where B and C were of "opposite" signs, the pre-
sent study is directed at the case where B and C are of the "same" sign, although,
as mentioned, much of the work applies to both cases. As an example of the
type of results obtained, limit information is obtained for U-V*- in either
case for (U; V) an antiprincipal solution. This result is analogous to a result
on principal solutions obtained by Reid in the case of B and C nonnegative.
Combining these results leads to the conclusion that a large class of such equa-
tions has the property that principal solutions and coprincipal solutions coincide.
The primary results of this paper are consequences of combining the following

observations. First, the distinguished solution Woo of the Riccati equation

(1.3) W’ C- A’W- WA WBW,
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which is defined as W VooUL whenever a principal solution at oo exists,
is the limit ass-, oo of Ws(x) V(x, s) U- (x, s) where (U( ,s); V( ,s))
is the solution of (1.1) such that (U(s,s); V(s,s))= (0; E). Second, the
solution (U( s); V( s)) may be obtained in terms of any solution (U; V)
with U nonsingular in a neighborhood of oo by reduction of order and quad-
rature. Third, a solution of (1.1) is principal and coprincipal at oo if and only
if the distinguished solution of (1.3) is the multiplicative inverse, at each point
of some neighborhood of oo, of the distinguished solution of the Riccati equa-
tion

(1.4) W’ B + A W+ WA* WCW.

Matrices of one column are called vectors, all identity matrices are denoted
by E, and 0 is used for the zero matrix of any dimensions. If H and K are
n r matrices, or functions, the symbol (H; K) is used to denote the 2n r
partitioned matrix with first, [last], n rows agreeing with H, [K]. If H and K
are n n hermitian matrices, we write H > K, [H > K], to indicate that the
quadratic form *(H- K)c is nonnegative [positive] for every unit column
vector z. Matrix valued functions will be said to have a property of differenti-
ability, continuity, or integrability if and only if each entry of the matrix has
that property.

2. Definitions and hypothesis

We will assume throughout the paper that the following hypotheses H and N
are satisfied.

H. The coefficients A, B, and C in system (1. l) are continuous n n complex
matrix valuedfunctions on (0, oo) with B* B and C* C on (0, oo).

N. Systems (1.1) and (1.2) are identically normal on (0, oo).

The system (1.1) is called identically normal on (0, oo) if the only vector solu-
tion (u; v) of the associated vector system

(2.1) u’ Au + By, v’ Cu- A*v

such that u vanishes on a nondegenerate subinterval of (0, oo) is the zero solution
(u; ) (0, 0).

Distinct points c and d of (0, oo) are called conjugate relative to (1.1) or (2.1)
if there exists a vector solution (u; v) of (2.1) such that u(c) 0 u(d) holds
and u is not identically zero between c and d. System (2.1) is called disconjugate
on an interval if that interval contains no conjugate pairs.

It follows from hypothesis H that if (U1; V1) and (Uz; V2) are solutions of
(1.1), then the function UV2 VU2 is constant. If (U; V) is a solution such
that U* V V* U is 0, then the solution is called self-conjoined. If (U; V) is a
self-conjoined solution of (1.1) such that the columns of the 2n n matrix
(U(x); V(x)) are linearly independent for some value x, and consequently for
all x in (0, oo), then the solution is called a conjoined basis I-7; p. 306] for (1.1).
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We will restrict our discussion to systems of the form (1.1) which satisfy one
of the following sets of hypotheses.

H(B 2 0; C 2 0).
B 20andC 20.

Hypothesis H holds and B and C satisfy the conditions

H(B >_ 0; C_< 0).
B >_ OandC <_ O.

Hypothesis H holds and B and C satisfy the conditions

The reason for the study of these cases is that the obverse system (1.2), or the
reciprocal system

(2.2) U’ -A’U- CV, V’ -BU + AV,

in the respective cases, will also satisfy the Clebsch condition, B >_ 0, usually
imposed on system (1.1). The following result is basic to our later work.

THEOREM 2.1. Suppose that condition N is satisfied and either hypothesis
H(B _> 0; C 2 0) holds or hypothesis H(B 2 0; C < 0) holds and system (1.1)
is disconjugate in some neighborhood of c. If (U; V) is any conjoined basis for
system (1.1), then U and V are nonsingular in some neighborhood of .

In the first case, the result is a consequence of Theorem 4.1 of Reid [-4, p. 155-1
applied to systems (1.1) and (1.2) together with Lemma 7.1 of Reid [-7, p. 357].
In the second case, the result follows from Theorem 3.1 of [1, p. 423] and the
above-mentioned Sturmian theorem, Lemma 7.1 of Reid.

3. The distinguished solution

Reid’s [4] construction of the principal solution at of system (1.1) is
applicable to either of the cases considered in the hypotheses of Theorem 2.1.
For (c, c) an interval of disconjugacy for (1.1) and and s distinct points of
(c, ), the solution (Ust; Vst) of (1.1) is defined as the unique solution deter-
mined by the boundary conditions Ust(s) E, Ust(t) 0. Reid established that
the limits

Us, (x) lim,_o Us,(x) and V, o(x)

exist and (Us, V, ) is a principal solution at oz. In particular,
has the properties of being a conjoined basis with Us, nonsingular on (c,
and if S(x, s; U) is defined on the class of self-conjoined solutions (U; V) with
U nonsingular on (c, c) by the relation

(3.1) S(x, s" U) U-1BU*-I dt,

for x, s in (c, o), then S(x, s; Us, ) is nonsingular for x - s and

S-(x, s; U,, o) --’ 0
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as x Since limt_ VtU exists and is Vs -,1
,oo Us, which is defined as the

distinguished solution Woo of (1.3), we have

-1(3.2) Woo lim VstUst.

The distinguished solution is well defined, since any other principal solution is
of the form (Us, C; Vs, C), where C is a nonsingular matrix.

Suppose that (U; V) is a conjoined basis for (1.1) and c is such that U is
nonsingular on (c, oo). For any point of (c, oo), construct the solution
(Uo( t); Vo( t)) of (1.1) defined by the equations

Uo(x, t) U(x) U-l(r)B(r)U*-(r) dr,

(3.3)
Vo(x, t) -U*-(x) + V(x) U-l(r)B(r)U*-(r)dr.

Then Uo(x, t) is nonsingular for x - t, the solution (Uo( t); Vo( t)) is a
conjoined basis for (1.1), and the identity

(3.4) U;(x, t)V(x) V*o(X, t)U(x) E

holds for all t, x in (c, m). For s and distinct points of (c, oo), we have

(Ust(X); Vst(x)) (Uo(X t)U(s, t); Vo(x, t)U’(s, t)).

Consequently, if s < x < holds, then

Vst(x)Us-t 1(X) V’o(X, t)U l(x, t).

Substitution in relation (3.2) gives

(3.5) Woo(x) lira Vo(x, t)U (x, t) for x > c.

Notice that dependence upon s has been removed. Since Uo(x, t) is nonsingular
for 4: x, it follows from relation (3.4) that

V(x)U ’(x) U’- (x, t)V*o(X, t) U’- l(x, t)U ’(x)

for - x. Therefore

(3.6) Vo(x, t)U(x, t) V(x)U-l(x) U-(x)S-l(t, x, U)U-I(x).

Application of (3.5) gives a characterization [7; Theorem 7.3.4, p. 320] of the
distinguished solution as

V(x)U -i(x) U*-(x) (lim S-l(t, x; U)] U -l(x)(3.7) Wo(x)
/

independent of the choice of the conjoined basis (U; V) so long as x is chosen
from a neighborhood of where U is nonsingular. In the case where (U; V)
is principal at c, the second term in the right-hand side of (3.7) is 0.
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Under the hypotheses of Theorem 2. l, a conjoined basis (U; V) of (1.1) gives
rise to a conjoined basis (U; V1) of (1.2) defined by (U; V1) (V, U). An
application of the above remarks to system (1.2) gives the following characteriza-
tion of the distinguished solution W of equation (1.4). For x in some neigh-
borhood of oe, the identity

( -’(t x" V)) V-(x)(3.8) W(x) U(x)V (x) V* (x) lim S
\t

holds in some neighborhood of , where S is defined by

;xS(t, x; V)= V-CV*- ds.

4. A characterization of the equivalence of principal
and coprincipal solutions

Given the hypotheses of Theorem 2.1 and a self-conjoined solution (U; V)
of system (1.1), we know that (U; V) is principal at oe if and only if Woo VU-
holds in some neighborhood of oe and (U; V) is coprincipal at oe if and only if

W% UV-1 holds in some neighborhood of oe. Consequently, in those
situations, a self-conjoined solution (U; V) is principal and coprincipal if and
only if the relation WooW E holds in some neighborhood of oo. However,
relations (3.7) and (3.8) are valid for any conjoined basis (U; V). These observa-
tions lead to the following theorem.

THEOREM 4.1. Suppose that the hypotheses of Theorem 2.1 hold. Then the
following conditions are equivalent.

(i) A solution of (1.1) is principal at if and only if it is coprincipal at

(ii) The distinguished solutions at oo of the Riccati equations (1.3) and (1.4)
are multiplicative inverses in some neighborhood of oo.

(iii) There exists a conjoined basis (U; V) for (1.1) with the property that the
equation

(4.1) MU-X V*-IN M + N

holds in some neighborhood of oo, where M and N are the hermitian functions
defined by

m(x) lira s-l(s, x, U), N(x) lim S-l(s, x, V)

where S and St are definedfor large x and s by

(iv)
(iii).

(v)

(4.2)

S(s, x, U) U-BU*-1 dt, S(s, x, V) V-CV*- dt.

Every conjoined basis (U; V) for (1.1) has the property given in condition

There exists a conjoined basis (U; V)for (1.1) such that the relation

lira S-’(s, x; U)U-I(s)V*-(s)S-I(s, x; V) 0
S---

holds for large x.
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(vi) The limit relation (4.2) holds for every conjoined basis (U; V) of (1.1).
(vii) There exists aconjoinedbasis(U; V) of (1.1)for which limo U-IV*-1

exists and is O.
(viii) Every solution (U; V) of (1.1) which is antiprincipal at oo is also anti-

coprincipal at oo and has the properties
() lira U- V*- exists and is O, and
() the equation U-l(x)V*-(x) o U-IBU.- dt + V-CV*- dt

is satisfiedfor large x.

Conditions (i) through (iv) are equivalent as a consequence of prior remarks.
Relation (4.1) of Lemma 4.1 in [2] provides the identity

(4.) S(s, x, ) + S,(s, x, v) + t-’(s)V*-’(s)= t-(x)V*-’(x)

for x and s in some neighborhood of dependent upon which conjoined basis

(U; V)is used. Premultiplication by S- and postmultiplication by S-1 of
equation (4.3) followed by letting s become unbounded gives the identity

(4.4)
lira S-l(s, x, U)U-(s)V*-(s)S(s, x, V)
S--

M(x)U-’(x)V*-’(x)N(x)- M(x)- N(x)

for large x. Therefore, condition (iii) is equivalent to (v) and (iv) is equivalent
to (vi). Equation (4.1) implies that M is nonsingular if and only if N is non-

singular, i.e., condition (iv) implies that a conjoined basis is antiprincipal at oe

if and only if it is anticoprincipal at o. But if M(x) and N(x) are nonsingular,
then relation (4.2) implies that U-(s)V*-(s) has limit 0; furthermore, S and
$1 have limits and condition (/) follows from relation (4.3). Hence condition

(viii) follows from the combined conditions (iv) and (vi). Condition (v) follows
from condition (vii) since S- and S- always have limits.

THEOREM 4.2. Suppose that hypotheses H(B >_ 0"C _< 0) and N hold.
Assume that system (1.1) is disconjugate in some neighborhood of oo andfor D a

fundamental solution of D’ A D, we have the condition

n* D- BD*- tit n as x

for every constant unit vector n. Then all of the conditions (i) through (viii) of
Theorem 4.1 hold.

The statement of Theorem 4.1 of [2] gives the result that principal implies
coprincipal. Now suppose that (U1; V) is a coprincipal solution. Then for

(U; V) a principal solution, (U; V) is also coprincipal and there exists a non-

singular n x n constant matrix C such that (U; V) (U; V)C holds. Thus

(U; V) is a principal solution. Therefore, condition (i) and the hypotheses of
Theorem 4.1 above hold.
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5. The case of B and C nonnegative

Suppose that hypotheses H(B > 0; C > 0) and N hold. Then the relation

U*(b)V(b)- U*(a)l/(a)= (V*BV + U*CU) dt

implies that if (U; V) is any self-conjoined basis, then U* V is increasing.
In the case of (Uoo; Voo) principal or coprincipal at oo, it follows from

Theorem 8.1 of [4] and a duality argument that the equation

(5.2) U (x) Voo(x) V oo* B Voo + U oo* CU oo) dt

holds for all positive x. Therefore, U Voo is negative definite on (0, oo) and
increasing to 0. In comparison, notice that U*(x, s)V(x, s) is positive definite
for x in (s, o) and increasing, hence the function U-l( s)V*-l( s) has a
limit at oo. Relation (4.3) then yields the result that (U( s); V( s)) is anti-
principal and anticoprincipal at . If the assumption of principal if and only
if coprincipal is added, then the antiprincipal and anticoprincipal solutions
satisfy conditions () and (/3) of Theorem 4.1 (viii). In particular, in that case
U-I( s)V*-( s) has limit 0 at o and any antiprincipal solution (U; V)
has U-1V*-1 positive definite and decreasing to 0. It is to be noted that
whereas condition (5.2) holds for principal solutions, examples exist where
condition () does not hold for antiprincipal or anticoprincipal solutions.
Indeed, in the case where a solution (U; V) is both principal and anticoprincipal
at , both V* U and U-a V*- must go to 0, contrary to their product being
the identity matrix. A specific example is given by the solution sinh (x-l) of
(y’/x-2)’ x-Zy O, which is a transformation of y" y 0 at 0. In the
case of s an interior point, (U( s); V( s)) is principal and anticoprincipal
at s and none of the conditions of Theorem 4.1 hold.

THEOREM 5.1. Suppose that hypotheses H(B > 0; C _> 0) and N hold. If
(U; V) is a self-conjoinedbasisfor system (1.1), then U* V is increasing on (0, ).
For s any point of (0, ), the solution (U( s); V( s)) is antiprincipal and
anticoprincipal at and U*( s)V( s).is positive definite on (s, ). If
(U; V) is principal or coprincipal at c, then relation (5.2) holds for all x in (0, )
and the function U* V is negative definite on (0, ) and has limit O.

THEOREM 5.2. Suppose that hypotheses H(B > 0; C > 0) and N hold and
the classes of principal and coprincipal solution of (1.1) coincide. If (U; V) is
antiprincipal or anticoprineipal at oo, then condition (fl) of Theorem 4.1 (viii)
holds, U-1 V.-I is positive definite on its maximal domain of existence and
decreasing to O.

The analogy between these results leads to the following interconnection and
the added conclusion that there exists a class of equations which satisfy hypoth-
esis H(B >_ 0; C > 0) and N and have the property of the classes of principal
and coprincipal solutions coinciding.
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THEOREM 5.3. If hypotheses H(B > 0"C >_ 0) and N hold and (Uoo; Voo)
is a principal solution at oo of equation (1.1), then (U1; V1) defined as

(_U*- V*-)
is a solution of the system

(5.3) U’ AIU+ B1V, V’ CIU AV,
where A1 -A*,B WBW, C1 WlCW,for W VooU W1 UooV
which has the properties that the integrals

-1C1VT-1U1-1B U

-1 V- exists and is O. If, inare positive definite and convergent and limoo
addition, system (5.3) satisfies hypothesis N, then system (5.3) has the property
ofa ,solution being principal at oo ifand only if it is coprincipal at oo. In particular,
this result holds if B and C are positive definite on (0, oo).

Relation (5.2) gives the result

-1C1V -1 dt.u, (x)VT (x)= u
For D a fundamental solution of D’= A D, define functions G and F by

G D-1BD*- and F= D*CD. For (Y;Z) and (U; V) related by Y
D-1U and Z-- D’V, hypothesis H implies that (U; V) is a self-conjoined
solution of (1.1) if and only if (Y; Z) is a self-conjoined solution of the system

(5.4) Y’ GZ, Z’-- FY.

THEOREM 5.4. Suppose that hypotheses H(G > 0, F > 0) and N hold and
we have the condition

re* G(t) dt rc

for every constant unit vector rc. If ( g; Z) is a principal or coprincipal solution of
(5.4) at oo, then

re* YZ-FZ*-IY * dt rc

for every constant unit vector

For W defined as the hermitian function YZ-, we have

and

W1FW1 dt Wl(a) Wl(x) + G(t) dr.

Since N Z-*(Y*Z)Z -, we conclude from Theorem 5.1 that W is nega-
tive definite on (0, oe) and the conclusion of the theorem follows.
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COROLLARY. Suppose that r andp are positive continuous real valuedfunctions
on (0, ) and r-l(t) dt diverges. Then a solution of
(5.5) (ry’)’ py 0

is principal at if and only if it is coprincipal at o. Consequently, we have the
followin9 results for any pair of real linearly independent solutions of (5.5):

(i) limbo Yl/Y2 exists and is 0 if and only iflimoo Y’/Y’2 exists and is O.
(ii) limoo Yl/Yz exists and is nonzero if and only if limbo Y’I/Y’2 exists and is

nonzero.

The same conclusions for the equation (ry’)’ + py 0 with r and p positive
were given in Section 5 of [2].

Notice that for the case of n 1, we have the result

(Y’Y)’ Z*GY + Y*GZ 2r-X Y*Z

in which the last member is negative by Theorem 5.1. Hence y2 is decreasing,
[p/(ry’)23 dt diverges, and y is coprincipal.

THEOREM 5.5. Suppose that G is the identity matrix E and there exists a con-
tinuous real valued function f such that F >_ fE holds on (0, ) and f(t) dt
diverges. Then the functions Y-I( s) and y,-l( s)Y*-l( s) have limit 0
at and a solution is principal at if and only if it is coprincipal at .

It follows from the result

(Y*( s)Y( s))’ 2Y*( s)Z( s)

and Theorem 5.1 that Y*( s)Y( s) is increasing and the integral

(Y*(t, s)Y(t, s)) -1 dt
+1

converges. Hence Y-(t, s) 0 as o. Relation (5.1) provides the result
that

rc*Y*(x, s)Y’(x, s)rt > 7t*Y*(t, s)Y(t, s)rtf(t) dt

for every constant unit vector re. The conclusion concerning

( r*(x, s) r’(x, s))

follows since all proper values of Y*(t, s)Y(t, s) tend to as becomes infinite.
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