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1. Introduction

R. H. Bing r l] has asked whether there exists a continuous function which
selects a point from each arc of the Euclidean plane. The existence of such a
choice function is a corollary to the result suggested in the title since we need
only choose a point of the plane and take the image of it under each retraction.
The proof is an application, in the style of Hamstrom and Dyer [4], of E.
Michael’s selection Theorem 3.1" [7; p. 368], referred to here as Theorem M.
It provides a new proof of a theorem of H. Whitney [9; Theorem 14A], c.f.,
Theorem W in Section 5.
The results are the only application we know of Theorem M, which itself is

the only basic selection theorem not requiring each image set to be closed. The
key geometrical fact used in our proof is that the set of increasing self-homeo-
morphisms of the closed unit interval is a g-set (see Section 3).

2. Statement of the problem

Suppose Y is a topological space and 2 is defined to be the collection of non-
empty subsets of Y. Suppose further that X is a topological space and
qt: X 2r is a parametrization by X of some of the subsets of Y. A continuous
function f: X - Y such that f(x) qt(x) for all x X is a selection for q, i.e.,
a continuous choice function for ft.

If U is a neighborhood of Xo X and f: U Y is a selection for U then
we call f a local selection for at Xo.

If for each Yo ff(Xo) and Xo X there is a local selection for qt at Xo such
that f(xo) Yo then must satisfy the following condition. The set-valued
function q: X 2r is lower semi-continuous (lsc) if whenever U is open in Y
then {x X: if(x) c U 0} is open in X. The reader is encouraged to consult
the seminal work of E. Michael I-7] for the basic facts in the theory of selections.

Let X and Y be topological spaces and let C(X, Y) denote the set of continu-
ous functions from X into Y. If A c X and B c Y, we define

(A, B) {f C(X, Y):f(A) = B}.

The compact-open topology (c-topology) on C(X, Y) is generated by sub-basic
open sets (A, U) where A is a compact subset of X and U is an open subset of
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Y I-2; p. 257]. In case the topology of Y is generated by a metric d, we define
C(X, Y; d) to be the set of continuous functions whose image is bounded in
the metric d. The set C(X, Y; d) can be topologized with the metric D defined
by

D(f, g) sup {d(f(x), g(x)): x e X}

[2; p. 269]. The D topology is called the topology of uniform convergence.

Remark 1. The relative c-topology on C(X, Y; d) is a subset of (is coarser
than) the topology generated by D.

Remark 2. If X is compact then C(X, Y)= C(X, Y; d) and the two
topologies agree.

Remark 3. All function spaces will be assumed to have the c-topology
unless otherwise specified.

Let d be a metric for Y and let X be compact and metrizable. Let X(Y) be
the .set of subspaces of Y homeomorphic to X. Given Xa, X2 e X(Y) and a
homeomorphism g from Xx onto X2, we define the size ofg to be

sup {d(x, g(x)): x e Xx}.

The completely regular topology (c.r.-topology) on X(Y) is defined by the metric
p such that p(Xa, X2) inf {size of 9: gis a homeomorphism from X onto X2}

Remark 4. Since X is compact, the topology generated by p is independent
of the metric d generating the given topology of Y.

Recall that a retraction of Y onto a subspace A is a continuous function

f: Y A such that f(x) x for each x A.
Again, let X be compact metrizable and Y be metrizable. We define three

set-valued functions:

qt: X(Y) 2r where (X1) X1.
dp: X(Y) 2cCx’ r) where (Xa) {f: fis a homeomorphism from X onto Xx}.
O: X(Y) 2cCx’ r) given by O(X) {f: f is a retraction of Y onto Xx}.

For which pairs of spaces X and Y can one find selections or local selections
for the set-valued functions q or or 0? In particular, when X is a compact
metrizable absolute retract and Y is a separable metric space, is there a selection
for 0 (and therefore q)? It is known that there is no local selection for I) at
some A e X(Y) when Y E2 and X is the absolute retract, Ungar’s "ruler"
(see I-8] for a description).
We know from Whitney [9; Theorem 14A] or from this paper that there are

local selections for when Y is a separable metric space and X is an arc (B 1), a
simple closed curve (SX), or a finite graph such that the order of each vertex is
different from two. From Whitney [9-1 and Riemann-Roch i-6, Theorem 1],
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there are local selections for do and a selection for in case X is the unit disk and
Y is E2. It is easy to show the impossibility of local selections for and do and
0 in case X is a Cantor set and Y is Ez.
Although all of these results can be derived from Whitney’s theorem, we are

now ready to show how these results and Whitney’s theorem can be derived as
outlined in the introduction. The following simple observation formalizes a
remark made in the introduction.

Remark 5. If F is a selection for 0 and Xo e Y, then F’ defined by F’(A)
F(A)(xo) is a selection for q [2; Theorem 2.4(1), p. 260].

Remark 6. If X is an AR and do admits a selection in a neighborhood of
each A X(Y) then there is a selection for @ (c.f., proof of Corollary 2 in
Section 5).

3. Theorem M and remarks on the c.r.-topology of X(Y)

Let Y be a normed linear space and K be a closed, convex subset of Y. A
supporting set of K is a closed convex subset S of K such that S K and such
that if an interior point of a line segment of K lies in S then the entire line seg-
ment lies in S. The set of all elements of K which do not lie in a supporting set
of K will be denoted I(K). We define N(Y) to be the collection of convex
subsets B of Y such that B I(). Note that B is the topological closure of B
in Y.

THEOREM M [-7; Theorem 3.1" (a) implies (c)]. If X is a perfectly normal
Tx-space and Y is a separable Banach space and do: X - 9(Y) is lsc, then there
is a selection for do.

Before demonstrating how Theorem M can be used to prove the main result,
let us remark on the choice of topology for X(Y).

PROPOSITION 1. If C(X, Y) has the topology of uniform convergence and T is
a topology on X(Y) such that do is lsc and there is a selection Ffor do, then T
contains (isfiner than) the c.r.-topology on X(Y).

Proof. Let Xx X(Y) and e > 0 be given and F be a selection for do. Then
F(X) f is an embedding of X onto X c Y. Since do is lsc, the set

U {X’: do(X’) c N,(f) 4= 0}

is open in T. But U is the e-neighborhood of X in the c.r.-topology. For let
X’ e X(Y) be such that p(Xx, X’) < e. Let h: Xx X’ be a homeomorphism
of size less than e. Then hf e do(X’) N,(f) so that X2 e U. Conversely, if
X’ e U then there is a homeomorphism k: X --, X’ such that D(k, f) < e and

kf- demonstrates that p(X’, X) < e. The proof is complete.
In order for there to be a selection for $, we may not be forced to choose a

topology as fine as the c.r.-topology on X(Y). However, if we choose the
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Hausdorff metric on 2"(Y), so that the distance between 1"1 and 2"2 is less than
e if and only if X1 c N,(X2) and 1"2 c N,(X1), then there is no selection for
in case X= B and Y= E2, i.e., Bing’s problem. For each te(0,1] let
f(t) be the graph of sin (l/x) restricted to the interval It/2, t] and let f(0)
{0} x [- 1, 1]. Thenfis an embedding of[0, 1] into X(Y) with the Hausdorff
topology. A selection g for restricted to any neighborhood of f(0) would
violate the fact that t {f(t): e [0, 1]} is not locally connected at any point
off(0).

4. A reduction and the main lemma

We now assume that X is compact metrizable and Y is metrizable. Let Q be
the Hilbert cube considered as a compact, convex subset of Hilbert space, 12.

PROPOSITION 2. For there to be a selection (local selections)for or or O,
respectively, for X(Q), it is necessary and sufficient for there to be a selection
(local selections) for or d or O, respectively, for every X(Y) where Y is a
separable metric space.

Proof. Sufficiency is obvious. For necessity, suppose that Y is any separable
metric space, X is compact and metrizable and f is a topological embedding of

into Q.
The function F: X(Y) -* X(Q), defined by F(Xx) equals the image of 2"1

under f, is an embedding onto X(f(r)). The function H: C(X, Y) -, C(2", Q)
defined by H(g) fg is an embedding onto C(2", f(Y)). The function

F’: C(f(r), f(r)) -, c(Y, Y)

defined by F’(g) f-xgf is an onto homeomorphism. This fact depends upon
the choice of the c-topology for function spaces. Finally, if A c Q and

B {f C(Q, Q):f(Q) A} c(o, Q)

then the restriction function w: B- C(A, A), defined by w(f)= f A is
continuous.

Suppose now that U is an open subset of X(Q). If g is a selection for U
or U or 0 U, respectively, then f-gF or H-gf or F’wgF is a selection

F- (U) or F- I(U) or 0 F- I(U), respectively. The proof is complete.
We now consider the special case in which i" B and Y Q. For each

A e B (Q) define A* to be the straight line segment in Q whose endpoints are
the endpoints of A. Let y: B1(Q) --, 2c(t’ 2) be defined by the rule that y(A) is
the set of continuous f: Q -, 12 such that (1)f(Q) A*, (2)f is fixed on the
endpoints of A and (3) f A is a homeomorphism onto A*. We now show that
there is a selection for .

(A) The space B (Q) is a perfectly normal Tx-space.

Proof. B a(Q) is metric.
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(B) The space C(Q, 12) is a separable Banach space.

Proof. This is because Q is compact and 12 is a separable Banach space
[-5; p. 244]. This fact dictates the use of the c-topology for C(Y, Y) in finding
a selection for 0. If (Y, d) could be isometrically embedded in a compact,
convex subset of a separable Banach space, then we could have used the topology
of uniform convergence.

(C) The set-valued function y is 1so.

Proof. Let d be the standard metric on 12 and let p and D be the induced
metrics on BI(Q) and C(Q,/2); see Remarks 2 and 4. Suppose that A BI(Q)
and f y(A) and e > 0 are given. We must find a neighborhood V of A in
B (Q) such that if B e V then y(B) c N(f) O.

Since Q is compact and f is continuous, let 6 > 0 illustrate the uniform con-
tinuity off for the number e/2. Let V be the p-metric 6/2 neighborhood of A
in B (Q). Suppose that B V; we must construct g e y(B) such that D(g, f) < e.

Let h" B - A be an onto homeomorphism moving each point less than 6/2.
Let h" Q -o A also denote a fixed continuous extension of h. By the compact-
ness of B, let W be an open neighborhood of B (in Q) such that d(x, h(x)) < 6
for each x e W and such that W c No/2(A). Letj: Q - [0, 1] be a continuous
(Urysohn) function such that j(Q W) 0 and j(B) 1. Let f’" Q - A*
such that

f’(z) j(z)" fh(z) + (1 j(z))f(z).
Clearly, f’ is continuous such that f’ Q W f Q Wand that f’ B
fh B and that f’(Q) A*. Finally, we let h*" A* --+ B* be the linear homeo-
morphism such that h*(h(p))= p for each end-point p of B*. Clearly

d(h*(x), x) < e/2
for each x e A*.
We now show that g h*f’ is an element of v(B) c N(f). Since

B h___A ___A, h*----*B*
are each homeomorphisms (properly restricted), so is g[ B. The choice of h*
insures that the endpoints of B are fixed under g. Finally, D(g, f) < e. If
x e Q W then

d(g(x), f(x)) d(h*f(x), f(x)) < e/2.
If x W, let z j(x)(fh(x)) + (1 j(x))f(x), and then

d(g(x), f(x)) d(h*(z), f(x))
< d(h*(z), z) + d(z, f(x))
<_ e/2 + j(x)[d(fh(x), f(x))]
< e/2 + e/2

The last, since d(h(x), x) < 6 and thus d(fh(x), f(x)) < e,/2.
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(D) For each A 6 BI(Q), the set y(A) is an element of (C(Q, 12))"

Proof. Let a and b denote the endpoints of A B X(Q). Let h be the unique
affine homeomorphism from A* onto [0, 1] such that h(a) 0. Let h’ be a
topological homeomorphism of[0, 1] onto A such that h’(O) a. A continuous
functionffrom A onto A*, fixing the endpoints, is a homeomorphism if and only
if hfh’ is an increasing function from r0, 1] onto itself.
The set 7(A) is convex. If f, g y(A) and t [0, 1] then (1 t)f + tg is

onto A* and leaves the endpoints of A fixed. Observe that

(1) hi(1 t)f A + t(g A)]h’ (1 t)h(f A)h’ + th(g A)h’.

The right-hand side of this equation is a convex combination of increasing self-
homeomorphisms of [0, 1] and is therefore itself an increasing self-homeo-
morphism. So (1 t)f + tO ?(A).

Iff T(A) then h(f[ A)h’ is a nondecreasing continuous function from [0, 1]
onto [0, 1-]. Iffi converges to f then hfih’ converges to hfh’. A limit of increas-
ing continuous functions from [0, 1] onto [0, 1] is nondecreasing. We now

claim that T(A) D I(v(A)). Suppose f v(A) and f ?(A) then h(f[A)h’ is

constant on some closed subinterval T of [0, 1]. Let S {f v(A)" hfh’(T)
is constant}. Clearly S is convex and S # T(A. We claim that S is a supporting
hyperplane of ?(A). Suppose (0, 1) and f S and k, m y(A) and f
(1 t)k + tin. It suffices to show that k S. If not, there exist z and w in T
such that hkh’(z) < hkh’(w). By (1),

hfh’(z) h((1 t)k + tm)h’(z)

< h((1 t)k + tm)h’(w)
hfh’(w).

This contradicts the assumption that f S. We have shown that if f (A)
and f 7(A) then f I(7(A)), i.e., 7(A) D I(y(A)).

LEMMA 1. There is a selection for , i.e., there is a continuous function
G" BI(Q) - C(Q, Q) such that for each A BX(Q), (1) G(A)" Q A* and
(2) G(A) A is a homeomorphism onto A*,.fixed on the endpoints of A.

Proof. Statements (A)-(D) show that Theorem M applies to .
5. The theorems

THEOREM 1. Let Y be a separable metric space. There exists a continuous

function F: BI(Y) C(Y, Y) such that F(A) is a retraction of Y onto A for
each A B l( y). (Note that C( Y, Y) has the compact-open topology.)

Proof. By Proposition 2, we need only prove Theorem for Y Q. Let G
be the continuous function of Lemma 1. Let F be defined by the formula
F(A) (G(A) A)-1G(A). Clearly each F(A) is a retraction of Q onto A. We
now show that F is continuous.
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Let d be the usual metric for Q. Suppose that a sequence (Ai) converges to
A in BX(Q); but that (F(A3) does not converge to F(A). Assume without loss
of generality that for some fixed e > 0 and some sequence (x) in Q we have

d(F(AXx,), F(A,)(xi)) > e.

By the compactness of A assume that x, y A and that

limF(A)(x3 x A and limF(A)(x3 y A.

Since d(x, y) > e, we have G(A)(x) # G(A)(y).
However, lim G(A) G(A). So lim G(A3(F(A3(x3) G(A)(y) and

G(A3(F(A3(x3) G(Ai)(x) for each i.

Therefore, lim G(A3(x3 G(A)(y). But lim G(A3(x3 lim G(,A)(x3 and

G(A)(F(A)(x3) G(A)(x3 for each i.

So
G(A)(y) lim G(A,)(x,)

lim G(AXx3
lim G(A)(F(A)(x,))

G(A)lim (F(A)(x,))

(Xx).

This contradicts G(A)(y) G(A)(x) and so F is continuous.

COROLLARY 1. For each separable metric space Y, there is a continuous func-
tion f: BX(Y) -- Ysuch that f(A) e A for each A e BX(Y).

Proof. Theorem 1 and Remark 5.

THFORFM 2. For each separable metric space Y and each A B x(Y), there
exists a neighborhood U ofA in B (Y) and a continuousfunction H: U C(B, Y)
such that F(C) is a homeomorphism of B onto C for each C e U.

Proof. Again, by Proposition 2, it suffices to prove the case Y Q. Given
A e B (Q), let a and b be the endpoints of A and let r/ d(a, b). Let U be the
rt/2 neighborhood of A in B (Q). For each C e U, let h(C) be the unique affine
homeomorphism of B onto C* such that d(h(C)(1), a) < n/2. Let G be the
continuous function of Lemma 1, and define

H: B(Q) --. C(B, Q)

by the formula H(C) (G(C) IC)-h(C). Each H(C) is clearly a homeo-
morphism of B onto C e U. The proof that H is continuous is like the proof
that F is continuous in Theorem 1.

Remark 7. The fact that the Moebius band can be embedded in Q shows
that U cannot be taken to be B a(Q).
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COROLLARY 2. For each separable metric space Y, there is a continuous func-
tion y: B I(Y) -, Y such that 9(A) is a nonendpoint of A for each A B l(y).

Proof. Using the paracompactness of B I(Y) we can find a well-ordered,
locally finite, closed cover {U,: < } such that each U, is contained in an
open set V over which a function H of Theorem 2 is defined. We define y by
induction. Suppose g is defined on w< U then W U c w< U is a
closed subset of U. Define f: W (0, 1) by f(A) (H(A))-I(g(A)). Let f’
be a continuous extension of the continuous function f into (0, 1). Let g’(A)
H(A)(f’(A)) be the continuous extension of g over U.
A completely regular mapping f: Y - Z (where Y and Z are metric spaces)

satisfies the condition that for each z Z and > 0 there is 6 > 0 such that if
d(z, zl) < , then there is an onto homeomorphism g: f-(z) f-(z) of
size less that [3; Hamstrom].

THEOREM W (essentially Whitney [9; Theorem 14A]). If Y and Z are separ-
able metric spaces andf: Y --, Z is an onto completely regular mapping such that
f-l(z) is homeomorphic to B for each y Y. Then for each z Z there is a
neighborhood V of Z and an onto homeomorphism h: V x B --, f-x(V) such
that 7r fh.
Proof (sketch). The function f-1 is continuous from Z to B a(Y). Let

z e Z and let U be a neighborhood off-l(z) and H: U -, C(B, Y) be those
asserted in Theorem 2. Let V {z:f-a(z) U} and let h: V x B onto
f-l(v) be given by the formula h(z, t) H(f-X(z))(t).

Remark 8. Theorem W easily implies Theorem 2. Consider

S c BI(Y) x Y where S {(A, y)" y A}.

The map 7r1" S -, B l(y) is completely regular; now apply Theorem W.
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