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1. Introduction

In the following we consider primitive permutation groups G acting on a
finite set Q. If Q then G has a suborbit A() such that the group
induced on A() is isomorphic to L2(q) and IA()I q / 1, where q > 4 and
q p", p a prime. We state"

THEOREM. Suppose G satisfies the above conditions then either
(a) G - L2(q) or

(b) p > 2 and G
_

L2(q) x Y where Y is isomorphic to the normalizer of a
S,-subgroup in L2(q).

The proof of the theorem will follow to a great extent the pattern of the work
of C. C. Sims [9]. In this way we get bounds for Gl and structural informations
of G. Then we use results about irreducible Fp[L2(q)]-modules. In the case
p 2 also "2-local arguments" will enter. The notation is standard (see I-4]
and [14]).

2. Preliminary lemmas

In this section we collect some--mostly knownwresults, which will be used
repeatedly.

PROPOSITION 2.1 (Walter, also see [1]). Let G be afinite group having abelian
S2-subgroups. Then G possesses a normal subgroup H of odd index, such that

H/O(H) - So x Xx x’"x X,

where Xo is an abelian 2-group and X (1 <_ < n) are .finite simple groups
isomorphic to L2(q), q suitable, or of type "Janko-Ree" (for the definition of
type "Janko-Ree" see [1]).

PROPOSITION 2.2 (Gilman, Gorenstein [2]). Let G be a finite simple group
and S Syl2(G). Suppose cl (S) 2. Then G is isomorphic to one of the follow-
ing groups:

L2(q), q --- 7, 9 (mod 16), AT, Sz(2"), Ua(2"), La(2"), or eSp(4, 2").
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PROPOSITION 2.3 (Goldschmidt [3]). Let G be a finite group and 1 v A
_

S Syl2(G), A abelian. Suppose that for all a A always a S implies a A.
Then if (AG)/O/((A)) we have"

(i) K is a centralproduct of an abelian 2-group and quasisimple groups X such
that either X/Z(X) has abelian S2-subgroups or X]Z(X) is isomorphic to Sz(2")
or Ua(2").

(ii) . O2(K)fl()for some A =_ T Syl2(K).

LEMMA 2.4 (Thompson [13; 5.38]). Let G be afinite group and S e Syl2(G).
Suppose S* c S, IS" S*I 2 and e S S* is an involution, which is not con-
jugate to any element in S*. Then G has a normal subgroup G* of index 2.

LEMMA 2.5 (Gilman, Gorenstein [2; (2.66)]). Let V be a 2n-dimensional
F2-vectorspace and SL(2, 2")-X

_
GL(V) such that V is an irreducible

X-space. Assume further IS, V] Cv(S), dim Cv(S) n for S SyI2(X).
Then V is a standard module of X. (Here standard module M of SL(2, q) means
a 2-dimensional Fq-vectorspace such that SL(2, q) acts on M as SL(M)).

LEMMA 2.6. Let V be a 2n-dimensional Fp-vectorspace and X - SL(2, p") be
represented irreducibly on V and p" > 4. Suppose S Sylp(X) and IS, V]
Cv(S), dim Cv(S) n. Then X is faithful on V.

Proof. Since SL(2, 2")
_

L2(2"), we may assume that p is odd.
In X there is an element x of order 4 such that (x, S) X and x Nx(K),

where K is a p-complement of S in Nx(S).
Set Vo Cv(S) and V1 V. Suppose that X is not faithful. Then x2

induces the identity on V and so Vo c Vx is centralized by X (x, S). Hence
V Vo @ Vx. According to this decomposition we can find a basis of V such
that x corresponds to the matrix

and the elements in S to matrices

0,)
where I is the n-dimensional identity matrix and A is a suitable (n x n)-matrix.
There is further s S with Ixsl 3 (for instance if

x ( -) and s= (11 )
then [xs[ 3 in SL(2, p")). Since x and s are described by matrices as above
the matrix corresponding to (xs)a has the form

(A3 + 2A A2 + I)A2+I A

Hence A I and A2 + I I + I 21 0 follows, contradicting Char F # 2.
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LEMMA 2.7. Let S be a S2-subgroup of type L3(q), q even. Let K be a sub-
group of odd order in Aut (S) such that the semidirect product K" S contains U
the normalizer of a S2-subgroup in a split extension of the standard module V of
order q2 by SL(2, q). Suppose that is an involution in Aut (S) normalizing K
and interchanging the two elementary abelian subgroups of order q2 in S. Set
T S(t and take an involution x e T S. We have two cases.

(i) Z(T) Z(S) and W [x, S] is homocyclie of exponent 4 and order q2.
Z(S) I(W) and CT(x) Z(S)(x).

(ii) Z(T) Z(S). Then ]Cs(x)l ]IS, x]] qx/q" Z(T) Cz(s)(X) has
order x/q.
In both cases all involutions in T S are conjugate under S.

Proof. Consider S/Z as pairs (b, ) with b, c Fq and Z Z(S) we identify
with elements a Fq. The effect of squaring is described by (b, e)2 be and
the commutator map by [(b, c), (e, f)] bf + ce. Now (b, c)’ (ca’, b2) and

(ca’, b-) + (e"’, f"-) ((b, c) + (f,

(b + f, c +
((c + e)’’, (b + f)’).

So al, az, and a are F2-homomorphisms, where a a". 2 gives a2a
and axaz 1. Further,

(be) (be)’

[(b, 0), (0,

[(0, b’), (e’’, 0)]

ba2eO.

Suppose first, that centralizes Z. Then (g3 1.
Suppose now, that does not centralize Z. K induces a cyclic group of order

q on Z permuting transitively the elements in Z #. If we replace if neces-
sary by a suitable conjugate in K(t) we see by the structure of GL(n, 2), q 2",
that g3 acts as an involutory field automorphism on Z Fq. Thus 3 and
so l’(e + g’) et3 d- g3. Since a- a it follows that a l’-a’
for allaeFqandl < < 2.

In the case Z Z(T) we have that Cr(t) induces a cyclic group of order
q on Z acting transitively on Z. Since I[S, t]Z/Zl q it follows immedi-
ately that I-t, S] is homocyclic of exponent 4 and order q2 being inverted by t.
So every element in t[S, t] is an involution and all involutions in T- S are
conjugate in S.

If Z : Z(T) and a e It, S] then exactly x/q elements in taZ are involutions.
Hence there are qx/q IS; Cs(t)l involutions in T- S and all of them are
conjugate in S.
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LEMMA 2.8. Let p be a prime number andfix P Sylv(G). Consider the set

of subgroups X of P that satisfy the following conditions:
(1) X is a tame Sylow intersection with P (for notation see [4]).
(2) c(x)

_
x.

(3) X e Sylv(Ov,,v(Na(X))).
(4) X P or Na(X)/X is p-isolated.

Form the set of all pairs (X, N) with X Y and

N Na(X) if X Cv(fl(Z(X)))
and

N N(X) c C(flI(Z(X))) if X c Cp(Q(Z(X))).

If x, y P and x y in G, then there exist (Xi, Ni) Z (1 < < m) and ele-
ments x X, n, N, such that x x,, xT’ x+, for 1 < < m 1, and
X

For the proof see [11].

3. s-arcs

This section corresponds closely to Section 5 of [9-1. Thus we have a graph
whose set of points is Q and is connected with fl if and only if fl A().

LEMMA 3.1 (i) GA(=) G’(=).
(ii) If r is a prime number dividing q + then r does not divide

fl A(), except r 2 and q (mod 4).
(iii) Iffl e A() then ]A<=)=,, ],,-()1,.
Proof. (i) is true because of ]-6; 3.2].
(ii) follows by (i) and the proof of [8; Theorem 3].
(iii) G,, is a subgroup of index q + in G, and G. We have G=,a(,)

G,, . Suppose G#, a() G,, a. Then

,.,=, < q + 1

and this index divides q + 1. Hence by the structure of L(q) G<tJ), we have
L2(q) ,,z_a<t) Take now a prime r such that r divides q + but not divides
IG, 1. Such a prime always exists, because for q (mod 4) we have q
(mod 4) and q + > 5 together with (ii) then provides us with the existence

a()l and also IG= a contradiction.of such an r. So r divides I,, , ,
DEVINITION. For/3 A() define F(,/3) as the orbit of length q of a(a) and

set

F’(fl, ) {l fl A(), F(, fl)} for A(fl).
Set O {(e, fl, Y) lfl e A(e), e F(e, fl)).

LlaMa 3.2. If e A(fl), then F’(fl, ) is an orbit of A’(a) and [F’(fl, )l q.

Proof. With 3.1 repeat the proof of [9; 5.6].
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DEFINITION. Call a sequence X of points So,..., ss in f an s-arc if
(st, st+l, si+2) 60 for0 < < s- 2. An s-arc sl,.. ss_l, s,, /3 is called
a successor of X and an s-arc y, So, sl,..., s_ is called a predecessor of X.
Suppose X and Y are s-arcs and there is a sequence X X1, X2,..., Xk Y
such that Xi is a predecessor or a successor of Xz+ for < _< k 1. Then
we say that X is equivalent to Y (X Y).

LEMMA 3.3. (i) The number of s-arcs is Ifl(q + 1)q 1.
(ii) X Yfor all s-arcs X and Y.

eroof.
situation.

It is obvious that the proofs of [9; 5.7-5.10] can be adapted to our

4. The order of an S,-subgroup of G
LEMMA 4.1.

then IGlp q
IfG is transitive on the s-arcs but not transitive on the (s + 1)-arcs,

Proof. Let H be the stabilizer of the s-arc X; s0,..., s. Since G is transi-
tive on O we have s > 2. Clearly, IG,o: HI (q + 1)q s-1 by 3.3. Since

Ia=_,=l= IHI=, where n z(G,s_,,,s) {p), it follows that Ha(’s) induces
an orbit at least of length q- (or two orbits of length (q- 1)/2) on

F(s_ 1, s). If p divides Ha(’s), then H would act transitively on
since nontrivial elements of order p in Ha’’) would act fixed-point-free. Hence
G would be transitive on the (s + 1)-arcs, a contradiction. So p does not divide
IHa’)l. If Q Sylp(H), then Q stabilizes all predecessors and all successors of X.
3.3 (ii) implies Q 1.

LEMMA 4.2. Op,(G,,#) 1 for fl

Proof. First

Op,(G, #)G,, a(,)/G, a() - O,’(G(, )) 1.

Hence O,(G,)
_
G,) and similarly O,(G, )

_
Ga,,, as s e A’(fl).

Therefore

O,(G, ) Op,(G, At) O,Ga, A’(a) and Op,(G, ) <a (G, Ga) G.

So O,,(G, #) 1.

LEMMA 4.3. Take fl A(s). G, A) Ga, A,a) is a p-group and lG, alp, divides
((q 1)/d)2 where d if q is even and d 2 if q is odd. G, is solvable. If
K is a p’-Hall subgroup of G, then

Z(q_ 1)/a K Z(q_ 1)/d X Z(q_ 1)/d

(Z denotes the cyclic group of order r).
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Proof. G, A,()G, A()/G, a() is a normal subgroup of G(. So if G, a,()

G,A(, then we have a prime r dividing q + and [G,A,([ and not dividing
[G,A(I by 3.1 (ii). This contradicts [G,A([ [G,A,(I (see 3.1 (i)). So
G, a( G, A’( and by [6; 4.5] and 4.2 we have that N G,
is a p-group. Since Ga, A,(a/N is isomorphic to a subgroup of ,,,a we have
that [G,aIv, divides ((q 1)/d)2.

Suppose k, heK. Set [k,h]. Then teNand hence t- 1. Clearly,
U K c G,A( is faithful on A’(fl) and so U

___
Z(q_ 1)/d. Let x e K be an

element inducing a cyclic group of order (q- 1)/d on A(a). Then y--
x(q- l/d e U. Ify -# then x would induce on A’(fl) a group of order >(q 1)/d,
a contradiction.

LEMMA 4.4. For each s-arc X; ao,..., as there is a successor Y; a l, as+
such that the group Kfixing X is also fixing Y. There is an element g G with
yo X,a ai_1(1 < < s + 1) andgNG(K).

Proof. Let K be the stabilizer of X. Then by 3.3, K is a p’-Hall
group of G,o,, and G,_,,, respectively. So K induces one orbit of length
q if q is even or two orbits of length (q 1)/2 if q is odd on F(a 1, as) and
K fixes exactly one element as+ e F(as_ 1, as). Since K G,o ,, we also
have K G, +,. Choose g e G with X yo, then all assertions follow.

LEMMA 4.5. Choose ao,..., as+ , K and g NG(K) as in 4.4. Denote by H
the stabilizer of a 1,..., as and take Q Syl,(H). Denote further by H the
stabilizer of ao,..., as-i for <_ <_ s. Then

(i) Q is elementary abelian of order q.
(ii) [Hi+ Hil q for <_ < s- 1.
(iii) Hi (K, Q1,..., Qi)for <_ <_ s, where for each integer r we set

Q,
(iv) Pi Op(Hi) (Q1,..., Qi) for <_ <_ s- and Pi_
(v) G-- (H,g).
(vi) Z(._ /

___
K

__
Z(_ / x Z(_ 1/ where d if q is even and d 2

if q is odd.

Proof. Since G is transitive on the s-arcs it follows that H is transitive on
the s-arcs beginning with go,. as-i. As the number of,s-arcs beginning with
go,..., as-i is qi, we have [Hi[ qi[Ki[.
By the structure of Lz(q) we have that Q is elementary abelian of order q.

Now Hi - (K, Q1,..., Q) and Qi acts regularly on F(a_i_ 1, as-i). Hence
Qi Hi-1 1, IHi[ [Qil IHi-ll and Hi (K, Q1,..., Qi) for < < s.

Hs- is maximal in Hs and Qs Hs-1, so
is maximal in G and Os+a Hs we have G

Clearly N(Q)QKo/Ko is represented on Ko Kr(,,_,,,) which is cyclic by
4.3. Hence Ko centralizes Q and Q <a H. (vi) follows by 4.3. Since g N(K)
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then K normalizes every Qi. Suppose, we have already shown that Pi Op(Hi)
for < < k < s 1. Certainly No.k+l(Pk)is K-invariant and - 1. So Qk+l
normalizes Pk and Pk <a Pk / follows.

DEFINITION. We set L gHig-1 and R gPig-1 for all integers i.

LEMMA 4.6. Ri (Qo,..., Qi-1) for <_ <_ s 1, Ri+ Pi+l Pi
for O <_ <_ s- 2 and Pi < Ri+l. Also Li+ c Hi+l Hi.

Proof. Clearly, Pi Ri+l Pi+l. If Pi c Ri+l Pi+l, then there is a

= yQi+l cRi+l cPi+l and Qi+l (yC)
___

Ri+l. It follows that

Ri+l cPi+l Pi+l and Hi+l is 9-invariant. So Hi+l " G (H,#) by
4.5, a contradiction. Since - No.o(Pi) is K-invariant, we have that Qo
normalizes Pi and Pi " Ri+ 1.

LEMMA 4.7. Suppose k < j and Ik -jl < s 2. Then

[Qk, Qj] --- <Qk+l,...,

If s >_ 3, then P2 is abelian.

Proof. By 4.6,[Q0, Qi] - PicRi Pi-1 for i<_ s- 2. Conjugate the
above expression with a suitable power of9 and the assertion follows.

LEMMA 4.8. If 2i > S + 2, then Pi is nonabelian.

Proof. Choose as above and assume Pi is abelian. Then [Q, Q] for
Ij k[ < 1. So [Qi, Qt] for 1 <_ < s + 1, since

It- i[ <_ Max(i- 1, s- + 1)= i- 1.

Therefore

Qi <3 G (Q1, Qs+ 1, K),
a contradiction.

LEMMA 4.9. /f < < S- then an element x Pi can be written as
x YlY2""Yi where yr6Q, for < r < is uniquely determined. IfPi is

nonabelian, then >_ (2s + 1)/3.

Proof. The first assertion is obvious since Iez+l Iezl IOz+l.
Without loss we may assume that s > 3. Choose now 2 < < s, such that

Pi-1 is abelian but Pi is not abelian. Hence

(+) [Oj, Ok] whenever Ij- kl < i- 2.

Since Pi and every Q is K-invariant, for every xl e Q there is a xi e Q with
1 v Ix1, xi]. By 4.7,

(’q" "t-) [Xl, Xi] Xm X



PRIMITIVE PERMUTATION GROUPS 55

where 2 < m _< n < i- 1, Xm X, andxtQtis uniquely determined
form < < n. We want to show

(1) + m > s +
(2) 2i- n >_ s.

Granted both facts it follows that s + i_< m_< n < 2i- s or
i>_ (2s + 1)/3.

Proof of(l). We copy the proof of [9; 2.6]. Setk + m and sup-
pose(1) is false. Sok < s- 1. Since Ik m[ i- andx,,-Y: there is
an xk Qff with INto, Xk] -7 1. Set w l-x1, xk]. Then w (Qz,..., Qk-1)
by Lemma 4.7 since k < s- 1. By (+), I-w, Qj] for m < j < i. So wcom-
mutes with xi and l-x1, xi]. Finally x commutes with Qj for m < j < i.
We conjugate (+ +) with x. For the left-hand side we get

Xk-- IX I, Xi]X IX W, Xi] W-I IX1, Xi]W[W Xi] IX1, Xi] Xm X

For the right-hand side we get

X I(Xm’’’Xn)X (X 1XmXk)X I’’" Xn Xm[Xm, Xk]Xm-I’’" Xn"

Thus [Xm, X] l, a contradiction.

Proof of (2). As in the proof of (1) we can adapt our situation to the proof
of [9; 2.6].

LEMMA4.10. S < 7ands =/= 6.

Proof. Take minimal with 2t > s + 2. Then P, is not abelian by 4.8.
By 4.9, 3t >_ 2s + 1. Suppose s---0 (mod2); then (s + 2)/2 and
3s + 6 _> 4s + 2 or s < 4. If s (mod 2), then (s + 3)/2 and
3s-t- 9 > 4s + 2ors < 7.

5. The structure of G
We use the notation of Section 4 and set o.
[.EMMA 5.1. (i) If s 2, then G - L2(q).
(ii) If s 3, then G - L2(q) x Y, where Y is isomorphic to a Sp-normalizer

in Lz(q).

Proof. If s 2, then Syl,(G,A()) {1} and 4.2 implies the assertion.
Suppose now s 3. Then (Q,, Qz> and (Q., Q3> are S,-subgroups of G,

whose intersection is Q2. Hence Op(G) Q2. Clearly, CG,,(Q2) covers G)
and so G G,A()" CG(Q2). Let R be a p’-Hall subgroup of G,a(,) con-
tained in K. Then R is represented faithful on Q2 by 4.2 and hence R
K/C(Q2) Z(,_ )/a where d if q is even and d 2 if q is odd. Also
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JR, Ca(Q2) Ca,(Q2) n G,,a(,) Q2. By a theorem of Gaschfitz Ca(Q2)
splits over Q2 and Ca,(Q2) Qz x x, where X - L2(q). Moreover IX, R]
Q2 c X 1. Hence G, - Lz(q) Y.

LEMMA5.2. If S 4 then p 2. If P 02(G), then P is elementary
abelian of order q Z and Ca(P)= P. G/P is isomorphic to a subgroup of
GL(2, q) containin9 SL(2, q) and acting on P as on the standard module. G
splits over P.

Proof. Since the two Sp-subgroups (Q1, Q2, Qa) and (Q2, Qa, Q4) contain
(Q2, Q3) and [G,A()Ip q2, we have P Op(G) (Q2, Q3). By a theorem
of Gaschfitz G splits over P. Further by 4.8, P3 is nonabelian. Since P3 is
K-invariant we have 1-Q1, Q3] Q2. Since Op,(G)= 1, and Ca(P)
G, A() we have Ca(P) P. Let X/P denote the smallest member of the derived
series of G/P. By 4.5, G,,a()/P - Z(G,/P) and so X/P is either isomorphic to
L2(q) or SL(2, q). Assume q is odd and X/P

_
SL(2, q), then KP/P X/P

contains a four-group by 4.5 in contradiction to the structure of SL(2, q).
Hence X/P

_
LE(q) and KP/P X/P is cyclic of order (q 1)/d (where d

if q is even and d 2 if q is odd) acting on the subgroups of order p of Q2 or

03 transitively. So P is an irreducible X/P-module in contradiction to 2.6
ifqisodd. SoqisevenandG/P

_
SL(2, q) Z, Z

_
Zq_. SinceX/P

SL(2, q) we have by 2.5 that P may be regarded as the standard SL(2, q)
X/P-module.

Let LIP denote Z(G/P), then L/P permutes all subgroups of order q in P
which represent one-dimensional subspaces in respect to the action of X/P on
P. Since there are q + of them and [L/PI divides q it follows that LIP
leaves invariant all these one-dimensional subspaces. Now it is easy to see that
G/P is isomorphic to a subgroup of GL(2, q) containing SL(2, q) and P may
be regarded as the standard module of G/P.

LEMMA 5.3. If S 5, then p 2. P O2(G) is elementary abelian of
order q3. K - Zq_ Zq_ and G/P

_
GL(2, q). Q3 < G and Ca(Qa)/P

SL(2, q). P/Q3 may be regarded as the standard module for GL(2, q)
_
G/P

and G splits over P. P is an indecomposable G/P-module (i.e., there is no
T P, T <a G with T Q3 P).

Proof. As usual P Op(G) (Q2, Q3, 04). Suppose P3 is not abelian.
Then [02, Q4-I 03 and 03 < G. But IOn, 03] 02, a contradiction.
So P3 is abelian and 03 " G, since 03 - (Q, 02, 03) c (03, Q,, 05).

Also Ca(Q3) covers Ga() as Ca(Q3) contains a Sp-subgroup of G. By 4.8, P4
is not abelian and as Op,(G) 1, it follows that Ca(P) P. Since K induces
on 03 a cyclic group of order (q 1)/d, we have

[G" Ca(Q3)[ (q 1)/d and K Z(,_ )/a x Z(,_
where d 1 if q is even and d 2 if q is odd (see 4.5).
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Hence C((Q3)/P Lz(q). Clearly, [Qx, Q4] --- (Q2, Q3). We have neither
[Q1, 04] 03 nor [01, 04] Q2 (which implies [02, 05] 03), since
C6=(P/Q3) G,a(). Since Q1 and Q4 are K-invariant, we have for xi Qff
(i 1, 4), Ix1, x4] x2x3 always, with xj e Q (for j 2, 3). We have

Cp/Q3(Q1)-- QzQ3/Q3 [Q1, P]Q3/Q3

and as in the proof of 5.2, P/Q3 is an irreducible C(,(Q3)/P L2(q)-module.
As before q is even and P/Q3 is the standard module for Cc,,(Q3)/e SL(2, q)
by 2.5 and 2.6.

Set L CK(P/Q3) G,zx( and assume L - 1. Clearly, L
_

Ct((Q2, Q4)
and so with # G chosen as in 4.4 and 4.5, L C((Q3, Q5). Since C((Q3)
acts fixed-pointfree on QsP/Q3 (as P/Q3 is the standard module for SL(2, q) -c(Q3)/P), we have L and so L 1. Now the assertion follows as in
the proof of 5.2.

LEMMA 5.4. The case s 7 does not occur.

Proof. As usual e O,(G) (Q2,..., Q6)- By 4.9, [Q,, Qj]
whenever li -jl < 3. Also the proof of 4.9 shows us that [Q1, Q5] - Q3.
Since P5 is not abelian by 4.8, we have [01, 05] 03, [02, 06]--04
and [03, 07] Q5. Hence Q4 and T (Q3, Q4, Q5) are normal subgroups
of G. So C(Q4) covers G) and as in the proof of 5.3 we have

K Z(q_ 1)/a Z(q_ 1)/a,

where d if q is even and d 2 if q is odd. Also Ca.(T/Q4) t% C;(Q4) P
and so Ca(Q4)/P Lz(q) acts faithfully on T/Q4. Since

Q,P/P e Sylp(Ca,(Q4)/P) and CT/O.,(Q1P/P) Q3Q4/Q4

we have by 2.5 and 2.6 that q is even and T/Q4 is the standard module for
Co(Q4)/P.

Further [Q,, Q6] --- (Q2,..., Qs) and [Qz, QT] =- (Q,..., Q6). Take
x, Q, XhQ6. Then there are xiQi (2 _< i_< 5) with [xl, x6]
x2 x5 and

XlXX (XlX6Xl)2 (X2X3X4X5X6)2 (X2X6)2.

Since T/Q4 is the standard module for C6(Q4)/P, we have for Y e Q that

C.,(y) 1. Hence xz 1. So [Q1, Q6] c_ (Q3, Q4, Q5) and similarly
[Q, Q6] --- (Qz, Q3, Q4). So finally [Q1, Q6] - (Q3, Q4) and [Q2, Qv] c_

<Q4,
Now we claim that A(o) is self-paired (notation as in Section 4 and 0).

N Go, N;o(P6) N6,,(P6). Since No is also a S2-normalizer in G,o
there is a h e G=o with N= N and k 9h e Na(P6)- N;.o(P6). Now

N(Q4) G and P (Q3, Q4>. Since N P6K we can use a Frattini-
argument and find a k e N(K) N;(P6) N;.o(P6). So Q4 4: Q4. Since
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Q3 and Q4 are the only K-invariant subgroups in P, of order q we have Q
03 and Q 04. Hence k2s N(P6) G, N. So I(k)NI- 21NI and
we may assume that A(o) is self-paired (see 1-9; 5.16]).

Set e_ eg). Then el, e-1 e A(o), since A(o) is self-paired. Q1 does not
fix fl e A(o) {1} as otherwise Q1 would fix the 7-arc fl, o,..., 6. Hence
Qa acts regularly on A(eo) {}. By definition Q7 does not fix ex but does
fix0_. So we can findxleQandxveQvwithz_’l fland/3x7 e. Set
h =gxaxTando ande ofollows. Soh2eN.
Now

h-lYh X7Xlg-lYlgX1x7 X7xlY2XlX7 Y2[x7, Y2] G (02, 04, 05}
whereyi Q for < < 2. In the same way

h-Y2h (03, Q4, Q5), h-ly,h (Q3, Q), and h-lysh (Q3, Q,, Q5, Q6)

where Yi Qi for 2, 4, 5. Hence h-2ylh2 (Q2, Q3, Q4, Q6) e. But
hz P6g and so h-2yh2 P6 P for y Q, a contradiction.

6. The case p 2

In this section we will show that in the case p 2 we have G,() l, or
equivalently s _< 2. Always we will use the notation of Section 4 and 5.

LEMMA 6.1. S -- 3.

Proof. By 5.1 (ii) we have G X Y where X- SL(2, q) and Y=
NsL(Z,q)(F) with F Sylz(SL(2, q)). Now Go, (E F)K where F
Sylz(Y) and E Sylz(X). Set S EF. Take x G with z 1. Then
(SK)

_
G, and there is an h G,, with (SK)Xh= SK. Set y xh, then
and y Na(SK) Go. Since E and F are the only minimal normal

subgroups of SK and Go N6(F), we have E F and F-- E. Since
ya Na(F) c Na(SK) SK, we may choose--by using a Frattini argument.
y as an involution in N(K). Now S # splits in the two (y)K-orbits F # w E #

and (F#)(E#).
Assume first that S* (y)S Sylz(N6(S)). Since S char S* it follows that

S* Sylz(G). Let X be a minimal normal subgroup of G. If X G 1, then
IX[ is odd as [X[a < 2. But then GX G and [G[2 < IS*I, a contradiction.
Hence Xc G 4:1 and so S

_
X. Even S*

_
X as G and so Gcan not

contain a subgroup of index 2. Hence X is simple, in contradiction to 2.2.
So if T Sylz(Na(S)), then S*

_
T implies S* T. Then T does not nor-

malize E#w F# and all elements in S # are conjugate under Na(S). Let
E E1 Ez = E, be an arbitrary sequence of hyperplanes.

Suppose we have already shown by induction that S Sylz(Na(Ei_)).
Certainly, Na(Ez_ 1) Nc(Ei) is the preimage of Cu(,)/e,(Ei-/Ei).
Assume first that S/Ei Sylz(Na(Ei)/Ei). Since

S/E, Sylz((N(E,_ ,) N(E,))/E,)
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for all subgroups E c Ei_ C2 E with ]E_I: EI 2, it follows that E/E
contains only noncentral involutions of NG(Ei)/E. Take

(NG(Ei) c N(S)) S with 2 S.

Then (E/Ei)tm E/Ei 1. If (E/Ei)t FEi/Ei- then the involutions in
FEi/Ei are conjugate under NN(s)(Ei)/Ei to involutions in E/Ei. Hence

FEi/E (FEi/Ei)

which is not true since IFEi/Eil q > /]S/Eil. Therefore the involutions in
FEi/E are central and the map

(E/Ei) eEi etFEi
is a bijection of (E/Ei) # onto (S/FEi) #. So all involutions in S/Ei- FEi/Ei
are conjugate to an involution in E/E. Also normalizes FEi[E and thus fixes
every coset eFE/Ei where e E. Denote by T a S2-subgroup in

N(S) c C,(S/FE,) c N(E)

and set Ko C(E). Then TKo induces a Frobenius group of order q(q 1)
on the coset eFEflE for e E E (see also [12; lemma 2]). The map T
[e, t] Ei for e E is a Ko-homomorphism of T/S into IT, E]/[E, T, T].
So E

_
Z(T). Set To [T, Ko]E; then To/EcE/E and ToE= T.

Also To/E is abelian since To/FEi and FE/E are Ko-isomorphic. If

[FEi, To-[ 1,

then ING(F)]2 > q2, a contradiction.
So we can find a hyperplane E* c Ei such that To/E* is not abelian. If

Ko (k), then k has on FEi/E and To/FEi the eigenvalues {2,/2,...,/z--}
where 2 is a primitive (q 1)th root of unit. Since the commutator map is a
nontrivial, bilinear, and Ko-admissible map from To/E onto the trivial Ko-
module Ei/E* we have

{, ,..., --} {-, -,..., -o-,}.
Therefore q 2" must divide 2 + 2 for some 0 < k, < n 1.
It follows that n 2, k 1, and 0. (For these arguments also compare
with [5].)

So if n > 2, we have by induction that S Sylz(Cc,(e)) where e E #, con-
tradicting the fact that all elements in S # are conjugate and that S Sylz(G).
So we are in the case n 2 with E2 Ei, and 22. 3 2. 5 divides [N(S)/S[.

Suppose first 2z. 3 2. 5 :/: [Nc,(S)/S[. Then

IN(S)/SI >_ 23. 3z" 5

and as S possesses exactly 35 subgroups of order 4 we have a contradiction to

IN(S): (N(S) c N(E))I > 23. 5 40.
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So IN(S)/SI 22. 32. 5. Suppose every minimal normal subgroup of NG(S)/S
is nonsolvable, then NG(S)/S is isomorphic to A 5 extended by an automorphism
of order 3 which is impossible. The structure of A8 implies that N(S)/S

_
A5 x Z3 - GL(2, 4) where S is the standard module for N(S)/S.
Now K normalizes a T Syl2(N(S)) by the structure of GL(2, 4). But then

either F or E is KT-invariant, a contradiction.

LEMMA 6.2. s - 4.

Proof. Suppose s 4. N Go,, is the normalizer of a S2-subgroup in

Go and G,. Set S O2(N) Syl2(N) and S contains exactly two elementary
abelian subgroups--say E and F--of order q2. One of them--say E--is equal
to O2(Go). If a al then there is a hGl with z =9hNG(N). So
z Na(S) and since z NG(E)= G,o we have EZ= F and FZ E. As
NG(E)

_
Go we have N(S) (t)N where interchanges E and F. We can

even choose Na(K) and it follows It 2. Since all involutions in S lie in
E w F and as C( F)(X) Z Z(S) for x T- S, Ixl 2 it follows that
S char T where T S(t). We conclude T Syl2(G).

Set W T’, then W is of exponent 4 and fl(W) Z. Every element in
T- W induces a nontrivial automorphism on W. So [C(W)W: W[ is odd.
Further C(W)W M

_
NG(W) where M C(W/Z) and M contains T.

We apply 2.7. Thus we have either M Ct(Z) has S as a S2-subgroup, or W
is homocyclic of exponent 4 and inverts W. In the second case ICe(t), T] S
and the cosets W and fW with f F are never conjugate in G. Let R be a
2-complement of the preimage of O(M/W). In any case R stabilizes the chain
1 Z c WandsoR_ C(W). By 2.1wehave

Oz’2"(M/WR) or O’(M,/WR)= Vo x VI x ...x Vm,

where Vo is an elementary abelian 2-group and Va,..., Vm are nonabelian
simple. Since (T r Ma)/W induces nontrivial automorphisms on W but
centralizes W/Z and Z we have SR/WR char M/WR. The Frattini argument
gives us

NdW) O(CdW))(NdS) c NdW)).

Set U Z.O(C(Z)). Clearly, S
_

C(Z). Let X/U be a minimal normal
subgroup of N(Z)/U lying in CG(Z)/U.

Suppose first that X/U is semisimple and not abelian. Since WU/U and
SU/U are the only K(t)-invariant, nontrivial subgroups of SU/U we have to
distinguish the three cases W Syl2(X), S SyI2(X), and T Sylz(X).
Assume first We Syl2(X), then X/U

_
SL(2, q) by 2.1 and N(W)

C(Z) contains a group L inducing a cyclic group of order q on W/Z and
acting transitively on (W/Z) #, a contradiction.
Suppose now S Sylz(X). Then X/U

_
SL(2, q) x SL(2, q) by 2.1. This

implies N(E) G,o since Nx(E) G,o, a contradiction.
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If, finally, T Syl2(X), then X/U is simple and by 2.2 we reach a contradic-
tion. So in any case X/U is an elementary abelian 2-group and by the above
No(Z) O(Co(Z))No(S) follows.

Let Z, be any subgroup of Z such that either Z(T)
_

Z, or Z, Z(T), and
]Z,[ 2’. We want to show by induction that No(Z3 O(Co(Z3)(No(S) c
No(Z,)). Take zeZ- Z,, if Z, Z(T) then choose zeZ(T)- Z,. Set
Z,+I (Z,, z); then No(Z,) No(Z,+1) is the preimage of CNz,)/z,(zZ3.
In particular if x is an involution in T Z, we have by induction, that

Cr/z(xZi, zZi) Sylz(Cv(z)/z(xZi, zZ,)).
Case 1. Suppose first thatZ(T) Z(S). IfxeS- Z and if T, is the

preimage of Cr/z,(xZi, zZi) then Z T’, and x z in No(Z3 if x is an
involution. If x e T S is an involution then T’x, c Z(T,, ) Z by 2.7
and again x z in No(Zi). Therefore Z/Z, is strongly closed in T/Z, with
respect to No(Z,)/Zi. 2.3 implies that R (Zu(z’))

_
Co(Z,) and RIO(R) is

known. If R :/: O(R)Z, it follows that

I(Co(Z,) c No(Z)): Co(Z)I >

in contradiction to the structure of No(Z). The induction goes through in this
case.

Case 2. Assume now Z # Z(T) and use the information of 2.7. Again if
x e S Z is an involution we have z x in No(Z,) as in Case 1. Suppose
now that x e T- S is an involution; then x z in No(Z3 for > n/2 as

Cz,(X) # Z,. If <_ n/2 then Z(T/Z3 has a preimage which is a group Z*
Z+o/2), and z e Z*. If x e T S is an involution and Tx,z is the preimage of

CT/z,(xZ,, zZ3, then the preimage of Z(Tx, JZ3 is (Z*, x) but x Z((Z*, x)).
So x z in No(Z3. The weak closure of (zZz) in

(No(Z,+ ,) No(Z,))/Z

lies in Z/Z,. Hence by a theorem of Shult (see [3; corollary 3]) we have as
before

No(Z,) O(Co(Z,))(No(S) No(Z,)).
Every involution in S Z is conjugate in G to z Z #. We claim z

T S. Assume the contrary.

Case 1. Z(T) Z. Then Y CT(z, t) (Z, t) Sylz(Co(z t)) by the
above. Also C(t) acts transitively on Z # and t(Z#). As tz in W we have
that the elements in Z # as well as in tZ are all conjugate in X No(Y). Now
has at least q conjugates under Cx(z). Since for z there is K* Ci(t) in X

with K*
_

Cx(z) and Y (z) x Y1 where Yj and zY {z} are K*-orbits.
It follows that all involutions in Y (z) are conjugate under Cx(z). Hence 2
divides [Cx(z)" Cx(z, z)] where z Z (z). Take R Sylz(Cx(z)) with
It, T]

_
RandQSyl2(G)withR

_
G. Then

Z(Q) c_ y c_ (t)[t, T] and Z(Q) c_ Z([t, T](t)) Z.

Hence Z(Q) z, contradicting the fact that 2 divides [Cx(z)" Cx(z,
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Case 2. Assume Z(T) Z. Then z e. Cr(x, t)’ but Cr(x, z)’ and so
t*zinG.
By 2.4, G contains a subgroup of index 2. Since the maximal subgroup G

does not contain a subgroup of index 2, we reach the final contradiction

Ia" al Inl 2 > IA()I q + _> 5.

LEMMA 6.3. S - 5.

Proof. P 02(G) (Q2, Q3, Q,) and G NG(Q3) and CG(Q3) covers

G(’). Since [Q1, Q4] 4:1 we have that CG(Q3)/P is faithfully represented on
P/Q3. The map x4 --. Ix1, x4-I where Xl e Q1 and x Q is faithful from Q4
into (Q2, Q3) and a C(Q1)-homomorphism.
Take k G with ok

el then there is a x G, such that for N(P4)
KP4 G,o, we have (KP4)h KP4 where h kx. Since P, contains
exactly two elementary abelian groups of order q3 where one of them is P, we
have h2 e KP,. As in the proof of 6.2, T (t)P4 Sylz(G), where is an
involution in Na(K) N(P) interchanging P and Q the elementary abelian
subgroups of order q3 in P4. Since

K Cu,(Qz) x C(Q3 cu,(Q) x cu(Q4)

and as interchanges 02 and Q3 we have that Qt Q4 and Ko CK(t) is a
cyclic group of order q 1. One computes that ICe4(t)l qZ. Moreover
there are at most q cosets tw(Q2, Q3) with w e P4 which contain involutions

2and each of these cosets contains at most q involutions. Hence there are q
involutions in T P and all of them are conjugate under P4.
P4 SyI2(C((Q2, Q3))) and by the structure of NG(P4) we know--using

Burnside’s theoremthat

N((Q2, Q3)) O(C((Qz, Qa)))N(P4).

Set Z Z(T)
_

(Qz, Q3). Denote by Z any subgroup of (Qz, Q3) with
Z

___
Z and IZI 2q. We want to show by induction that

N(Z,) O(C(Z,))(N(P) c Na(Z)).

P4 Sylz(C,(Zi)) and T e Sylz(N,(Z)) if > 0. On the other hand if x is an
involution in P4 (Q2, Q3) and z e (Q2, Q) z then by the hypothesis
of the induction

Cp4/zi(XZi, zZi) . Sylz(Cctzi)/z,(xZi, zZi)).

If T,z is the preimage of this group we have (Q2, O3) T’x,z "Zi and so
x z in NG(zi). Hence (Q2, Q3) is strongly closed in P with respect to
C(Zi). The structure of N((Q2, O3)) and 2.3 now implies

(Q2, Q3)O(CG(Zi)) <a N(Zi)

and the assertion follows.
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Finally consider the case Zo Z. z (Q2, Q3) z is not conjugate to the
involution x T P4 since the preimage Tx, of CT/z(xZ, zZ) has (Q2, 03)
as the only elementary abelian subgroup of index 2. If z (Q2, 03) Z
would be conjugate in N(Z) to x P4 (Q2, 03) then all involutions in
P4/Z would be conjugate in N(Z)/Z. Hence N(Z)/Z and so C(Z)/Z has a
subgroup of index 2 with S2-subgroup P4/Z as the proof of 2.4 shows. This
group has class 2 and is of type L3(q). So if X/O(C(Z))Z is a minimal normal
subgroup of N(Z)/O(C(Z))Z contained in C(Z)/O(C(Z))Z and is non-
solvable then X/O(C(Z))Z L3(q) by 2.2 and we get a contradiction to the
structure of N(P4). So as usual

N(Z) O(C(Z))(N.P) N(Z))
follows.
Assume an involution T P4 is conjugate in G to x P4. By 2.8 there

is a subgroup X
___

T, t, x X satisfying conditions (1)-(4) of 2.8 (here T cor-
responds to P in 2.8) such that x in N where

or

N Na(X) if X CT(f,(Z(X)))

N No(X)c Co(f,(Z(X))) if X CT(f,(Z(X))).

Clearly, Z<t)
_
X by 2.8 (2). Moreover Z Z(X) or fI(Z(X)) (t)Z,

because Cw(t) (t)U, where U is homocyclic of order q2 and fl(U) Z.
If X CT(I(Z(X))) then in any case Z char X and x in N(Z) which is
impossible. If X CT(I(Z(X))) then N

_
N(X) and we get the same

contradiction.
2.4 implies that G has a subgroup of index 2 and we get the usual contradic-

tion.

Remark. The permutation groups with a suborbit of length 3 have been
determined by Sims [9] and Wong [15]. The permutation groups with a sub-
orbit of length 4 have been determined by Sims [10] and Quirin [7-1.
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