ON PRIMITIVE PERMUTATION GROUPS WHOSE STABILIZER OF A POINT INDUCES $L_{2}(q)$ ON A SUBORBIT

BY
Ulrich Dempwolff

1. Introduction

In the following we consider primitive permutation groups G acting on a finite set Ω. If $\alpha \in \Omega$ then G_{α} has a suborbit $\Delta(\alpha)$ such that the group $G_{\alpha}^{\Delta(\alpha)}$ induced on $\Delta(\alpha)$ is isomorphic to $L_{2}(q)$ and $|\Delta(\alpha)|=q+1$, where $q \geq 4$ and $q=p^{n}, p$ a prime. We state:

Theorem. Suppose G satisfies the above conditions then either
(a) $G_{\alpha} \simeq L_{2}(q)$ or
(b) $p>2$ and $G_{\alpha} \simeq L_{2}(q) \times Y$ where Y is isomorphic to the normalizer of a S_{p}-subgroup in $L_{2}(q)$.

The proof of the theorem will follow to a great extent the pattern of the work of C. C. Sims [9]. In this way we get bounds for $\left|G_{\alpha}\right|$ and structural informations of G_{α}. Then we use results about irreducible $F_{p}\left[L_{2}(q)\right]$-modules. In the case $p=2$ also "2-local arguments" will enter. The notation is standard (see [4] and [14]).

2. Preliminary lemmas

In this section we collect some-mostly known-results, which will be used repeatedly.

Proposition 2.1 (Walter, also see [1]). Let G be a finite group having abelian S_{2}-subgroups. Then G possesses a normal subgroup H of odd index, such that

$$
H / O(H) \simeq X_{0} \times X_{1} \times \cdots \times X_{n}
$$

where X_{0} is an abelian 2-group and $X_{i}(1 \leq i \leq n)$ are finite simple groups isomorphic to $L_{2}(q)$, q suitable, or of type "Janko-Ree" (for the definition of type "Janko-Ree" see [1]).

Proposition 2.2 (Gilman, Gorenstein [2]). Let G be a finite simple group and $S \in S y l_{2}(G)$. Suppose $\mathrm{cl}(S)=2$. Then G is isomorphic to one of the following groups:

$$
L_{2}(q), q \equiv 7,9(\bmod 16), A_{7}, S z\left(2^{n}\right), U_{3}\left(2^{n}\right), L_{3}\left(2^{n}\right), \text { or } \operatorname{PSp}\left(4,2^{n}\right)
$$

Received January 15, 1975.

Proposition 2.3 (Goldschmidt [3]). Let G be a finite group and $1 \neq A \subseteq$ $S \in S y l_{2}(G), A$ abelian. Suppose that for all $a \in A^{\#}$ always $a^{g} \in S$ implies $a^{g} \in A$. Then if $\bar{K}=\left\langle A^{G}\right\rangle / O /\left(\left\langle A^{G}\right\rangle\right)$ we have:
(i) \bar{K} is a central product of an abelian 2-group and quasisimple groups X such that either $X / Z(X)$ has abelian S_{2}-subgroups or $X / Z(X)$ is isomorphic to $S z\left(2^{n}\right)$ or $U_{3}\left(2^{n}\right)$.
(ii) $\bar{A}=O_{2}(\bar{K}) \Omega_{1}(\bar{T})$ for some $A \subseteq T \in S y l_{2}(K)$.

Lemma 2.4 (Thompson [13; 5.38]). Let G be a finite group and $S \in S y l_{2}(G)$. Suppose $S^{*} \subset S,\left|S: S^{*}\right|=2$ and $t \in S-S^{*}$ is an involution, which is not conjugate to any element in S^{*}. Then G has a normal subgroup G^{*} of index 2.

Lemma 2.5 (Gilman, Gorenstein [2; (2.66)]). Let V be a $2 n$-dimensional F_{2}-vectorspace and $S L\left(2,2^{n}\right) \simeq X \subseteq G L(V)$ such that V is an irreducible X-space. Assume further $[S, V]=C_{V}(S), \operatorname{dim} C_{V}(S)=n$ for $S \in \operatorname{Syl}_{2}(X)$. Then V is a standard module of X. (Here standard module M of $S L(2, q)$ means a 2-dimensional F_{q}-vectorspace such that $S L(2, q)$ acts on M as $S L(M)$).

Lemma 2.6. Let V be a $2 n$-dimensional F_{p}-vectorspace and $X \simeq S L\left(2, p^{n}\right)$ be represented irreducibly on V and $p^{n} \geq$ 4. Suppose $S \in \operatorname{Syl}_{p}(X)$ and $[S, V]=$ $C_{V}(S), \operatorname{dim} C_{V}(S)=n$. Then X is faithful on V.

Proof. Since $S L\left(2,2^{n}\right) \simeq L_{2}\left(2^{n}\right)$, we may assume that p is odd.
In X there is an element x of order 4 such that $\langle x, S\rangle=X$ and $x \in N_{X}(K)$, where K is a p-complement of S in $N_{X}(S)$.

Set $V_{0}=C_{V}(S)$ and $V_{1}=V_{0}^{x}$. Suppose that X is not faithful. Then x^{2} induces the identity on V and so $V_{0} \cap V_{1}$ is centralized by $X=\langle x, S\rangle$. Hence $V=V_{0} \oplus V_{1}$. According to this decomposition we can find a basis of V such that x corresponds to the matrix

$$
\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)
$$

and the elements in S to matrices

$$
\left(\begin{array}{ll}
I & 0 \\
A & I
\end{array}\right)
$$

where I is the n-dimensional identity matrix and A is a suitable ($n \times n$)-matrix. There is further $s \in S$ with $|x s|=3$ (for instance if

$$
x=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad s=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

then $|x s|=3$ in $S L\left(2, p^{n}\right)$). Since x and s are described by matrices as above the matrix corresponding to $(x s)^{3}$ has the form

$$
\left(\begin{array}{cc}
A^{3}+2 A & A^{2}+I \\
A^{2}+I & A
\end{array}\right)
$$

Hence $A=I$ and $A^{2}+I=I+I=2 I=0$ follows, contradicting Char $F_{p} \neq 2$.

Lemma 2.7. Let S be a S_{2}-subgroup of type $L_{3}(q), q$ even. Let K be a subgroup of odd order in Aut (S) such that the semidirect product $K \cdot S$ contains U the normalizer of a S_{2}-subgroup in a split extension of the standard module V of order q^{2} by $S L(2, q)$. Suppose that t is an involution in Aut (S) normalizing K and interchanging the two elementary abelian subgroups of order q^{2} in S. Set $T=S\langle t\rangle$ and take an involution $x \in T-S$. We have two cases.
(i) $Z(T)=Z(S)$ and $W=[x, S]$ is homocyclic of exponent 4 and order q^{2}. $Z(S)=\Omega_{1}(W)$ and $C_{T}(x)=Z(S)\langle x\rangle$.
(ii) $Z(T) \neq Z(S)$. Then $\left|C_{S}(x)\right|=|[S, x]|=q \sqrt{ } q . \quad Z(T)=C_{Z(S)}(x)$ has order $\sqrt{ } q$.
In both cases all involutions in $T-S$ are conjugate under S.
Proof. Consider S / Z as pairs (b, c) with $b, c \in F_{q}$ and $Z=Z(S)$ we identify with elements $a \in F_{q}$. The effect of squaring is described by $(b, c)^{2}=b c$ and the commutator map by $[(b, c),(e, f)]=b f+c e$. Now $(b, c)^{t}=\left(c^{\alpha_{1}}, b^{\alpha_{2}}\right)$ and

$$
\begin{aligned}
\left(c^{\alpha_{1}}, b^{\alpha_{2}}\right)+\left(e^{\alpha_{1}}, f^{\alpha_{2}}\right) & =((b, c)+(f, e))^{t} \\
& =(b+f, c+e)^{t} \\
& =\left((c+e)^{\alpha_{1}},(b+f)^{\alpha_{2}}\right)
\end{aligned}
$$

So α_{1}, α_{2}, and α_{3} are F_{2}-homomorphisms, where $a^{t}=a^{\alpha_{3}} . \quad t^{2}=1$ gives $\alpha_{3}^{2}=1$ and $\alpha_{1} \alpha_{2}=1$. Further,

$$
\begin{aligned}
(b e)^{\alpha_{3}} & =(b e)^{t} \\
& =[(b, 0),(0, e)]^{t} \\
& =\left[\left(0, b^{\alpha_{2}}\right),\left(e^{\alpha_{1}}, 0\right)\right] \\
& =b^{\alpha_{2}} e^{\alpha_{1}} .
\end{aligned}
$$

Suppose first, that t centralizes Z. Then $\alpha_{3}=1$.
Suppose now, that t does not centralize Z. K induces a cyclic group of order $q-1$ on Z permuting transitively the elements in $Z^{\#}$. If we replace t if necessary by a suitable conjugate in $K\langle t\rangle$ we see by the structure of $G L(n, 2), q=2^{n}$, that α_{3} acts as an involutory field automorphism on $Z=F_{q}$. Thus $1^{\alpha_{3}}=1$ and so $1^{\alpha_{2}}\left(e^{\alpha_{1}}+g^{\alpha_{1}}\right)=e^{\alpha_{3}}+g^{\alpha_{3}}$. Since $\alpha_{2}^{-1}=\alpha_{1}$ it follows that $a^{\alpha_{3}}=1^{\alpha_{i}-1} a^{\alpha_{i}}$ for all $a \in F_{q}$ and $1 \leq i \leq 2$.

In the case $Z=Z(T)$ we have that $C_{K}(t)$ induces a cyclic group of order $q-1$ on Z acting transitively on Z. Since $|[S, t] Z| Z \mid=q$ it follows immediately that $[t, S]$ is homocyclic of exponent 4 and order q^{2} being inverted by t. So every element in $t[S, t]$ is an involution and all involutions in $T-S$ are conjugate in S.

If $Z \neq Z(T)$ and $a \in[t, S]$ then exactly $\sqrt{ } q$ elements in $t a Z$ are involutions. Hence there are $q \sqrt{ } q=\left|S ; C_{S}(t)\right|$ involutions in $T-S$ and all of them are conjugate in S.

Lemma 2.8. Let p be a prime number and fix $P \in S y l_{p}(G)$. Consider the set \mathfrak{X} of subgroups X of P that satisfy the following conditions:
(1) X is a tame Sylow intersection with P (for notation see [4]).
(2) $C_{P}(X) \subseteq X$.
(3) $X \in \operatorname{Syl}_{p}\left(O_{p^{\prime}, p}\left(N_{G}(X)\right)\right.$).
(4) $X=P$ or $N_{G}(X) / X$ is p-isolated.

Form the set \mathfrak{I} of all pairs (X, N) with $X \in \mathfrak{X}$ and

$$
N=N_{G}(X) \quad \text { if } X=C_{P}\left(\Omega_{1}(Z(X))\right)
$$

and

$$
N=N_{G}(X) \cap C_{G}\left(\Omega_{1}(Z(X))\right) \quad \text { if } X \subset C_{P}\left(\Omega_{1}(Z(X))\right)
$$

If $x, y \in P$ and $x \sim y$ in G, then there exist $\left(X_{i}, N_{i}\right) \in \mathfrak{I}(1 \leq i \leq m)$ and elements $x_{i} \in X_{i}, n_{i} \in N_{i}$ such that $x=x_{1}, x_{i}^{n_{i}}=x_{i+1}$ for $1 \leq i \leq m-1$, and $x_{m}^{n_{m}}=y$.

For the proof see [11].

3. s-arcs

This section corresponds closely to Section 5 of [9]. Thus we have a graph whose set of points is Ω and α is connected with β if and only if $\beta \in \Delta(\alpha)$.

Lemma 3.1. (i) $G_{\alpha}^{\Delta(\alpha)} \simeq G_{\alpha}^{\Delta^{\prime}(\alpha)}$.
(ii) If r is a prime number dividing $q+1$ then r does not divide $\left|G_{\alpha, \beta}\right|$ for $\beta \in \Delta(\alpha)$, except $r=2$ and $q \equiv 1(\bmod 4)$.
(iii) If $\beta \in \Delta(\alpha)$ then $\left|G_{\alpha, \beta}^{\Delta(\alpha)}\right|=\left|G_{\alpha, \beta}^{\Delta(\beta)}\right|$.

Proof. (i) is true because of [6;3.2].
(ii) follows by (i) and the proof of [8; Theorem 3].
(iii) $G_{\alpha, \beta}$ is a subgroup of index $q+1$ in G_{α} and G_{β}. We have $G_{\alpha, \Delta(\alpha)} \subseteq$ $G_{\alpha, \beta}$. Suppose $G_{\beta, \Delta(\beta)} \neq G_{\alpha, \beta}$. Then

$$
\left|G_{\beta}^{\Delta(\beta)}: G_{\alpha, \beta}^{\Delta(\beta)}\right|<q+1
$$

and this index divides $q+1$. Hence by the structure of $L_{2}(q) \simeq G_{\beta}^{\Delta(\beta)}$, we have $L_{2}(q) \simeq G_{\alpha, \beta}^{\Delta(\beta)}$. Take now a prime r such that r divides $q+1$ but not divides $\left|G_{\alpha, \beta}\right|$. Such a prime always exists, because for $q \equiv 1(\bmod 4)$ we have $q \not \equiv-1$ $(\bmod 4)$ and $q+1 \geq 5$ together with (ii) then provides us with the existence of such an r. So r divides $\left|G_{\alpha, \beta}^{\Delta(\beta)}\right|$ and also $\left|G_{\alpha, \beta}\right|$, a contradiction.

Definition. For $\beta \in \Delta(\alpha)$ define $\Gamma(\alpha, \beta)$ as the orbit of length q of $G_{\alpha, \beta}^{\Delta(\beta)}$ and set

$$
\Gamma^{\prime}(\beta, \gamma)=\{\alpha \mid \beta \in \Delta(\alpha), \gamma \in \Gamma(\alpha, \beta)\} \quad \text { for } \gamma \in \Delta(\beta)
$$

Set $O=\{(\alpha, \beta, \gamma) \mid \beta \in \Delta(\alpha), \gamma \in \Gamma(\alpha, \beta)\}$.
Lemma 3.2. If $\gamma \in \Delta(\beta)$, then $\Gamma^{\prime}(\beta, \gamma)$ is an orbit of $G_{\beta,{ }_{\gamma}^{\Delta^{\prime}(\beta)}}$ and $\left|\Gamma^{\prime}(\beta, \gamma)\right|=q$.
Proof. With 3.1 repeat the proof of $[9 ; 5.6]$.

Definition. Call a sequence X of points $\alpha_{0}, \ldots, \alpha_{s}$ in Ω an s-arc if $\left(\alpha_{i}, \alpha_{i+1}, \alpha_{i+2}\right) \in O$ for $0 \leq i \leq s-2$. An $s-\operatorname{arc} \alpha_{1}, \ldots, \alpha_{s-1}, \alpha_{s}, \beta$ is called a successor of X and an s-arc $\gamma, \alpha_{0}, \alpha_{1}, \ldots, \alpha_{s-1}$ is called a predecessor of X. Suppose X and Y are s-arcs and there is a sequence $X=X_{1}, X_{2}, \ldots, X_{k}=Y$ such that X_{i} is a predecessor or a successor of X_{i+1} for $1 \leq i \leq k-1$. Then we say that X is equivalent to $Y(X \sim Y)$.

Lemma 3.3. (i) The number of s-arcs is $|\Omega|(q+1) q^{s-1}$.
(ii) $X \sim Y$ for all s-arcs X and Y.

Proof. It is obvious that the proofs of [9;5.7-5.10] can be adapted to our situation.

4. The order of an S_{p}-subgroup of G_{α}

Lemma 4.1. If G is transitive on the s-arcs but not transitive on the $(s+1)$-arcs, then $\left|G_{\alpha}\right|_{p}=q^{s-1}$.

Proof. Let H be the stabilizer of the s-arc $X ; \alpha_{0}, \ldots, \alpha_{s}$. Since G is transitive on O we have $s \geq 2$. Clearly, $\left|G_{\alpha_{0}}: H\right|=(q+1) q^{s-1}$ by 3.3. Since $\left|G_{\alpha_{s}-1}, \alpha_{s}\right|_{\pi}=|H|_{\pi}$, where $\pi=\pi\left(G_{\alpha_{s-1}, \alpha_{s}}\right)-\{p\}$, it follows that $H^{\Delta\left(\alpha_{s}\right)}$ induces an orbit at least of length $q-1$ (or two orbits of length $(q-1) / 2)$ on $\Gamma\left(\alpha_{s-1}, \alpha_{s}\right)$. If p divides $H^{\Delta\left(\alpha_{s}\right)}$, then H would act transitively on $\Gamma\left(\alpha_{s-1}, \alpha_{s}\right)$, since nontrivial elements of order p in $H^{\Delta\left(\alpha_{s}\right)}$ would act fixed-point-free. Hence G would be transitive on the $(s+1)$-arcs, a contradiction. So p does not divide $\left|H^{\Delta\left(\alpha_{s}\right)}\right|$. If $Q \in S y l_{p}(H)$, then Q stabilizes all predecessors and all successors of X. 3.3 (ii) implies $Q=1$.

Lemma 4.2. $\quad O_{p^{\prime}}\left(G_{\alpha, \beta}\right)=1$ for $\beta \in \Delta(\alpha)$.
Proof. First

$$
O_{p^{\prime}}\left(G_{\alpha, \beta}\right) G_{\alpha, \Delta(\alpha)} / G_{\alpha, \Delta(\alpha)} \subseteq O_{p^{\prime}\left(G_{\alpha, \beta}^{\Delta(\alpha)}\right)}=1
$$

Hence $O_{p^{\prime}}\left(G_{\alpha, \beta}\right) \subseteq G_{\alpha, \Delta(\alpha)}$ and similarly $O_{p^{\prime}}\left(G_{\alpha, \beta}\right) \subseteq G_{\beta, \Delta^{\prime}(\beta)}$, as $\alpha \in \Delta^{\prime}(\beta)$. Therefore

$$
O_{p^{\prime}}\left(G_{\alpha, \beta}\right)=O_{p^{\prime}}\left(G_{\alpha, \Delta(\alpha)}\right)=O_{p^{\prime}}\left(G_{\beta, \Delta^{\prime}(\beta)}\right) \quad \text { and } \quad O_{p^{\prime}}\left(G_{\alpha, \beta}\right) \triangleleft\left\langle G_{\alpha}, G_{\beta}\right\rangle=G
$$

So $O_{p^{\prime}}\left(G_{\alpha, \beta}\right)=1$.
Lemma 4.3. Take $\beta \in \Delta(\alpha) . G_{\alpha, \Delta(\alpha)} \cap G_{\beta, \Delta^{\prime}(\beta)}$ is a p-group and $\left|G_{\alpha, \beta}\right|_{p^{\prime}}$ divides $((q-1) / d)^{2}$ where $d=1$ if q is even and $d=2$ if q is odd. $G_{\alpha, \beta}$ is solvable. If K is a p^{\prime}-Hall subgroup of $G_{\alpha, \beta}$ then

$$
Z_{(q-1) / d} \subseteq K \subseteq Z_{(q-1) / d} \times Z_{(q-1) / d}
$$

$\left(Z_{r}\right.$ denotes the cyclic group of order r).

Proof. $G_{\alpha, \Delta^{\prime}(\alpha)} G_{\alpha, \Delta(\alpha)} / G_{\alpha, \Delta(\alpha)}$ is a normal subgroup of $G_{\alpha}^{\Delta(\alpha)}$. So if $G_{\alpha, \Delta^{\prime}(\alpha)} \ddagger$ $G_{\alpha, \Delta(\alpha)}$, then we have a prime r dividing $q+1$ and $\left|G_{\alpha, \Delta^{\prime}(\alpha)}\right|$ and not dividing $\left|G_{\alpha, \Delta(\alpha)}\right|$ by 3.1 (ii). This contradicts $\left|G_{\alpha, \Delta(\alpha)}\right|=\left|G_{\alpha, \Delta^{\prime}(\alpha)}\right|$ (see 3.1 (i)). So $G_{\alpha, \Delta(\alpha)}=G_{\alpha, \Delta^{\prime}(\alpha)}$ and by [6;4.5] and 4.2 we have that $N=G_{\alpha, \Delta(\alpha)} \cap G_{\beta, \Delta^{\prime}(\beta)}$ is a p-group. Since $G_{\beta, \Delta^{\prime}(\beta)} / N$ is isomorphic to a subgroup of $G_{\alpha, \beta}^{\Delta(\alpha)}$ we have that $\left|G_{\alpha, \beta}\right|_{p^{\prime}}$ divides $((q-1) / d)^{2}$.

Suppose $k, h \in K$. Set $t=[k, h]$. Then $t \in N$ and hence $t=1$. Clearly, $U=K \cap G_{\alpha, \Delta(\alpha)}$ is faithful on $\Delta^{\prime}(\beta)$ and so $U \subseteq Z_{(q-1) / d}$. Let $x \in K$ be an element inducing a cyclic group of order $(q-1) / d$ on $\Delta(\alpha)$. Then $y=$ $x^{(q-1) / d} \in U$. If $y \neq 1$ then x would induce on $\Delta^{\prime}(\beta)$ a group of order $>(q-1) / d$, a contradiction.

Lemma 4.4. For each s-arc $X ; \alpha_{0}, \ldots, \alpha_{s}$ there is a successor $Y ; \alpha_{1}, \ldots, \alpha_{s+1}$ such that the group K fixing X is also fixing Y. There is an element $g \in G$ with $Y^{g}=X, \alpha_{i}^{g}=\alpha_{i-1}(1 \leq i \leq s+1)$ and $g \in N_{G}(K)$.

Proof. Let K be the stabilizer of X. Then by $3.3, K$ is a p^{\prime}-Hall group of $G_{\alpha_{0}, \alpha_{1}}$ and $G_{\alpha_{s-1}, \alpha_{s}}$, respectively. So K induces one orbit of length $q-1$ if q is even or two orbits of length $(q-1) / 2$ if q is odd on $\Gamma\left(\alpha_{s-1}, \alpha_{s}\right)$ and K fixes exactly one element $\alpha_{s+1} \in \Gamma\left(\alpha_{s-1}, \alpha_{s}\right)$. Since $K=G_{\alpha_{0}, \ldots, \alpha_{s}}$, we also have $K=G_{\alpha_{1}, \ldots, \alpha_{s+1}}$. Choose $g \in G$ with $X=Y^{g}$, then all assertions follow.

Lemma 4.5. Choose $\alpha_{0}, \ldots, \alpha_{s+1}, K$ and $g \in N_{G}(K)$ as in 4.4. Denote by H the stabilizer of $\alpha_{1}, \ldots, \alpha_{s}$ and take $Q \in S y l_{p}(H)$. Denote further by H_{i} the stabilizer of $\alpha_{0}, \ldots, \alpha_{s-i}$ for $1 \leq i \leq s$. Then
(i) Q is elementary abelian of order q.
(ii) $\left|H_{i+1}: H_{i}\right|=q$ for $1 \leq i<s-1$.
(iii) $H_{i}=\left\langle K, Q_{1}, \ldots, Q_{i}\right\rangle$ for $1 \leq i \leq s$, where for each integer r we set $Q_{r}=g^{-r} Q g^{r}$.
(iv) $P_{i}=O_{p}\left(H_{i}\right)=\left\langle Q_{1}, \ldots, Q_{i}\right\rangle$ for $1 \leq i \leq s-1$ and $P_{i-1} \triangleleft P_{i}$.
(v) $G=\langle H, g\rangle$.
(vi) $Z_{(q-1) / d} \subseteq K \subseteq Z_{(q-1) / d} \times Z_{(q-1) / d}$ where $d=1$ if q is even and $d=2$ if q is odd.

Proof. Since G is transitive on the s-arcs it follows that H_{i} is transitive on the s-arcs beginning with $\alpha_{0}, \ldots, \alpha_{s-i}$. As the number of s-arcs beginning with $\alpha_{0}, \ldots, \alpha_{s-i}$ is q^{i}, we have $\left|H_{i}\right|=q^{i}\left|K_{i}\right|$.

By the structure of $L_{2}(q)$ we have that Q is elementary abelian of order q. Now $H_{i} \supseteq\left\langle K, Q_{1}, \ldots, Q_{i}\right\rangle$ and Q_{i} acts regularly on $\Gamma\left(\alpha_{s-i-1}, \alpha_{s-i}\right)$. Hence $Q_{i} \cap H_{i-1}=1,\left|H_{i}\right|=\left|Q_{i}\right|\left|H_{i-1}\right|$ and $H_{i}=\left\langle K, Q_{1}, \ldots, Q_{i}\right\rangle$ for $1 \leq i<s$. H_{s-1} is maximal in H_{s} and $Q_{s} \not \ddagger H_{s-1}$, so $H_{s}=\left\langle K, Q_{1}, \ldots, Q_{s}\right\rangle$. Since H_{s} is maximal in G and $Q_{s+1} \neq H_{s}$ we have $G=\left\langle H_{s}, Q_{s+1}\right\rangle=\langle H, g\rangle$.

Clearly $N_{K}(Q) Q K_{0} / K_{0}$ is represented on $K_{0}=K_{\Gamma\left(\alpha_{s}-1, \alpha_{s}\right)}$ which is cyclic by 4.3. Hence K_{0} centralizes Q and $Q \triangleleft H$. (vi) follows by 4.3. Since $g \in N_{G}(K)$
then K normalizes every Q_{i}. Suppose, we have already shown that $P_{i}=O_{p}\left(H_{i}\right)$ for $1 \leq i \leq k<s-1$. Certainly $N_{Q_{k+1}}\left(P_{k}\right)$ is K-invariant and $\neq 1$. So Q_{k+1} normalizes P_{k} and $P_{k} \triangleleft P_{k+1}$ follows.

Definition. We set $L_{i}=g H_{i} g^{-1}$ and $R_{i}=g P_{i} g^{-1}$ for all integers i.
Lemma 4.6. $\quad R_{i}=\left\langle Q_{0}, \ldots, Q_{i-1}\right\rangle$ for $1 \leq i \leq s-1, R_{i+1} \cap P_{i+1}=P_{i}$ for $0 \leq i \leq s-2$ and $P_{i} \triangleleft R_{i+1}$. Also $L_{i+1} \cap H_{i+1}=H_{i}$.

Proof. Clearly, $P_{i} \subseteq R_{i+1} \cap P_{i+1}$. If $P_{i} \subset R_{i+1} \cap P_{i+1}$, then there is a $1 \neq y \in Q_{i+1} \cap R_{i+1} \cap P_{i+1}$ and $Q_{i+1}=\left\langle y^{K}\right\rangle \subseteq R_{i+1}$. It follows that $R_{i+1} \cap P_{i+1}=P_{i+1}$ and H_{i+1} is g-invariant. So $H_{i+1} \triangleleft G=\langle H, g\rangle$ by 4.5, a contradiction. Since $1 \neq N_{Q_{0}}\left(P_{i}\right)$ is K-invariant, we have that Q_{0} normalizes P_{i} and $P_{i} \triangleleft R_{i+1}$.

Lemma 4.7. Suppose $k \leq j$ and $|k-j| \leq s-2$. Then

$$
\left[Q_{k}, Q_{j}\right] \subseteq\left\langle Q_{k+1}, \ldots, Q_{j-1}\right\rangle
$$

If $s \geq 3$, then P_{2} is abelian.
Proof. By 4.6, $\left[Q_{0}, Q_{i}\right] \subseteq P_{i} \cap R_{i}=P_{i-1}$ for $i \leq s-2$. Conjugate the above expression with a suitable power of g and the assertion follows.

Lemma 4.8. If $2_{i} \geq s+2$, then P_{i} is nonabelian.
Proof. Choose i as above and assume P_{i} is abelian. Then $\left[Q_{j}, Q_{k}\right]=1$ for $|j-k| \leq i-1$. So $\left[Q_{i}, Q_{t}\right]=1$ for $1 \leq t \leq s+1$, since

$$
|t-i| \leq \operatorname{Max}(i-1, s-i+1)=i-1
$$

Therefore

$$
Q_{i} \triangleleft G=\left\langle Q_{1}, \ldots, Q_{s+1}, K\right\rangle
$$

a contradiction.
Lemma 4.9. If $1 \leq i \leq s-1$ then an element $x \in P_{i}$ can be written as $x=y_{1} y_{2} \cdots y_{i}$ where $y_{r} \in Q_{r}$ for $1 \leq r \leq i$ is uniquely determined. If P_{i} is nonabelian, then $i \geq(2 s+1) / 3$.

Proof. The first assertion is obvious since $\left|P_{i+1}\right|=\left|P_{i}\right|\left|Q_{i+1}\right|$.
Without loss we may assume that $s \geq 3$. Choose now $2<i<s$, such that P_{i-1} is abelian but P_{i} is not abelian. Hence

$$
\begin{equation*}
\left[Q_{j}, Q_{k}\right]=1 \quad \text { whenever }|j-k| \leq i-2 \tag{+}
\end{equation*}
$$

Since P_{i} and every Q_{j} is K-invariant, for every $x_{1} \in Q_{1}^{\#}$ there is a $x_{i} \in Q_{i}^{\#}$ with $1 \neq\left[x_{1}, x_{i}\right]$. By 4.7,

$$
(++) \quad 1 \neq\left[x_{1}, x_{i}\right]=x_{m} \cdots x_{n}
$$

where $2 \leq m \leq n \leq i-1, x_{m} \neq 1 \neq x_{n}$ and $x_{t} \in Q_{t}$ is uniquely determined for $m \leq t \leq n$. We want to show

$$
\begin{gather*}
i+m \geq s+1 \tag{1}\\
2 i-n \geq s
\end{gather*}
$$

Granted both facts it follows that $s+1-i \leq m \leq n \leq 2 i-s$ or $i \geq(2 s+1) / 3$.

Proof of (1). We copy the proof of $[9 ; 2.6]$. Set $k=i+m-1$ and suppose (1) is false. So $k \leq s-1$. Since $|k-m|=i-1$ and $x_{m} \neq 1$ there is an $x_{k} \in Q_{k}^{\#}$ with $\left[x_{m}, x_{k}\right] \neq 1$. Set $w=\left[x_{1}, x_{k}\right]$. Then $w \in\left\langle Q_{2}, \ldots, Q_{k-1}\right\rangle$ by Lemma 4.7 since $k \leq s-1$. By $(+),\left[w, Q_{j}\right]=1$ for $m \leq j \leq i$. So w commutes with x_{i} and $\left[x_{1}, x_{i}\right]$. Finally x_{k} commutes with Q_{j} for $m<j \leq i$. We conjugate $(++)$ with x_{k}. For the left-hand side we get

$$
x_{k}^{-1}\left[x_{1}, x_{i}\right] x_{k}=\left[x_{1} w, x_{i}\right]=w^{-1}\left[x_{1}, x_{i}\right] w\left[w, x_{i}\right]=\left[x_{1}, x_{i}\right]=x_{m} \cdots x_{n} .
$$

For the right-hand side we get

$$
x_{k}^{-1}\left(x_{m} \cdots x_{n}\right) x_{k}=\left(x_{k}^{-1} x_{m} x_{k}\right) x_{m-1} \cdots x_{n}=x_{m}\left[x_{m}, x_{k}\right] x_{m-1} \cdots x_{n} .
$$

Thus $\left[x_{m}, x_{k}\right]=1$, a contradiction.
Proof of (2). As in the proof of (1) we can adapt our situation to the proof of $[9 ; 2.6]$.

Lemma 4.10. $s \leq 7$ and $s \neq 6$.
Proof. Take t minimal with $2 t \geq s+2$. Then P_{t} is not abelian by 4.8. By $4.9,3 t \geq 2 s+1$. Suppose $s \equiv 0(\bmod 2)$; then $t=(s+2) / 2$ and $3 s+6 \geq 4 s+2$ or $s \leq 4$. If $s \equiv 1(\bmod 2)$, then $t=(s+3) / 2$ and $3 s+9 \geq 4 s+2$ or $s \leq 7$.

5. The structure of G_{α}

We use the notation of Section 4 and set $\alpha=\alpha_{0}$.
Lemma 5.1. (i) If $s=2$, then $G_{\alpha} \simeq L_{2}(q)$.
(ii) If $s=3$, then $G_{\alpha} \simeq L_{2}(q) \times Y$, where Y is isomorphic to a S_{p}-normalizer in $L_{2}(q)$.

Proof. If $s=2$, then $S y l_{p}\left(G_{\alpha, \Delta(\alpha)}\right)=\{1\}$ and 4.2 implies the assertion.
Suppose now $s=3$. Then $\left\langle Q_{1}, Q_{2}\right\rangle$ and $\left\langle Q_{2}, Q_{3}\right\rangle$ are S_{p}-subgroups of G_{α}, whose intersection is Q_{2}. Hence $O_{p}\left(G_{\alpha}\right)=Q_{2}$. Clearly, $C_{G_{\alpha}}\left(Q_{2}\right)$ covers $G_{\alpha}^{\Delta(x)}$ and so $G_{\alpha}=G_{\alpha, \Delta(\alpha)} \cdot C_{G_{\alpha}}\left(Q_{2}\right)$. Let R be a p^{\prime}-Hall subgroup of $G_{\alpha, \Delta(\alpha)}$ contained in K. Then R is represented faithful on Q_{2} by 4.2 and hence $R \simeq$ $K / C_{K}\left(Q_{2}\right) \simeq Z_{(q-1) / d}$ where $d=1$ if q is even and $d=2$ if q is odd. Also
$\left[R, C_{G_{\alpha}}\left(Q_{2}\right)\right] \subseteq C_{G_{\alpha}}\left(Q_{2}\right) \cap G_{\alpha, \Delta(\alpha)}=Q_{2}$. By a theorem of Gaschütz $C_{G_{\alpha}}\left(Q_{2}\right)$ splits over Q_{2} and $C_{G_{\alpha}}\left(Q_{2}\right)=Q_{2} \times X$, where $X \simeq L_{2}(q)$. Moreover $[X, R] \subseteq$ $Q_{2} \cap X=1$. Hence $G_{\alpha} \simeq L_{2}(q) \times Y$.

Lemma 5.2. If $s=4$ then $p=2$. If $P=O_{2}\left(G_{\alpha}\right)$, then P is elementary abelian of order q^{2} and $C_{G}(P)=P . G_{\alpha} / P$ is isomorphic to a subgroup of $G L(2, q)$ containing $S L(2, q)$ and acting on P as on the standard module. G_{α} splits over P.

Proof. Since the two S_{p}-subgroups $\left\langle Q_{1}, Q_{2}, Q_{3}\right\rangle$ and $\left\langle Q_{2}, Q_{3}, Q_{4}\right\rangle$ contain $\left\langle Q_{2}, Q_{3}\right\rangle$ and $\left|G_{\alpha, \Delta(\alpha)}\right|_{p}=q^{2}$, we have $P=O_{p}(G)=\left\langle Q_{2}, Q_{3}\right\rangle$. By a theorem of Gaschütz G_{α} splits over P. Further by 4.8, P_{3} is nonabelian. Since P_{3} is K-invariant we have $\left[Q_{1}, Q_{3}\right]=Q_{2}$. Since $O_{p^{\prime}}\left(G_{\alpha}\right)=1$, and $C_{G_{\alpha}}(P) \subseteq$ $G_{\alpha, \Delta(\alpha)}$ we have $C_{G}(P)=P$. Let X / P denote the smallest member of the derived series of G_{α} / P. By 4.5, $G_{\alpha, \Delta(\alpha)} / P \subseteq Z\left(G_{\alpha} / P\right)$ and so X / P is either isomorphic to $L_{2}(q)$ or $S L(2, q)$. Assume q is odd and $X / P \simeq S L(2, q)$, then $K P / P \cap X / P$ contains a four-group by 4.5 in contradiction to the structure of $\operatorname{SL}(2, q)$. Hence $X / P \simeq L_{2}(q)$ and $K P / P \cap X / P$ is cyclic of order $(q-1) / d$ (where $d=1$ if q is even and $d=2$ if q is odd) acting on the subgroups of order p of Q_{2} or Q_{3} transitively. So P is an irreducible X / P-module in contradiction to 2.6 if q is odd. So q is even and $G_{\alpha} / P \simeq S L(2, q) \times Z, Z \subseteq Z_{q-1}$. Since $X / P \simeq$ $S L(2, q)$ we have by 2.5 that P may be regarded as the standard $S L(2, q)=$ X / P-module.

Let L / P denote $Z\left(G_{\alpha} / P\right)$, then L / P permutes all subgroups of order q in P which represent one-dimensional subspaces in respect to the action of X / P on P. Since there are $q+1$ of them and $|L / P|$ divides $q-1$ it follows that L / P leaves invariant all these one-dimensional subspaces. Now it is easy to see that G_{α} / P is isomorphic to a subgroup of $G L(2, q)$ containing $S L(2, q)$ and P may be regarded as the standard module of G_{α} / P.

Lemma 5.3. If $s=5$, then $p=2 . \quad P=O_{2}\left(G_{\alpha}\right)$ is elementary abelian of order $q^{3} . K \simeq Z_{q-1} \times Z_{q-1}$ and $G_{\alpha} / P \simeq G L(2, q) . Q_{3} \triangleleft G_{\alpha}$ and $C_{G}\left(Q_{3}\right) / P \simeq$ $S L(2, q) . P / Q_{3}$ may be regarded as the standard module for $G L(2, q) \simeq G_{\alpha} / P$ and G_{α} splits over $P . P$ is an indecomposable G_{α} / P-module (i.e., there is no $T \subset P, T \triangleleft G_{\alpha}$ with $\left.T \times Q_{3}=P\right)$.

Proof. As usual $P=O_{p}\left(G_{\alpha}\right)=\left\langle Q_{2}, Q_{3}, Q_{4}\right\rangle$. Suppose P_{3} is not abelian. Then $\left[Q_{2}, Q_{4}\right]=Q_{3}$ and $Q_{3} \triangleleft G_{\alpha}$. But $\left[Q_{1}, Q_{3}\right]=Q_{2}$, a contradiction.

So P_{3} is abelian and $Q_{3} \triangleleft G_{\alpha}$, since $Q_{3} \subseteq\left\langle Q_{1}, Q_{2}, Q_{3}\right\rangle \cap\left\langle Q_{3}, Q_{4}, Q_{5}\right\rangle$. Also $C_{G}\left(Q_{3}\right)$ covers $G_{\alpha}^{\Delta(\alpha)}$ as $C_{G}\left(Q_{3}\right)$ contains a S_{p}-subgroup of G_{α}. By 4.8, P_{4} is not abelian and as $O_{p^{\prime}}\left(G_{\alpha}\right)=1$, it follows that $C_{G}(P)=P$. Since K induces on Q_{3} a cyclic group of order $(q-1) / d$, we have

$$
\left|G_{\alpha}: C_{G}\left(Q_{3}\right)\right|=(q-1) / d \quad \text { and } \quad K=Z_{(q-1) / d} \times Z_{(q-1) / d}
$$

where $d=1$ if q is even and $d=2$ if q is odd (see 4.5).

Hence $C_{G}\left(Q_{3}\right) / P \simeq L_{2}(q)$. Clearly, $\left[Q_{1}, Q_{4}\right] \subseteq\left\langle Q_{2}, Q_{3}\right\rangle$. We have neither $\left[Q_{1}, Q_{4}\right]=Q_{3}$ nor $\left[Q_{1}, Q_{4}\right]=Q_{2}$ (which implies $\left[Q_{2}, Q_{5}\right]=Q_{3}$), since $C_{G_{\alpha}}\left(P / Q_{3}\right) \subseteq G_{\alpha, \Delta(\alpha)}$. Since Q_{1} and Q_{4} are K-invariant, we have for $x_{i} \in Q_{i}^{\#}$ ($i=1,4$),$\left[x_{1}, x_{4}\right]=x_{2} x_{3}$ always, with $x_{j} \in Q_{j}^{\#}$ (for $j=2,3$). We have

$$
C_{P / Q_{3}}\left(Q_{1}\right)=Q_{2} Q_{3} / Q_{3}=\left[Q_{1}, P\right] Q_{3} / Q_{3}
$$

and as in the proof of 5.2, P / Q_{3} is an irreducible $C_{G_{\alpha}}\left(Q_{3}\right) / P \simeq L_{2}(q)$-module. As before q is even and P / Q_{3} is the standard module for $C_{G_{\alpha}}\left(Q_{3}\right) / P \simeq S L(2, q)$ by 2.5 and 2.6 .

Set $L=C_{K}\left(P / Q_{3}\right) \cap G_{\alpha, \Delta(\alpha)}$ and assume $L \neq 1$. Clearly, $L \subseteq C_{K}\left(Q_{2}, Q_{4}\right)$ and so with $g \in G$ chosen as in 4.4 and $4.5, L^{g} \subseteq C_{K}\left(Q_{3}, Q_{5}\right)$. Since $C_{K}\left(Q_{3}\right)$ acts fixed-pointfree on $Q_{5} P / Q_{3}$ (as P / Q_{3} is the standard module for $S L(2, q) \simeq$ $C_{G_{\alpha}}\left(Q_{3}\right) / P$), we have $I^{g}=1$ and so $L=1$. Now the assertion follows as in the proof of 5.2.

Lemma 5.4. The case $s=7$ does not occur.
Proof. As usual $P=O_{p}(G)=\left\langle Q_{2}, \ldots, Q_{6}\right\rangle$. By 4.9, $\left[Q_{i}, Q_{j}\right]=1$ whenever $|i-j| \leq 3$. Also the proof of 4.9 shows us that $\left[Q_{1}, Q_{5}\right] \subseteq Q_{3}$. Since P_{5} is not abelian by 4.8, we have $\left[Q_{1}, Q_{5}\right]=Q_{3}$, $\left[Q_{2}, Q_{6}\right]=Q_{4}$ and $\left[Q_{3}, Q_{7}\right]=Q_{5}$. Hence Q_{4} and $T=\left\langle Q_{3}, Q_{4}, Q_{5}\right\rangle$ are normal subgroups of G_{α}. So $C_{G_{\alpha}}\left(Q_{4}\right)$ covers $G_{\alpha}^{\Delta(\alpha)}$ and as in the proof of 5.3 we have

$$
K=Z_{(q-1) / d} \times Z_{(q-1) / d}
$$

where $d=1$ if q is even and $d=2$ if q is odd. Also $C_{G_{\alpha}}\left(T / Q_{4}\right) \cap C_{G_{\alpha}}\left(Q_{4}\right)=P$ and so $C_{G_{\alpha}}\left(Q_{4}\right) / P \simeq L_{2}(q)$ acts faithfully on T / Q_{4}. Since

$$
Q_{1} P / P \in \operatorname{Syl}_{p}\left(C_{G_{\alpha}}\left(Q_{4}\right) / P\right) \quad \text { and } \quad C_{T / Q_{4}}\left(Q_{1} P / P\right)=Q_{3} Q_{4} / Q_{4}
$$

we have by 2.5 and 2.6 that q is even and T / Q_{4} is the standard module for $C_{G}\left(Q_{4}\right) / P$.

Further $\left[Q_{1}, Q_{6}\right] \subseteq\left\langle Q_{2}, \ldots, Q_{5}\right\rangle$ and $\left[Q_{2}, Q_{7}\right] \subseteq\left\langle Q_{3}, \ldots, Q_{6}\right\rangle$. Take $x_{1} \in Q_{1}^{\#}, x_{6} \in Q_{6}^{\#}$. Then there are $x_{i} \in Q_{i}(2 \leq i \leq 5)$ with $\left[x_{1}, x_{6}\right]=$ $x_{2} \ldots x_{5}$ and

$$
1=x_{1} x_{6}^{2} x_{1}=\left(x_{1} x_{6} x_{1}\right)^{2}=\left(x_{2} x_{3} x_{4} x_{5} x_{6}\right)^{2}=\left(x_{2} x_{6}\right)^{2}
$$

Since T / Q_{4} is the standard module for $C_{G}\left(Q_{4}\right) / P$, we have for $y_{1} \in Q_{1}^{\#}$ that $C_{Q_{5}}\left(y_{1}\right)=1$. Hence $x_{2}=1$. So $\left[Q_{1}, Q_{6}\right] \subseteq\left\langle Q_{3}, Q_{4}, Q_{5}\right\rangle$ and similarly $\left[Q_{1}, Q_{6}\right] \subseteq\left\langle Q_{2}, Q_{3}, Q_{4}\right\rangle$. So finally $\left[Q_{1}, Q_{6}\right] \subseteq\left\langle Q_{3}, Q_{4}\right\rangle$ and $\left[Q_{2}, Q_{7}\right] \subseteq$ $\left\langle Q_{4}, Q_{5}\right\rangle$.

Now we claim that $\Delta\left(\alpha_{0}\right)$ is self-paired (notation as in Section 4 and $\alpha=\alpha_{0}$). $N=G_{\alpha_{0}, \alpha_{1}}=N_{G_{\alpha_{0}}}\left(P_{6}\right)=N_{G_{\alpha_{1}}}\left(P_{6}\right)$. Since N^{g} is also a S_{2}-normalizer in $G_{\alpha_{0}}$ there is a $h \in G_{\alpha_{0}}$ with $N^{k}=N$ and $k=g h \in N_{G}\left(P_{6}\right)-N_{G_{\alpha_{0}}}\left(P_{6}\right)$. Now $N_{G}\left(Q_{4}\right)=G_{\alpha_{0}}$ and $P_{6}^{\prime}=\left\langle Q_{3}, Q_{4}\right\rangle$. Since $N=P_{6} K$ we can use a Frattiniargument and find a $k \in N_{G}(K) \cap N_{G}\left(P_{6}\right)-N_{G_{\alpha_{0}}}\left(P_{6}\right)$. So $Q_{4}^{k} \neq Q_{4}$. Since
Q_{3} and Q_{4} are the only K-invariant subgroups in P_{6}^{\prime} of order q we have $Q_{4}^{k}=$ Q_{3} and $Q_{3}^{k}=Q_{4}$. Hence $k^{2} \in N_{G}\left(P_{6}\right) \cap G_{\alpha_{0}}=N$. So $|\langle k\rangle N|=2|N|$ and we may assume that $\Delta\left(\alpha_{0}\right)$ is self-paired (see $[9 ; 5.16]$).

Set $\alpha_{-1}=\alpha_{0}^{g}$. Then $\alpha_{1}, \alpha_{-1} \in \Delta\left(\alpha_{0}\right)$, since $\Delta\left(\alpha_{0}\right)$ is self-paired. Q_{1} does not fix $\beta \in \Delta\left(\alpha_{0}\right)-\left\{\alpha_{1}\right\}$ as otherwise Q_{1} would fix the 7 -arc $\beta, \alpha_{0}, \ldots, \alpha_{6}$. Hence Q_{1} acts regularly on $\Delta\left(\alpha_{0}\right)-\left\{\alpha_{1}\right\}$. By definition Q_{7} does not fix α_{1} but does fix α_{-1}. So we can find $x_{1} \in Q_{1}$ and $x_{7} \in Q_{7}$ with $\alpha_{-1}^{x_{1}}=\beta$ and $\beta^{x_{7}}=\alpha_{1}$. Set $h=g x_{1} x_{7}$ and $\alpha_{0}^{h}=\alpha_{1}$ and $\alpha_{1}^{h}=\alpha_{0}$ follows. So $h^{2} \in N$.

Now

$$
h^{-1} y_{1} h=x_{7} x_{1} g^{-1} y_{1} g x_{1} x_{7}=x_{7} x_{1} y_{2} x_{1} x_{7}=y_{2}\left[x_{7}, y_{2}\right] \in\left\langle Q_{2}, Q_{4}, Q_{5}\right\rangle
$$

where $y_{i} \in Q_{i}$ for $1 \leq i \leq 2$. In the same way
$h^{-1} y_{2} h \in\left\langle Q_{3}, Q_{4}, Q_{5}\right\rangle, h^{-1} y_{4} h \in\left\langle Q_{3}, Q_{5}\right\rangle$, and $h^{-1} y_{5} h \in\left\langle Q_{3}, Q_{4}, Q_{5}, Q_{6}\right\rangle$
where $y_{i} \in Q_{i}$ for $i=2,4,5$. Hence $h^{-2} y_{1} h^{2} \in\left\langle Q_{2}, Q_{3}, Q_{4}, Q_{6}\right\rangle=P$. But $h^{2} \in P_{6} K$ and so $h^{-2} y_{1} h^{2} \in P_{6}-P$ for $y_{1} \in Q_{1}^{\#}$, a contradiction.

6. The case $p=2$

In this section we will show that in the case $p=2$ we have $G_{\alpha, \Delta(\alpha)}=1$, or equivalently $s \leq 2$. Always we will use the notation of Section 4 and 5 .

Lemma 6.1. $s \neq 3$.
Proof. By 5.1 (ii) we have $G_{\alpha}=X \times Y$ where $X \simeq S L(2, q)$ and $Y=$ $N_{S L(2, q)}(F)$ with $F \in S y l_{2}(S L(2, q))$. Now $G_{\alpha_{0}, \alpha_{1}}=(E \times F) K$ where $F \in$ $S y l_{2}(Y)$ and $E \in S y l_{2}(X)$. Set $S=E F$. Take $x \in G$ with $\alpha_{0}^{x}=\alpha_{1}$. Then $(S K)^{x} \subseteq G_{\alpha_{1}}$ and there is an $h \in G_{\alpha_{1}}$ with $(S K)^{x h}=S K$. Set $y=x h$, then $\alpha_{0}^{y}=\alpha_{1}$ and $y \in N_{G}(S K)-G_{\alpha_{0}}$. Since E and F are the only minimal normal subgroups of $S K$ and $G_{\alpha_{0}}=N_{G}(F)$, we have $E^{y}=F$ and $F^{y}=E$. Since $y^{2} \in N_{G}(F) \cap N_{\mathrm{G}}(S K)=S K$, we may choose-by using a Frattini argumenty as an involution in $N_{G}(K)$. Now $S^{\#}$ splits in the two $\langle y\rangle K$-orbits $F^{\#} \cup E^{\#}$ and $\left(F^{\#}\right)\left(E^{\#}\right)$.

Assume first that $S^{*}=\langle y\rangle S \in S y l_{2}\left(N_{G}(S)\right)$. Since S char S^{*} it follows that $S^{*} \in S y l_{2}(G)$. Let X be a minimal normal subgroup of G. If $X \cap G_{\alpha}=1$, then $|X|$ is odd as $|X|_{2} \leq 2$. But then $G_{\alpha} X=G$ and $|G|_{2}<\left|S^{*}\right|$, a contradiction. Hence $X \cap G_{\alpha} \neq 1$ and so $S \subseteq X$. Even $S^{*} \subseteq X$ as G_{α} and so G can not contain a subgroup of index 2. Hence X is simple, in contradiction to 2.2. So if $T \in S y l_{2}\left(N_{G}(S)\right)$, then $S^{*} \subseteq T$ implies $S^{*} \subset T$. Then T does not normalize $E^{\#} \cup F^{\#}$ and all elements in $S^{\#}$ are conjugate under $N_{G}(S)$. Let $E=E_{1} \supset E_{2} \supset \cdots \supset E_{n} \supset 1$ be an arbitrary sequence of hyperplanes.

Suppose we have already shown by induction that $S \in S y l_{2}\left(N_{G}\left(E_{i-1}\right)\right)$. Certainly, $N_{G}\left(E_{i-1}\right) \cap N_{G}\left(E_{i}\right)$ is the preimage of $C_{N_{G}\left(E_{i}\right) / E_{i}}\left(E_{i-1} / E_{i}\right)$.

Assume first that $S / E_{i} \notin S y l_{2}\left(N_{G}\left(E_{i}\right) / E_{i}\right)$. Since

$$
S / E_{i} \in S y l_{2}\left(\left(N_{G}\left(E_{i-1}\right) \cap N_{G}\left(E_{i}\right)\right) / E_{i}\right)
$$

for all subgroups $E_{i} \subset E_{i-1} \subseteq E$ with $\left|E_{i-1}: E_{i}\right|=2$, it follows that E / E_{i} contains only noncentral involutions of $N_{G}\left(E_{i}\right) / E_{i}$. Take

$$
t \in\left(N_{G}\left(E_{i}\right) \cap N_{G}(S)\right)-S \text { with } t^{2} \in S
$$

Then $\left(E / E_{i}\right)^{t} \cap E / E_{i}=1$. If $\left(E / E_{i}\right)^{t} \cap F E_{i} / E_{i} \neq 1$ then the involutions in $F E_{i} / E_{i}$ are conjugate under $N_{N_{G}(S)}\left(E_{i}\right) / E_{i}$ to involutions in E / E_{i}. Hence

$$
F E_{i} / E_{i} \cap\left(F E_{i} / E_{i}\right)^{t}=1
$$

which is not true since $\left|F E_{i} / E_{i}\right|=q>\sqrt{ }\left|S / E_{i}\right|$. Therefore the involutions in $F E_{i} / E_{i}$ are central and the map

$$
\left(E / E_{i}\right)^{\#} \ni e E_{i} \rightarrow e^{t} F E_{i}
$$

is a bijection of $\left(E / E_{i}\right)^{\#}$ onto $\left(S / F E_{i}\right)^{\#}$. So all involutions in $S / E_{i}-F E_{i} / E_{i}$ are conjugate to an involution in E / E_{i}. Also t normalizes $F E_{i} / E_{i}$ and thus fixes every coset $e F E_{i} / E_{i}$ where $e \in E$. Denote by T a S_{2}-subgroup in

$$
N_{G}(S) \cap C_{G}\left(S / F E_{i}\right) \cap N_{G}\left(E_{i}\right)
$$

and set $K_{0}=C_{K}(E)$. Then $T K_{0}$ induces a Frobenius group of order $q(q-1)$ on the coset $e F E_{i} / E_{i}$ for $e \in E-E_{i}$ (see also [12; lemma 2]). The map $T \ni t \rightarrow$ $[e, t] \in E_{i}$ for $e \in E_{i}$ is a K_{0}-homomorphism of T / S into [$\left.T, E_{i}\right] /\left[E_{i}, T, T\right]$. So $E_{i} \subseteq Z(T)$. Set $T_{0}=\left[T, K_{0}\right] E_{i}$; then $T_{0} / E_{i} \cap E / E_{i}=1$ and $T_{0} E=T$. Also T_{0} / E_{i} is abelian since $T_{0} / F E_{i}$ and $F E_{i} / E_{i}$ are K_{0}-isomorphic. If

$$
\left[F E_{i}, T_{0}\right]=1
$$

then $\left|N_{G}(F)\right|_{2}>q^{2}$, a contradiction.
So we can find a hyperplane $E^{*} \subset E_{i}$ such that T_{0} / E^{*} is not abelian. If $K_{0}=\langle k\rangle$, then k has on $F E_{i} / E_{i}$ and $T_{0} / F E_{i}$ the eigenvalues $\left\{\lambda, \lambda^{2}, \ldots, \lambda^{2 n-1}\right\}$ where λ is a primitive $(q-1)$ th root of unit. Since the commutator map is a nontrivial, bilinear, and K_{0}-admissible map from T_{0} / E_{i} onto the trivial K_{0} module E_{i} / E^{*} we have

$$
\left\{\lambda, \lambda^{2}, \ldots, \lambda^{2^{n-1}}\right\}=\left\{\lambda^{-1}, \lambda^{-2}, \ldots, \lambda^{-2^{n-1}}\right\}
$$

Therefore $q-1=2^{n}-1$ must divide $2^{k}+2^{l}$ for some $0 \leq k, l \leq n-1$. It follows that $n=2, k=1$, and $l=0$. (For these arguments also compare with [5].)

So if $n>2$, we have by induction that $S \in S y l_{2}\left(C_{G}(e)\right)$ where $e \in E^{\#}$, contradicting the fact that all elements in $S^{\#}$ are conjugate and that $S \notin S y l_{2}(G)$.

So we are in the case $n=2$ with $E_{2}=E_{i}$, and $2^{2} \cdot 3^{2} \cdot 5$ divides $\left|N_{G}(S) / S\right|$. Suppose first $2^{2} \cdot 3^{2} \cdot 5 \neq\left|N_{G}(S) / S\right|$. Then

$$
\left|N_{G}(S) / S\right| \geq 2^{3} \cdot 3^{2} \cdot 5
$$

and as S possesses exactly 35 subgroups of order 4 we have a contradiction to

$$
\left|N_{G}(S):\left(N_{G}(S) \cap N_{G}(E)\right)\right| \geq 2^{3} \cdot 5=40
$$

So $\left|N_{G}(S) / S\right|=2^{2} \cdot 3^{2} \cdot 5$. Suppose every minimal normal subgroup of $N_{G}(S) / S$ is nonsolvable, then $N_{G}(S) / S$ is isomorphic to A_{5} extended by an automorphism of order 3 which is impossible. The structure of A_{8} implies that $N_{G}(S) / S \simeq$ $A_{5} \times Z_{3} \simeq G L(2,4)$ where S is the standard module for $N_{G}(S) / S$.

Now K normalizes a $T \in S y l_{2}\left(N_{G}(S)\right)$ by the structure of $G L(2,4)$. But then either F or E is $K T$-invariant, a contradiction.

Lemma 6.2. $s \neq 4$.

Proof. Suppose $s=4 . \quad N=G_{\alpha_{0}, \alpha_{1}}$ is the normalizer of a S_{2}-subgroup in $G_{\alpha_{0}}$ and $G_{\alpha_{1}}$. Set $S=O_{2}(N) \in S y l_{2}(N)$ and S contains exactly two elementary abelian subgroups-say E and F-of order q^{2}. One of them-say E-is equal to $O_{2}\left(G_{\alpha_{0}}\right)$. If $\alpha_{0}^{g}=\alpha_{1}$ then there is a $h \in G_{\alpha_{1}}$ with $z=g h \in N_{G}(N)$. So $z \in N_{G}(S)$ and since $z \notin N_{G}(E)=G_{\alpha_{0}}$ we have $E^{z}=F$ and $F^{z}=E$. As $N_{G}(E) \subseteq G_{\alpha_{0}}$ we have $N_{G}(S)=\langle t\rangle N$ where t interchanges E and F. We can even choose $t \in N_{G}(K)$ and it follows $|t|=2$. Since all involutions in S lie in $E \cup F$ and as $C_{(E \cup F)}(x) \subseteq Z=Z(S)$ for $x \in T-S,|x|=2$ it follows that S char T where $T=S\langle t\rangle$. We conclude $T \in S y l_{2}(G)$.

Set $W=T^{\prime}$, then W is of exponent 4 and $\Omega_{1}(W)=Z$. Every element in $T-W$ induces a nontrivial automorphism on W. So $\left|C_{G}(W) W: W\right|$ is odd. Further $C_{G}(W) W \subseteq M \subseteq N_{G}(W)$ where $M=C_{G}(W / Z)$ and M contains T. We apply 2.7. Thus we have either $M_{1}=C_{M}(Z)$ has S as a S_{2}-subgroup, or W is homocyclic of exponent 4 and t inverts W. In the second case $\left[C_{K}(t), T\right]=S$ and the cosets $t W$ and $f W$ with $f \in F$ are never conjugate in G. Let R be a 2-complement of the preimage of $O\left(M_{1} / W\right)$. In any case R stabilizes the chain $1 \subset Z \subset W$ and so $R \subseteq C_{G}(W)$. By 2.1 we have

$$
O^{2,2^{\prime}}\left(M_{1} / W R\right) \quad \text { or } \quad O^{2^{\prime}}\left(M_{1} / W R\right)=V_{0} \times V_{1} \times \cdots \times V_{m},
$$

where V_{0} is an elementary abelian 2-group and V_{1}, \ldots, V_{m} are nonabelian simple. Since $\left(T \cap M_{1}\right) / W$ induces nontrivial automorphisms on W but centralizes W / Z and Z we have $S R / W R$ char $M_{1} / W R$. The Frattini argument gives us

$$
N_{G}(W)=O\left(C_{G}(W)\right)\left(N_{G}(S) \cap N_{G}(W)\right)
$$

Set $U=Z \cdot O\left(C_{G}(Z)\right)$. Clearly, $S \subseteq C_{G}(Z)$. Let X / U be a minimal normal subgroup of $N_{G}(Z) / U$ lying in $C_{G}(Z) / U$.

Suppose first that X / U is semisimple and not abelian. Since $W U / U$ and $S U / U$ are the only $K\langle t\rangle$-invariant, nontrivial subgroups of $S U / U$ we have to distinguish the three cases $W \in S y l_{2}(X), S \in S y l_{2}(X)$, and $T \in S y l_{2}(X)$.

Assume first $W \in S y l_{2}(X)$, then $X / U \simeq S L(2, q)$ by 2.1 and $N_{G}(W) \cap$ $C_{G}(Z)$ contains a group L inducing a cyclic group of order $q-1$ on W / Z and acting transitively on $(W / Z)^{\#}$, a contradiction.

Suppose now $S \in S y l_{2}(X)$. Then $X / U \simeq S L(2, q) \times S L(2, q)$ by 2.1. This implies $N_{G}(E) \supset G_{\alpha_{0}}$ since $N_{X}(E) \nsubseteq G_{\alpha_{0}}$, a contradiction.

If, finally, $T \in S y l_{2}(X)$, then X / U is simple and by 2.2 we reach a contradiction. So in any case X / U is an elementary abelian 2 -group and by the above $N_{G}(Z)=O\left(C_{G}(Z)\right) N_{G}(S)$ follows.

Let Z_{i} be any subgroup of Z such that either $Z(T) \subseteq Z_{i}$ or $Z_{i} \subseteq Z(T)$, and $\left|Z_{i}\right|=2^{i}$. We want to show by induction that $N_{G}\left(Z_{i}\right)=O\left(C_{G}\left(Z_{i}\right)\right)\left(N_{G}(S) \cap\right.$ $N_{G}\left(Z_{i}\right)$). Take $z \in Z-Z_{i}$, if $Z_{i} \subset Z(T)$ then choose $z \in Z(T)-Z_{i}$. Set $Z_{i+1}=\left\langle Z_{i}, z\right\rangle$; then $N_{G}\left(Z_{i}\right) \cap N_{G}\left(Z_{i+1}\right)$ is the preimage of $C_{N_{G}\left(Z_{i}\right) / Z_{i}}\left(z Z_{i}\right)$. In particular if x is an involution in $T-Z_{i}$ we have by induction, that

$$
C_{T / Z_{i}}\left(x Z_{i}, z Z_{i}\right) \in \operatorname{Syl}_{2}\left(C_{N_{G}\left(Z_{i}\right) / Z_{i}}\left(x Z_{i}, z Z_{i}\right)\right) .
$$

Case 1. Suppose first that $Z(T)=Z(S)$. If $x \in S-Z$ and if $T_{x, z}$ is the preimage of $C_{T / Z_{i}}\left(x Z_{i}, z Z_{i}\right)$ then $Z=T_{x, z}^{\prime}$ and $x \sim z$ in $N_{G}\left(Z_{i}\right)$ if x is an involution. If $x \in T-S$ is an involution then $T_{x, z}^{\prime} \cap Z\left(T_{x, z}\right)=Z$ by 2.7 and again $x \approx z$ in $N_{G}\left(Z_{i}\right)$. Therefore Z / Z_{i} is strongly closed in T / Z_{i} with respect to $N_{G}\left(Z_{i}\right) / Z_{i}$. 2.3 implies that $R=\left\langle Z^{N_{G}\left(Z_{i}\right)}\right\rangle \subseteq C_{G}\left(Z_{i}\right)$ and $R / O(R)$ is known. If $R \neq O(R) Z$, it follows that

$$
\left|\left(C_{G}\left(Z_{i}\right) \cap N_{G}(Z)\right): C_{G}(Z)\right|>1
$$

in contradiction to the structure of $N_{G}(Z)$. The induction goes through in this case.

Case 2. Assume now $Z \neq Z(T)$ and use the information of 2.7. Again if $x \in S-Z$ is an involution we have $z \sim x$ in $N_{G}\left(Z_{i}\right)$ as in Case 1. Suppose now that $x \in T-S$ is an involution; then $x \sim z$ in $N_{G}\left(Z_{i}\right)$ for $i>n / 2$ as $C_{Z_{i}}(x) \neq Z_{i}$. If $i \leq n / 2$ then $Z\left(T / Z_{i}\right)$ has a preimage which is a group $Z^{*}=$ $Z_{i+(n / 2)}$, and $z \in Z^{*}$. If $x \in T-S$ is an involution and $T_{x, z}$ is the preimage of $C_{T / Z_{i}}\left(x Z_{i}, z Z_{i}\right)$, then the preimage of $Z\left(T_{x, z} / Z_{i}\right)$ is $\left\langle Z^{*}, x\right\rangle$ but $x \notin Z\left(\left\langle Z^{*}, x\right\rangle\right)$. So $x \sim z$ in $N_{G}\left(Z_{i}\right)$. The weak closure of $\left\langle z Z_{i}\right\rangle$ in

$$
\left(N_{G}\left(Z_{i+1}\right) \cap N_{G}\left(Z_{i}\right)\right) / Z_{i}
$$

lies in Z / Z_{i}. Hence by a theorem of Shult (see [3; corollary 3]) we have as before

$$
N_{G}\left(Z_{i}\right)=O\left(C_{G}\left(Z_{i}\right)\right)\left(N_{G}(S) \cap N_{G}\left(Z_{i}\right)\right) .
$$

Every involution in $S-Z$ is conjugate in G to $z \in Z^{\#}$. We claim $z \sim t \in$ $T-S$. Assume the contrary.

Case 1. $Z(T)=Z$. Then $Y=C_{T}(z, t)=\langle Z, t\rangle \in S y l_{2}\left(C_{G}(z, t)\right)$ by the above. Also $C_{K}(t)$ acts transitively on $Z^{\#}$ and $t\left(Z^{\#}\right)$. As $t \sim t z$ in W we have that the elements in $Z^{\#}$ as well as in $t Z$ are all conjugate in $X=N_{G}(Y)$. Now t has at least q conjugates under $C_{X}(z)$. Since for z there is $K^{*} \sim C_{K}(t)$ in X with $K^{*} \subseteq C_{X}(z)$ and $Y=\langle z\rangle \times Y_{1}$ where $Y_{1}^{\#}$ and $z Y_{1}-\{z\}$ are K^{*}-orbits. It follows that all involutions in $Y-\langle z\rangle$ are conjugate under $C_{X}(z)$. Hence 2 divides $\left|C_{X}(z): C_{X}\left(z, z_{1}\right)\right|$ where $z_{1} \in Z-\langle z\rangle$. Take $R \in S y l_{2}\left(C_{X}(z)\right)$ with $[t, T] \subseteq R$ and $Q \in S y l_{2}(G)$ with $R \subseteq G$. Then

$$
Z(Q) \subseteq Y \subseteq\langle t\rangle[t, T] \quad \text { and } \quad Z(Q) \subseteq Z([t, T]\langle t\rangle)=Z
$$

Hence $Z(Q)=Z$, contradicting the fact that 2 divides $\left|C_{X}(z): C_{X}\left(z, z_{1}\right)\right|$.

Case 2. Assume $Z(T) \neq Z$. Then $z \in C_{T}(x, t)^{\prime}$ but $t \notin C_{T}(x, z)^{\prime}$ and so $t \sim z$ in G.

By 2.4, G contains a subgroup of index 2 . Since the maximal subgroup G_{α} does not contain a subgroup of index 2 , we reach the final contradiction

$$
\left|G: G_{\alpha}\right|=|\Omega|=2 \geq|\Delta(\alpha)|=q+1 \geq 5
$$

Lemma 6.3. $s \neq 5$.
Proof. $P=O_{2}\left(G_{\alpha}\right)=\left\langle Q_{2}, Q_{3}, Q_{4}\right\rangle$ and $G_{\alpha}=N_{G}\left(Q_{3}\right)$ and $C_{G}\left(Q_{3}\right)$ covers $G_{\alpha}^{\Delta(\alpha)}$. Since $\left[Q_{1}, Q_{4}\right] \neq 1$ we have that $C_{G}\left(Q_{3}\right) / P$ is faithfully represented on P / Q_{3}. The map $x_{4} \rightarrow\left[x_{1}, x_{4}\right]$ where $x_{1} \in Q_{1}^{\#}$ and $x_{4} \in Q_{4}$ is faithful from Q_{4} into $\left\langle Q_{2}, Q_{3}\right\rangle$ and a $C_{K}\left(Q_{1}\right)$-homomorphism.

Take $k \in G$ with $\alpha_{0}^{k}=\alpha_{1}$ then there is a $x \in G_{\alpha_{1}}$ such that for $N_{G_{\alpha}}\left(P_{4}\right)=$ $K P_{4}=G_{\alpha_{0}, \alpha_{1}}$ we have $\left(K P_{4}\right)^{h}=K P_{4}$ where $h=k x$. Since P_{4} contains exactly two elementary abelian groups of order q^{3} where one of them is P, we have $h^{2} \in K P_{4}$. As in the proof of $6.2, T=\langle t\rangle P_{4} \in S y l_{2}(G)$, where t is an involution in $N_{G}(K) \cap N_{G}\left(P_{4}\right)$ interchanging P and Q the elementary abelian subgroups of order q^{3} in P_{4}. Since

$$
K=C_{K}\left(Q_{2}\right) \times C_{K}\left(Q_{3}\right)=C_{K}\left(Q_{1}\right) \times C_{K}\left(Q_{4}\right)
$$

and as t interchanges Q_{2} and Q_{3} we have that $Q_{1}^{t}=Q_{4}$ and $K_{0}=C_{K}(t)$ is a cyclic group of order $q-1$. One computes that $\left|C_{P_{4}}(t)\right|=q^{2}$. Moreover there are at most q cosets $t w\left\langle Q_{2}, Q_{3}\right\rangle$ with $w \in P_{4}$ which contain involutions and each of these cosets contains at most q involutions. Hence there are q^{2} involutions in $T-P_{4}$ and all of them are conjugate under P_{4}.
$P_{4} \in S y l_{2}\left(C_{G}\left(\left\langle Q_{2}, Q_{3}\right\rangle\right)\right)$ and by the structure of $N_{G}\left(P_{4}\right)$ we know-using Burnside's theorem-that

$$
N_{G}\left(\left\langle Q_{2}, Q_{3}\right\rangle\right)=O\left(C_{G}\left(\left\langle Q_{2}, Q_{3}\right\rangle\right)\right) N_{G}\left(P_{4}\right)
$$

Set $Z=Z(T) \subseteq\left\langle Q_{2}, Q_{3}\right\rangle$. Denote by Z_{i} any subgroup of $\left\langle Q_{2}, Q_{3}\right\rangle$ with $Z \subseteq Z_{i}$ and $\left|Z_{i}\right|=2^{i} q$. We want to show by induction that

$$
N_{G}\left(Z_{i}\right)=O\left(C_{G}\left(Z_{i}\right)\right)\left(N_{G}\left(P_{4}\right) \cap N_{G}\left(Z_{i}\right)\right)
$$

$P_{4} \in \operatorname{Syl}_{2}\left(C_{\mathrm{G}}\left(Z_{i}\right)\right)$ and $T \in \operatorname{Syl}_{2}\left(N_{\mathrm{G}}\left(Z_{i}\right)\right)$ if $i>0$. On the other hand if x is an involution in $P_{4}-\left\langle Q_{2}, Q_{3}\right\rangle$ and $z \in\left\langle Q_{2}, Q_{3}\right\rangle-Z_{i}$ then by the hypothesis of the induction

$$
C_{P_{4} / Z_{i}}\left(x Z_{i}, z Z_{i}\right) \in \operatorname{Syl}_{2}\left(C_{C_{G}\left(Z_{i}\right) / Z_{i}}\left(x Z_{i}, z Z_{i}\right)\right)
$$

If $T_{x, z}$ is the preimage of this group we have $\left\langle Q_{2}, Q_{3}\right\rangle=T_{x, z}^{\prime} \cdot Z_{i}$ and so $x \sim z$ in $N_{G}\left(z_{i}\right)$. Hence $\left\langle Q_{2}, Q_{3}\right\rangle$ is strongly closed in P_{4} with respect to $C_{G}\left(Z_{i}\right)$. The structure of $N_{G}\left(\left\langle Q_{2}, Q_{3}\right\rangle\right)$ and 2.3 now implies

$$
\left\langle Q_{2}, Q_{3}\right\rangle O\left(C_{G}\left(Z_{i}\right)\right) \unlhd N_{G}\left(Z_{i}\right)
$$

and the assertion follows.

Finally consider the case $Z_{0}=Z . \quad z \in\left\langle Q_{2}, Q_{3}\right\rangle-Z$ is not conjugate to the involution $x \in T-P_{4}$ since the preimage $T_{x, z}$ of $C_{T / Z}(x Z, z Z)$ has $\left\langle Q_{2}, Q_{3}\right\rangle$ as the only elementary abelian subgroup of index 2. If $z \in\left\langle Q_{2}, Q_{3}\right\rangle-Z$ would be conjugate in $N_{G}(Z)$ to $x \in P_{4}-\left\langle Q_{2}, Q_{3}\right\rangle$ then all involutions in P_{4} / Z would be conjugate in $N_{G}(Z) / Z$. Hence $N_{G}(Z) / Z$ and so $C_{G}(Z) / Z$ has a subgroup of index 2 with S_{2}-subgroup P_{4} / Z as the proof of 2.4 shows. This group has class 2 and is of type $L_{3}(q)$. So if $X / O\left(C_{G}(Z)\right) Z$ is a minimal normal subgroup of $N_{G}(Z) / O\left(C_{G}(Z)\right) Z$ contained in $C_{G}(Z) / O\left(C_{G}(Z)\right) Z$ and is nonsolvable then $X / O\left(C_{G}(Z)\right) Z \simeq L_{3}(q)$ by 2.2 and we get a contradiction to the structure of $N_{G}\left(P_{4}\right)$. So as usual

$$
N_{G}(Z)=O\left(C_{G}(Z)\right)\left(N_{G}\left(P_{4}\right) \cap N_{G}(Z)\right)
$$

follows.
Assume an involution $t \in T-P_{4}$ is conjugate in G to $x \in P_{4}$. By 2.8 there is a subgroup $X \subseteq T, t, x \in X$ satisfying conditions (1)-(4) of 2.8 (here T corresponds to P in 2.8) such that $x \sim t$ in N where

$$
N=N_{G}(X) \quad \text { if } X=C_{T}\left(\Omega_{1}(Z(X))\right)
$$

or

$$
N=N_{G}(X) \cap C_{G}\left(\Omega_{1}(Z(X))\right) \quad \text { if } X \subset C_{T}\left(\Omega_{1}(Z(X))\right) .
$$

Clearly, $Z\langle t\rangle \subseteq X$ by 2.8 (2). Moreover $Z=Z(X)$ or $\Omega_{1}(Z(X))=\langle t\rangle Z$, because $C_{T}(t)=\langle t\rangle U$, where U is homocyclic of order q^{2} and $\Omega_{1}(U)=Z$. If $X=C_{T}\left(\Omega_{1}(Z(X))\right)$ then in any case Z char X and $x \sim t$ in $N_{G}(Z)$ which is impossible. If $X \subset C_{T}\left(\Omega_{1}(Z(X))\right)$ then $N \subseteq N_{G}(X)$ and we get the same contradiction.
2.4 implies that G has a subgroup of index 2 and we get the usual contradiction.

Remark. The permutation groups with a suborbit of length 3 have been determined by Sims [9] and Wong [15]. The permutation groups with a suborbit of length 4 have been determined by Sims [10] and Quirin [7].

References

1. H. Bender, On groups with abelian Sylow 2-subgroups, Math. Zeitschrift, vol., 117 (1970), pp. 164-176.
2. R. Gilman and D. Gorenstein, Finite groups with Sylow 2-subgroups of class 2, to appear.
3. D. Goldschmidt, 2-fusion in finite groups, Ann. Math., vol. 99 (1974), pp. 70-117.
4. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
5. G. Higman, Suzuki 2-groups, Illinois J. Math., vol. 7 (1963), pp. 79-96.
6. W. Knapp, On the point stabilizer of a primitive permutation group, Math. Zeitschrift, vol. 133 (1973), pp. 137-168.
7. W. L. Quirin, Primitive permutation groups with small orbits, Math. Zeitschrift, vol. 122 (1971), pp. 267-274.
8. H. L. Rietz, On primitive groups of odd order, Amer. J. Math., vol. 26 (1904), pp. 1-30.
9. C. C. Sims, Graphs and finite permutation groups, Math. Zeitschrift, vol. 95 (1967), pp. 76-86.
10. -_, Graphs and finite permutation groups II, Math. Zeitschrift, vol. 103 (1968), pp. 276-281.
11. R. Solomon, Finite groups with a Sylow 2-subgroup of type A_{12}, J. Algebra, vol. 28 (1974), pp. 346-378.
12. F. L. Smith, A general characterization of the Janko simple group J_{2}, Arch. Math., vol. 25 (1974), pp. 17-22.
13. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., vol. 74 (1968), pp. 383-437.
14. H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.
15. W. J. Wong, Determination of a class of permutation groups, Math. Zeitschrift, vol. 99 (1967), pp. 235-246.

Universität Heidelberg
Heidelberg, Germany

