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The title refers to this theorem [5]: Let M be a complete, connected, Rieman-
nian n-manifold whose Ricci curvature is everywhere bounded below by some
number R > 0. Then M is compact and has diameter at most n/(n 1)/R.
The purpose of this note is to prove an analogous theorem for n-dimensional

simplicial complexes, using a combinatorial analogue of Myers’ proof. I am
grateful to H. Gluck for encouragement, and to the National Science Foun-
dation for support. I am indebted to the referee for an unusually painstaking
effort to organize this paper more clearly.

Let K be a connected cell complex; let v, w be vertices of K. A path with
endpoints v and w is a sequence (at,..., a,) of 1-cells of K such that the
boundary Oa {b_ , b}, where the b are vertices with bo v, b, w. The
length [el of such a path is r, the number of its 1-cells. The distance d(v, w) is
min Is] for paths with v and w as endpoints. The diameter of K is max d(v, w)
for v, w vertices of K.

I shall first define combinatorial curvature and present the analogue of
Myers’ theorem in the 2-dimensional case.

Let K be a cell complex which is a 2-manifold without boundary. Let
denote the number of sides of a 2-cell c. If v is a vertex, then the curvature at v
is defined to be R*(v) 2 (1 2 where the sum is taken over all
2-cells c containing v.

PROPOSITION 1. Let K be a connected cell complex which is a 2-manifoM
without boundary. Assume there is a number R > 0 such that R*(v) >_ R for
every vertex v of K. Then K has diameter < + 2/R.

The proof starts on page 14.

Remark 1. If one visualizes K as being made of regular polygons all of the
same side-length, then for any 2-cell c with v as vertex, the angle of c at v is
(1 2/1cl). Thus the piecewise linear curvature of K at v, defined to be
2n v (angle of c at v) (see Aleksandroff and Zalgaller [2]), is just rR*(v).
So R*(v) is a natural analogue of the Gaussian curvature of a smooth surface
at a point.
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Remark 2. A connected cell complex K has finite diameter if and only if it
has finitely many cells. To prove this, fix a vertex v and let Vr {vertices w:
d(v, w) < r}. Then

Vr+l {x:xestar(w)}.
weVr

Now Vo is finite, so assume by induction that V is finite. Since star (w) has
finitely many vertices for every w e K, V,+ is finite. Thus if the diameter of K
is finite, then K has finitely many vertices, and hence finitely many cells.

In the 2-dimensional case, the proof of Myers’ theorem may be summarized
thus: Let : [0, L] M be a geodesic parametrized by arc-length. Let P be a
vector field along so that for each t, the pair P(t), d(t)/dt forms an ortho-
normal basis for the tangent space to M at (t). For 2-manifolds, the Ricci
curvature coincides with the Gaussian curvature, and by hypothesis, this is
everywhere >_R > 0. The second variational formula now implies that if
L > /x/R, then t can be varied in the direction P so as to obtain a strictly
shorter path with the same endpoints. Thus every two points of M are distant
at most //R, and the 2-dimensional case of Myers’ theorem follows.

Proposition is proved by an analogous variational argument, based upon
the following definition of a combinatorial variation of a path in a cell complex.

Let K be any cell complex. A ribbon in K is a sequence C (cl,..., c,) of
2-cells such that ci c c+ is a 1-cell d for l,..., r 1. Let v be a vertex
of c and w a vertex of c; then C determines two paths and fl from v to w,
as I shall show in a moment. C is called a variational field, and fl a variation,
of.

This is how to construct a and fl from C. There are just two paths, say Oc
and Oca in Oc such that:

(i) neither uses the 1-cell d;
(ii) each has v as one endpoint;
(iii) the other endpoints, ea() and e(fl) respectively, are vertices of d.

It is possible, if v e d, for either Oc or cl (but not both) to be empty; if, say,
Oc , then e() is defined to be v. Now there are paths Ocz and Otcz in Ocz
uniquely determined by the rules:

(i) neither uses d or dz;
(ii) e() is one endpoint of c2 and ea(fl) one endpoint of c2;
(iii) the other endpoints, e2() and ez(fl), are vertices of dz. Again, if, say,

Ocz , then ez() is defined to be e(). Continuing in this way I obtain paths
,ci and Oc forj l,..., r; Ocr and Oc, are required to have w as one end-
point. Then and fl are defined by juxtaposing the sequences Oc,..., Oc,
and Oc,..., Oc,.

If K is a 2-manifold without boundary, then each path has two special
variational fields, one on either side of a. They may be described explicitly by
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using the dual complex K* of K (see Hudson [4]). Say (al,..., at) with

ai n ai+l b for 1, r 1, let bo and br be the endpoints of , and
let K* be the dual complex to K. Then the sequence (b,..., b*) is a ribbon *,
called the dual of . Pick vertices v ofb and w of b*. Then * determines paths
fl and y from v to w constructed as juxtapositions t?a(b),..., t3a(b*) and
c(b),..., t?(b*). Let fl" be the juxtaposition c(b),..., t3(b,*_ ), and let "be defined similarly. Then their dual ribbons in K, (fl")* and (),")*, are the
required variational fields of .
Proof of Proposition 1. Let be a path in K; let C and C2 be its special

variational fields and B and B the corresponding variations. Say e
(ax,..., a,) with bi ai ai+ for 1,..., r 1; so I1 r. Applying
the curvature hypothesis to each b and adding we get

(1) Y R*(b,) >_ (11- 1)R.
i=1

Substituting the definition of R*(b) gives

(2) ( c, c2,,,c (1 2/10cl)) < (ll- 1)(2- e).
i=1

So for either C or C--let us say, for C--

(3 , (, c,,, ( /IOcl _< (11- (1 /.

Let L denote the left-hand side of (3), and say C (c,..., c). Then

L ((1 2/101) (number of bi which are e c)).
j=l

The number of b which are e c is 10cl ifj or s, and 10cl + otherwise.
Hence

g (1 2/1c1)(1c1 + 1)- (1 2/Icc1)
j=l k=l,s

19c1 4- (1 2(Icc1 4- 1)/lcl)- 2
j=l j=l

+ 2(1/Icc1 + 1/Iccl).
Now

while

So

Ic0cjl Icjl + Ialcjl + 1 ifj lors,

Icjl Icjl + IaIcjl -I- 2 otherwise.

L Il + (IcOacjl- Icjl)/lcjl + (1/lgcxl + 1/Iccl)- 2
j=l

since Iccl _> 3 for any 2-cell. Substituting into (3) gives

(lfll 11)/3 2 < -IIR/2 (1 R/2).
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Hence I/3al < Il provided that [[R/2 + R/2 2 > 0; that is, provided
that I1 >- + 2/R. It follows that every pair of vertices can be connected by a
path no longer than + 2/R. This proves the proposition.

Remark 1. A simplicial complex satisfying the hypotheses of Proposition
must have five or fewer 2-simplexes at each vertex. However, if the dual cell
complex K* of a simplicial complex K satisfies these hypotheses, then the
corresponding assumption on K is weaker. Let (u, v, w) be a 2-simplex of K,
and let a, b, and c be the number of 2-simplexes in star (u), star (v), and star (w),
respectively. Then K* satisfies the curvature hypothesis of Proposition pro-
vided that

(l/a + lib + l/c) >_ (1 + R)/2 for every(u,v,w)K.

Thus vertices of order 5, 6, and 7 will do, but 5, 6, and 8 will not.

Remark 2. If K satisfies the hypotheses of Proposition and is simplicial,
then K has at most twenty 2-simplexes. For at each vertex there are at most five
faces, so 3F < 5V; also Euler’s formula gives F- 3F/2 + V 2, so V
2 + F/2 < 2 + 5V/6. Hence V< 12 and soF< 20. However, if the dual
complex to K satisfies these hypotheses, then K can be arbitrarily large. For
example let Pr be a simple closed curve made of r segments and let K, be its
suspension S,Pr. Then K* satisfies the hypotheses of Proposition 1, though K,
does not (for r > 6). Ofcourse K has diameter 2, but K* has diameter I-r/2] + 1.
In the proposition we may use R 2/r and it then estimates the diameter of
K* as r + 1.

Remark 3. The proof of Proposition only requires that the curvature of K
at v be "on the average" bounded below away from 0. The next corollary is an
example of what can be done in this direction. It is not apparent what the
analogous result is for smooth surfaces.

COROLLARY 2. Let K be a connected cell complex which is a 2-manifold
without boundary. Assume there is a number R > 0 such that whenever (v, w)
is a 1-simplex of K, then

Then K is finite and has diameter <_ 3/R.

Proof For every 2-cell c", I0"1 > 3; also every vertex w belongs to at least
three 2-cells. Hence 2- 5-’,,c,, (1 2/10c"l) < 1.
The curvature hypothesis now implies that for any vertex v,

2- (1 2 > 2R 1;

if this is positive, then Proposition shows K is finite with diameter < +
2/(2R 1), which is <3/R since R > 1/2 and 2R < 2. If 2R < 0,
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apply the curvature hypothesis of this corollary to the 1-cells a2,... a,_ and
add; using the notation of the proof of Proposition l, this gives

,.2i=x (, (1- 2/1cl) + (1
bi c"

(11- 2)(4- 2R).

The previous calculation shows that

(1 2/lOci) + Y] (1 2/l#c"l) < 2(3 2R).
br- c"

Adding these inequalities gives

2 cCl uc2,b,c (1 2/Ic3ci) < (ll- 2)(4- 2R) + 2(3 2R).
i=1

The corollary now follows from the proof of Proposition 1, using this inequality
instead of (2).

I now turn to the n-dimensional generalization of Proposition 1. I shall first
outline the proof of Myers’ theorem in dimension n, and then give the com-
binatorial definitions needed to state the analogous combinatorial theorem,
Theorem 3.
The proof of Myers’ theorem is a generalization of the argument given for

dimension 2. Let " [0, L] M be a geodesic in M parametrized by arc-
length. Let Px,..., P,_I be parallel vector fields along such that for each
e [0, L], P((t)),..., P,_ a((t)), d(t)/dt form an orthonormal basis of the

tangent space to M at (t). The curvature hypothesis implies that for fixed the
average over of the sectional curvatures R(d(t)/dt, Pi((t))) is > R/(n 1).
Hence for some i" the average over of this sectional curvature is also
> R/(n 1). The second variational formula now implies that if

L > x/(u 1)/R,

then can be varied in the direction Pt,’ so as to obtain paths with the same end-
points which are strictly shorter than . Thus every two points ofM are distant

at most n/(n 1)/R, which proves the theorem.
Now let K be a simplicial complex which is an n-manifold and let K* be its

dual cell complex. I shall describe the appropriate notion of Ricci curvature
first in terms of K* and then in terms of K. Let (a,..., at) be a path in
K* and let c be a 2-cell which has as as face. I now describe how to parallel
translate c along to obtain a variational field Cs of . Let aa,..., a be the
portion of such thatas < ca,...,at < cs butat+s cs. Letds < cl be
the 1-cell such that a dl b. Then there is a unique 2-cell c2 e K* such
that d < 2 and a+ < c2. (For the duals d and a’+ are (n 1)-simplexes
of K, both faces of the n-simplex b’; then d a’+l is an (n 2)-simplex
whose dual is c2). Continuing this procedure defines the required ribbon Cs.
There are n 2-cells which have a as face; hence there are n distinguished varia-
tional fields C,..., C, and corresponding variations fis,. .,/, of .
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To see how Ca,..., C, fit together, let us examine the case Is[ 2. Then aa
and a2 are each faces of n 2-cells of K*, but one of these 2-cells has both aa and
a2 as faces. Hence at the vertex b there are 2n- distinguished 2-cells
distributed among n variational fields, each 2-cell appearing in exactly one
field. (And this situation occurs at any internal vertex of any path in K*.) If
one extracts from K* its 2-skeleton and makes it out of regular polygons of the
same side-length, then the total angle of Ca u)... w Cn at b is

a (2n 1)-fold sum. To decide whether this represents positive or negative
curvature I compare it to the case in which, on the average, the curvature is zero;
that is, in which each C has angle rc at ba, on the average. So the Ricci curvature
of K* at ba in the direction aa-a2 is defined to be

2n-

R*(ba, aa-a2) n c, c,, (1 2/1c1).
j=l

In terms of K, ba corresponds to an n-simplex b, aa and a2 to (n 1)-faces
of b, and ca,..., c2n-a to the (n 2)-faces of a w a. For each j, Icl can

* is a face. Thebe measured as the number N(c) of n-simplexes of which cj
Ricci curvature of K, a simplicial n-manifold without boundary, is defined at an
n-simplex s in a "direction" t-t", where and t" are (n- 1)-faces of s.
R(s, t-t") is defined to be

2n-

2 u<t <t", dim u:=n-2 1/N(tlj) n -Ji- 1.
j=l

THEOREM 3. Let K be a connected simplicial n-manifold without boundary.
Assume there is a number R > 0 such that R(s. t-t") > R for all s and t-t".
Then K is finite and has diameter < 2 + 1/R.

Proof Let K* be the cell complex dual to K. I adopt the notation used to
define curvature in K*. Let (aa,. at) be a path in K* with a c ai+
b for 1,..., r 1. Then for each b the curvature hypothesis implies that

c, c, , (1 2/1cl) _< n(1 R"/2) where R" 2R/n.
Adding these inequalities for 1,..., r 1, we get

r--1

cc, C,,b, (1 2/10cl) < n(ll- 1)(1 R"/2),
i=1

that is,

=1 \i=a
cCj, b, (1 2/Iccl) < n(ll- 1)(1 e"/2).

Hence for some j, say for j 1,

c,,, (1 2/10cl) (11- 1)(1 R"/2).
i=1



18 DAVID A. STONE

This is just inequality (3) of the proof of Proposition l, with R replaced by R".
It follows that K* is finite and has diameter < + n/R. I have yet to infer a
bound for the diameter of K.

Let v and v" be vertices of K and let s and s" be n-simplexes having v and v"
as vertices respectively. There is then a sequence of n-simplexes

S (sl,..., s+)

such that s s, s" Sk+ , k <_ + n/R, and si c si+ is an (n 1)-simplex
ti for 1,..., k. Let v(1),..., v(1) be the vertices of t. All but one of
these, say v(1), are vertices of t2. Set Vh(2) Vh(1) for h j, and let v(2) be
the vertex of t2 which is not a vertex of t. Continuing in this way, the vertices
of each ti are labeled v(i),..., v,(i). For each j 1,..., n the sequence
v(1),..., v(k) determines a path U. Now each s, for 2,..., k, has just
one 1-simplex which is not a face of ti_ or t. These k 1-simplexes are
distributed amongthe n paths U. Hence some U,, must have length _< (k 1)/n.
This is a path from some vertex of s to some vertex of s". So there is a path
from v to v" of length _< 2 / (k 1)/n. The theorem now follows.

Remark. When n 3 the curvature hypothesis reduces to"

__
l/N(uj) >_

1 + R/2 whenever u1,..., us are edges of a tetrahedron. The question arises:
what happens if = 1/N(uj) sometimes? Using noncombinatorial
methods I have shown [6]:

THEOREM. IfJ(Uj) 5for every 1-simplex, then K isfinite.

One might suppose that an equality of the form 1/N(u) represents
positive Ricci curvature too small to be measured combinatorially, so that a
finiteness theorem would still be true; but this is not so, as I shall show.

Consider a 3-manifold K such that every tetrahedron has three edges u, u2,
and ua with N(ui)= 4 and the other three edges with N(u)= 6. Then
,= 1/N(Uk) equals or 13/12 according as the omitted edge is a u, or u. If in
every tetrahedron the ui meet in a vertex, then one can show that a path in K*
along the Ricci curvature is always zero must run around the boundary of a
2-cell; so any long, direct path accumulates nonzero curvature, and the method
of this paper shows that K is finite. In fact it can be shown that the universal
cover of K has to be a certain subdivision of the regular polytope with Schlaefli
symbol (3, 4, 3} (regular octahedra, three about each edge; see Coxeter [3]).
However, if in every tetrahedron ( ui 0 0 u then one can have infinitely
long paths along which the Ricci curvature is always zero, as the next example
shows, and such a complex can be infinite.

Example. Here is an example for each n to show that the theorem is false
unless the inequality R > 0 is strict. It is a triangulation of S"-1 x R. Let
x,..., xn be axes in R" and let +k and -k be points on the positive and
negative Xk-axis. The boundary of the convex linear hull of the {_+k} is a
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simplicial triangulation L of S"- x. The (n 1)-simplexes ofL are in one-to-one
correspondence with sequences (_+ 1,..., +n}; the integers all occur in in-
creasing order, and the signs are arbitrary. Every (n 3)-simplex of L is a face
of four (n 1)-simplexes. Triangulate R so that the integers are the vertices.
L x R is a cell complex; by a "prism" I shall mean the product of an (n 1)-
simplex of L and a unit interval of R. The required simplicial complex K is a
subdivision of L x R. The vertices of K are just those of L x R, which may
be denoted {(_+ k, p)}. Then the n-simplexes ofKare by definition in one-to-one
correspondence with sequences

{(_+l,p),..., (_+k,p), (_+k,p + 1),..., (_+n,p + 1)),

in which the first integer takes on all values from to n in increasing order,
the signs are arbitrary except that those of (_+ k, p) and (_+ k, p / 1) must be
the same, and k is arbitrary between and n.

To simplify notation let us consider first the prism P in which all the signs
are + and p 0. Let u be an (n 2)-simplex of P; I shall calculate N(u).

Notation. If H is an n-dimensional cell complex and a H, then N(a, H) is
the number of n-cells of H to which a is a face; H might be a subcomplex of
some larger complex.
To find N(u) I need to know N(u, P) and how many prisms u belongs to; this

number depends on the projections L(u) and R(u) of u into L and R. First let
us assume that R(u) [0, 1]. Write the vertices of u in lexicographical order.
Thenp must change from 0 to 1, say from (h, 0) to (k, 1). There are three cases:

(I) k h; then N(u, P) 1;
(II) k h + 1; thenN(u,P) 2;

(III) k h + 2; thenN(u,P)= 3.

The number of prisms to which u belongs equals N(L(u), L). In Case I,
dim L(u) n 3, so N(L(u), L) 4. In Cases II and III, dim L(u) n 2,
so N(L(u), L) 2. It follows that N(u, K) is 4 in Cases I and II, and 6 in
Case III.
Now let us assume that R(u) 0 (the case R(u) 1 is similar). Then u is

one of these types:

(IV) {(1, 0),..., (n, 0)} but where a single term is missing;
(V) ((1, 0),..., (n 1, 0));
(VI) {(2, 0),..., (n, 0)}.

It is not hard to see that N(u, K) is 4 in Case IV and 6 in Cases V and VI. In
Case VI, for example, the possible n-simplexes are {(_+ 1, 0), (2, 0),..., (n, 0),
(n, 1)}, {(_+ 1, 1), (2, 1), (2, 0),..., (n, 0)}, and {(+_ 1, 1), (_+ 1, 0), (2, 0),...,
(n, 0)} provided the first two terms have the same sign.
Now let s {(1, 0),..., (k, 0), (k, 1),..., (n, 1)} be an n-simplex of P. I
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count the number of (n 2)-faces u of s such that N(u, K) 6. If 3 < k <
n 2, then s has three faces of type III. If k n (or if k 2), then s has
one face of type III and one of type VI (or of type V, respectively)--but if
n 3, there is also a face of type V. If k n (or 1), then s has one face each
of types III, V and VI. Thus every n-simplex of K has at most three (n 2)-
faces u for which N(u)= 6 and N(u")= 4 for its other (n- 2)-faces.
Consequently

R(s, t-t") > 2((2n 4)/4 + 3/6) n + 0

everywhere; the equality definitely holds for certain choices of s, and t". And
the conclusion of Theorem 3 is of course false. In fact if is an (n 1)-simplex
of L and its barycenter, then x R is the underlying space of an infinite path
in K*, no finite portion of which has shorter variations.

I shall conclude with two generalizations of Theorem 3. The first just com-
bines the theorem with Corollary 2.

COROLLARY 4. Let K be a simplicial complex which is an n-manifoM without
boundary. Assume there is a number R > 0 such that R(s, t-t’) + R(s", t’-t") >
2R whenever s and s" are n-simplexe intersecting in an (n 1)-simplex t’, and
and t" are (n 1)-faces of s and s" respectively, different from t’. Then K is

finite and has diameter < 2 + (4n + 3R)/3Rn.

Proof I use the notation of the proof of Theorem 3. The curvature hypoth-
esis says that for each 1,..., r 2,

c cl c,, b, (1 2/Ic3c1) -t- ,, c, c,, ,+ ,, (1 2/1c"1)

2n( R"/2),

where R" 2R/n. Now each ofthe two sums on the left-hand side is a (2n 1)-
fold sum, each of whose terms is 2 1/3, since loci is always 3. It follows that

c, c.,, (1 2/1cl) 2n(1 R"/2) (2n 1)/3.

As in the proof of Corollary 2 it follows that

2 c...c,,, (1- 2/1c1)
i=1

(11- 2)2n( R"/2) + 2(2n(1 R"/2) -(2n 1)/3),

The proof of Proposition shows that K* has diameter (4n + 1)/3R. The
corollary now follows from the proof of Theorem 3.
The other generalization of Theorem 3 has to do with not requiring K to be a

manifold. If K is a simplicial complex, not necessarily a manifold, then it has a
dual cone complex K* (see Akin [1]). All that is needed to define Ricci curvature
and to prove Theorem 3 is that the 2-skeleton of K* be a connected cell complex.
In terms of K this means"
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(1) K is a geometrical n-circuit, that is, every (n l)-simplex of K is a face
of exactly two n-simplexes of K, and the complement of its (n 2)-skeleton is
connected and

(2) K has no (n 2)-dimensional singularitiesmthe link of every (n 2)-
simplex is a simple closed curve.

In fact the second condition can be evaded. For if K is a geometrical n-circuit,
then the dual of an (n 2)-simplex is the cone on a number of simple closed
curves, and in the definitions and arguments I can restrict attention to the cone
on just one of these curves. Thus if c is a 2-cone, then cc refers to one of the
components of bdy c singled out by the context, and 10cl refers to the number of
1-faces of that component. In terms of K the adjustments to be made are these:
if s is an n-simplex and u an (n 2)-face of s, then N(u; s) denotes the number
of 1-simplexes in that component of link (u, K) to which link (u, s) belongs;
and the Ricci curvature at s in the direction t-t" is redefined to be

2n-1

2 uj<tort",dimu=n-2 1IN(u; s) n + 1.
j=l

If these changes are made, the proof of Theorem 3 will also prove:

THEOREM 5. Let K be a geometrical n-circuit. Assume there is a number
R > 0 such that R(s, t-t") > R for all s and t-t". Then K is finite and has
diameter < 2 + 1/R.

For example K might be a triangulation of a complex analytic variety. I do
not know if Myers’ theorem has been generalized to smooth manifolds with
singularities.

Corollary 4 can also be generalized to geometrical n-circuits.
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