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In this article, we are interested in questions of the existence of approximating
functions which have certain approximation properties with respect to a given
function f and, at the same time, interpolate the values off and/or its derivatives.
By "approximation properties" we refer to questions of uniform approximation
and/or the degree of approximation. A common feature of the results presented
here is the method of proof. In each case a set of auxiliary approximating func-
tions which "surround" f is considered. The approximations to these auxiliary
functions by the given approximating functions are then found to have the
desired approximation properties and to have the given f in their convex hull.
With regard to the questions of uniform approximation, we have the following

generalization of the Stone-Weierstrass Theorem:

THEOREM 1. Let xff be an algebra of real valued continuous functions on a
compact set K, and suppose xz] separatespoints. Let f C(K), xl, x2, xk K,
and a > 0 be given. Then there is some p 1 such that

p(xi) f(xi), k

and

sup If(x)- p(x)] ][f- p]] < a.

Proof. Let a > 0 be given. Let if(a) {g, g2,. g2k} be a set of func-
tions in C(K) with the following properties:

(i) gj(xi) f(x) +_ cj with 0 < cj < a/2, l,..., k,j 1,..., 2k.
(ii) {gj(x)- f(xi)} {y} takes on the 2 possible signatures in E

as j varies from to 2. (In other words, for any {, 2,..., } with

1, 2,..-, k va 0thereis somejsuch that [gj(x) f(x)] > 0, 1,..., k.)
(iii) ][g,-fl] <, a/Z,j- 1,...,k.

(Such a class . of functions can be seen to exist by perturbing f slightly in a
continuous manner in a neighborhood of the points x, 1,..., k.)

By the Stone-Weierstrass Theorem, for each j, j 1,..., 2, there is pj
such that ][p g]] < r/where q min cj. Clearly, {p(xi) f(xi)} has the
same signature as {gj(x)- f(x)}, i= 1,..., k. To each such pj we cor-
respond a vector zj e E by

zj (pj(x,) f(x),..., pj(xk) f(x)). (1)
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Since the vectors zj are in the same orthant (i.e., have the same signature) as the
corresponding vectors wj {9j(xi) f(xi)}, and since the wj have an element
in each orthant, 0 is in the convex hull of the zj, j 1,..., 2k. Then there are
b l, b2,..., b2k 0 with bj such that

2

bjzj (0, 0,..., 0). (2)
j=l

Let p(x) 52 bjpj(x). Clearly, p sO. From (1) and (2),

Also,
p(xi) f(xi), 1, k.

]If- pll ]]v bj(f- pj)]

<_ bj(e/2 + ) /2 + rl < .

(3)

(4)

By (3) and (4), p has the desired properties. I
By Jackson’s classic theorem, if f(x) has modulus of continuity tn(f; 6) on

[- 1, 1], there is a sequence {p,(x)} where p, is a polynomial of degree < n such
that Ilf- p,]] < cog(f; 1/n) where c is an absolute constant. Paszkowski [4]
was the first to prove that this result could be obtained with a sequence of poly-
nomials interpolating f at m prescribed points with the constant c depending
only on (xl,..., Xm). The following result of Teljakovskii [6] is an extension
of Jackson’s Theorem in another direction:

LEMMA. If fe Ck[ 1, 1], k 0, 1,..., then there is a sequence {p,(x)}
where p,(x) is a polynomial of degree < n such that

f(i) pi)ll < n@_ o)(f(i); l/n),

O, 1,..., k, andfor all n, where c is a constant depending only on k.

We prove the following theorem which is an extension of the original Jackson
result simultaneously in both directions:

THEOREM 2. Let f e (k[_ 1, 1], k 0, 1,..., and let xl, X2,. X be any
prescribed points of [-1, 1]. Then there is a constant d > 0 (d depends on

xx, Xm and on k, but not on f) and a sequence {p,(x)} where p,(x) is a poly-
nomial of degree N n such that for all sufficiently large n,

p(,i)(xj) f(i)(xj), j 1,2,..., m; O, 1,..., k (5)
and

d
IIf (i) p(ni) < n--Us]_ co(f(i); l/n), O, 1,..., k. (6)
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Our proof will make use of the lemma, but not of Paszkowski’s Theorem.
(Then, taking k 0 in Theorem 2, we will have a new proof of Paszkowski’s
result.)

Proof. Let be the set of all (k + 1) x rn matrices each of whose elements
are or -1. 5 has N 2"k+m elements. For each sufficiently large integer n
we define a set c5, of N functions corresponding to the N elements of 5.

Let S e 5 be given. First, in a small neighborhood of each xj, g(x) is defined
as a polynomial interpolating the data

2cg(i)(xj) f(i)(x) +_ n-r:5_ co(f ()" I/n) (7)

where c is the constant in the lemma, with the signature + taken according to
whether ai+l, ___1 in S, 0,...,k;j 1,...,m. Then, if the neigh-
borhoods about xj are taken to be sufficiently small,

3c[g(i)(x) f(i)(x)l < n-V:-_i c0(f(/); l/n) (8)

holds for the subset of [-1, 1] for which g has been defined. We need an
estimate for co(9(; 6). On each separate neighborhood for which g has been
defined, by (8),

o(g(i)" () max Ag (i) <. max Af(i) + o(f (i)" l/n)
i1_< I,1_<

where Afdenotes f(x + h) f(x). In estimating co(9(); 6) for the entire subset
of [--1, 1] on which g has been defined, we must consider the possibility that
the maximum in the above inequality is taken on for x, x + h in separate
neighborhoods, which may come about if (5 > r/ minj cj, ]xj xj,[. In this
case

m(g(g).6) < max [Af(i) + 6c 6_ . ]<- rl
c(f(’) l/n)

6c (5
co(f(i). I/,1).(f(i’; 5) + .

Hence, for 5 I/n and n > 6c/,

(g(i); 5) 2(f(); ). (9)

The segments o polynomials comprising g are then connected "smoothly" in
such a way that g C"[ 1, 1], (8) remains valid throughout [-l, 1, aria (9)
remains valid or 5 suciently small. For the ensuing discussion it is assumed
that n is suciently large for (9) to hold.

By the lemma, we may define , to be a corresponding set of N polynomials
of degree g n such that the polynomial p corresponding to g if,, satisfies

c () 2c



68 D. HILL, E. PASSOW, AND L. RAYMON

From (8) and (10) we have
5c

IIf) p)ll -< ,.---: o(fti); l/n). (11)

Now, to each S 5p, there corresponds g ft, to which there corresponds
p e ,. Furthermore, by (7) and (10) this corresponding polynomial satisfies

pi)(xj) f(i)(xfl > 0 ai+ ,.i
(12)

p(i)(xfl f(i)(xfl < 0 . ai+ ,.i 1.

We denote the elements of g. by p, P2, Ptq. To eachp e g. we correspond
a point e e Emk+m:

oi {Pi(X,) f(x,), p’,(x,) f’(xl) Plk)(x) f(k)(x),

Pi(X2) f(x2) plk)(x2) f(k)(x2),...
(3)

Pi(Xm) f(Xm) pk)(Xm) f(k)(Xm)},

0,1,...,n.

It follows from (12) and the definition of , that the points e take on the N
possible signatures in Ek’+m--i.e., there is exactly one point e in each of the
N orthants in Ekm+m. Hence the origin in Ekin+"’ lies in the convex hull of
ctl, e2,..., eN and there are bl, b2,..., b > 0 with. bi=

i=1

such that
N

bioh (0, 0,..., 0). (14)
i=1

Let p(x) ,= bipi(x). Then p(x) is a polynomial of degree < n. It follows
from (14) and (13) that

{P(i)(xi) f(i)(xj)}i=o k j=l (0, 0,..., 0}.
But (15) is equivalent to (5). Also,

IIf (i) p(i)ll b[f(i)- p(i)]
v=l

From (11) this is

N

<- bviif(i)- p(i)l].
v=l

5C
< E b n-V-/9(f(i); I/n) for all n > 4c/ri

(15)

d
co(f()" l/n)

Elk-
for all n,

establishing (6) and hence the Theorem.
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Remark. If Sk is the class of all functions f C with f(k) Lip 1, it is
possible, by Theorem 2, to find a sequence of polynomials {p,} that interpolates
any element f of S and its first k derivatives at prescribed points while simul-
taneously approximatingfat least as well as O(1/nk+ 1). In a classwide sense this
error is best possible even for approximation without interpolation. More
specifically, there is a function f S and a > 0 such that for all n,

a
E,,(f) inf IIf- Pll k+l

where N, is the class of all polynomials of degree _< n. However, it might be
thought that for each particular fe S it is possible to simultaneously inter-
polate f and its derivatives and approximate to within O(E,(f)), i.e., to within
the order of the degree of best approximation to the particular function f.
Interestingly, Platte [5] has shown that this cannot, in general, be the case.

(Note that the method of proof of Theorem 2 fails for the class A of functions
analytic on [-1, 1J--it is impossible to construct the class a of auxiliary
functions with the necessary smoothness condition of analyticity.)
A function f(x) on [a, b] is said to be piecewise monotone if [a, b] may be

partitioned into a finite number of subintervals on which f is alternately non-
decreasing and nonincreasing, f(x) and g(x) are said to be comonotone on
[a, b] if they are piecewise monotone and are alternately nondecreasing and
nonincreasing on the same subintervals. Iff is piecewise monotone on [a, b]
we denote by ,*(f) the set of all polynomials of degree < n comonotone with

f on [a, b]. The degree of comonotone approximation off, E*,(f) is defined by

E*(f) min Ilf- Pl.
p

If S is a set of comonotone functions, the degree of comonotone approximation
to the set S is given by

E*(S) sup E*(f).
fS

Iff is monotone on [a, b-] then E*(f) is called the degree of monotone approx-
imation to f. Lorentz and Zeller [2] have shown that for a monotone function f

E*(f) Oleo(f; l/n)-], (16)

while Passow and Raymon [3] have shown that for a piecewise monotone func-
tion f and for any e > 0,

E*,(f) O[oo(f; l/n’ -)3. (17)

We present a theorem on the degree of approximation to a piecewise mono-
tone function f subject to constraints of both comonotonicity and inter-
polation:
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THEOREM 3. Let f(x) be continuous and piecewise monotone on [a, b], and
let a <_ xl < x2 <"" < x,, <_ b. Let **t f" x x,,) be the set of poly-
nomials p of degree <_ n comonotone with f and satisfying p(xi) f(xi),

m. Then

E,,**(/; x, x,) min ]If Pll
P ,)n**

where S(cos) is the set of allfunctions 9 such that 0)(9; 6) _< co(f; 6)for all 6 > O.

This theorem is proved in the same manner as Theorems and 2, by taking
the class of auxiliary functions to be comonotone with f such that their modulus
of continuity is of the same order of magnitude as that of the given function f.
The desired comonotone interpolating polynomial is then in the convex hull of
the comonotone approximations to the auxiliary functions.

Applying (16) and (17) to Theorem 3, we obtain the following:

COROLLARY. (a) Iff is monotone on [a, b], E*,*
** Xm) O[cof 1/,)]"E,, (f; xl,

(b) Iff is piecewise monotone on [a, b],
E,**(f; x x,,)- O[co(f; l/n -] for any e > O.

The following theorem is corollary to these results:

THEOREM 4. Let f(x) be a continuous piecewise monotone function with a

finite number of zeros on [a, b] (i.e., piecewise positive). Then there is a sequence
{ p,,(x)} with p a polynomial of degree <_ n such that:

(i) for n sufficiently large p, andfare comonotone and copositive (i.e., p,f >_ O)
on [a, b], and

(ii) p,, f uniformly on [a, b].
Estimates for the degree of approximation to f are the same as those in the above
corollary.

Proof. Let x,..., Xm be the zeros off and apply the above corollary. For
n sufficiently large the result follows.

Finally, we state a theorem on the simultaneous approximation and inter-
polation of a function in Ek. We do not include the proof because it can be
proved by a method very similar to the methods in the proofs of Theorems
and 2; also, it is an immediate corollary of a recent result of D. J. Johnson
l-l, Theorem 1]

THEOREM. Let X be a compact subset of Ek. Let x l, x2,..., Xm X and let

f C(X). There is a constant d > 0 (d depends on Xl,..., Xm andf, but not on n)
and a sequence {p,,(x)} with p,, a polynomial of degree < n such that for all
sufficiently large n:

(i) p,,(x i) f(xi), 1, 2,..., m; and
(ii) liP,, i’ll < dco(.f; l/n) where co(f; 3) is the modulus of continuity off.
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