ISOMORPHISMS OF SPACES OF CONTINUOUS VECTOR-VALUED FUNCTIONS

BY
Michael Cambern

If X is a locally compact Hausdorff space and E is a Banach space, we denote by $C_{0}(X, E)$ the Banach space of continuous functions vanishing at infinity on X, taking values in E, and provided with the usual supremum norm. If X is actually compact, so that $C_{0}(X, E)$ consists of all continuous functions on X to E, we use the notation $C(X, E)$ to represent this function space. And if K is the scalar field associated with E, we will denote $C_{0}(X, K)$ by $C_{0}(X)$, (or by $C(X)$ if X is compact).

The well-known Banach-Stone theorem states that if X and Y are locally compact Hausdorff spaces, then the existence of an isometry T of $C_{0}(X)$ onto $C_{0}(Y)$ implies that X and Y are homeomorphic. In [2] and [3] this theorem was strengthened by showing that the conclusion holds if the requirement that T be an isometry is replaced by the requirement that T be an isomorphism with $\|T\|\left\|T^{-1}\right\|<2$. Essentially the same result was obtained quite independently in [1] by D. Amir, who assumed that the spaces X and Y were compact, and that the functions were real-valued. In [4] it was shown that 2 is indeed the greatest number for which the formulation of the Banach-Stone theorem given in [3] is valid, by exhibiting a pair of locally compact Hausdorff spaces X and Y, with X compact, Y noncompact, and an isomorphism T of $C(X)$ onto $C_{0}(Y)$ with $\|T\|\left\|T^{-1}\right\|=2$. However, it seems to be still unknown what is the best number for such a generalization in the case in which X and Y are both required to be compact. Y. Gordon has shown that if X and Y are countable compact metric spaces, then the existence of an isomorphism T of $C(X)$ onto $C(Y)$ satisfying $\|T\|\left\|T^{-1}\right\|<3$ implies that X and Y are homeomorphic [6].

Here we investigate the problem of whether a generalization of this type, involving isomorphisms rather than isometries, is possible when we consider spaces of vector-valued, rather than scalar-valued functions. We establish the following:

Theorem. Let X and Y be locally compact Hausdorff spaces, and E a finitedimensional Hilbert space. If there exists an isomorphism T of $C_{0}(X, E)$ onto $C_{0}(Y, E)$ satisfying $\|T\|\left\|T^{-1}\right\|<\sqrt{ } 2$, then X and Y are homeomorphic.

We do not know if $\sqrt{ } 2$ is the best number for the formulation of such a theorem. The example of [4] shows that $\sqrt{ } 2$ cannot be replaced by any number greater than 2 . We note that if T is required to be an isometry instead of merely
an isomorphism with small bound, then M. Jerison has shown that, if X and Y are compact, the conclusion of the theorem is valid for a much larger class of Banach spaces E [7].

The proof of the theorem is established by two propositions and a sequence of lemmas. Lemmas 1 through 6^{\prime} do not depend upon the fact that E is a Hilbert space, nor upon the fact that we are using $\sqrt{ } 2$ as a bound. They require only that E be a finite-dimensional Banach space and that $\|T\|\left\|T^{-1}\right\|<2$. We therefore state and prove Lemmas 1 through 6^{\prime} under these more liberal assumptions, since they in no way complicate the proofs, and since it is quite possible that a stronger theorem may eventually be established. Only following Lemma 6^{\prime} do we use the fact that E is a Hilbert space and that $\|T\|\left\|T^{-1}\right\|<\sqrt{ } 2$.

Throughout we will use the fact that the dual space $C_{0}(X, E)^{*}$ of $C_{0}(X, E)$ is (isometrically isomorphic to) the Banach space of all regular Borel vector measures \mathbf{m} on X to E^{*}, with finite variation $|\mathbf{m}|$, and norm given by $\|\mathbf{m}\|=$ $|\mathbf{m}|(X)$. This characterization of $C_{0}(X, E)^{*}$ was first proved by I. Singer [8] for the case in which X is compact. The proof for compact X also follows from Corollary 2 of [$5, \mathrm{p} .387$]. The result for locally compact X then follows readily by considering $C_{0}(X, E)$ as a subspace of $C(\hat{X}, E)$, where \hat{X} denotes the onepoint compactification of X, and using a standard theorem relating the dual space $C_{0}(X, E)^{*}$ to a quotient space of $C(\hat{X}, E)^{*}[9, \mathrm{p} .188]$. All properties of vector measures which are used in this article may be found in [5].

Elements of E will be denoted by b, c, e, u, v, and those of E^{*}, for the most part, by ϕ and ψ. The value of ϕ at b is denoted by $\langle b, \phi\rangle$. We denote elements of $C_{0}(X, E)$ and those of $C_{0}(Y, E)$, respectively, by the letters F and G, often accompanied by subscripts. Elements of $C_{0}(X)$ and of $C_{0}(Y)$ will be denoted, respectively, by f and g. The norms in E and E^{*} will be denoted by $\|\cdot\|$, while norms in $C_{0}(X, E), C_{0}(Y, E), C_{0}(X)$ and $C_{0}(Y)$ are denoted by $\|\cdot\|_{\infty}$. The letter S will always represent the surface of the unit sphere in E,

$$
S=\{e \in E:\|e\|=1\}
$$

The following notational convention will be used throughout the article. We will say that a net $\left\{F_{x, e, i}: i \in I\right\} \subseteq C_{0}(X, E)$ is regularly associated with a pair $(x, e) \in X \times E$ if $F_{x, e, i}=f_{x, i} \cdot e$, where $\left\{f_{x, i}: i \in I\right\}$ is a net contained in $C_{0}(X)$ with $\left\|f_{x, i}\right\|_{\infty}=f_{x, i}(x)=1$ for all i, and the support of $f_{x, i}$ is contained in N_{i}, where $\left\{N_{i}: i \in I\right\}$ is the family of neighborhoods of x and the set of indices I is directed in the usual manner by set inclusion, $\left(i_{1} \leq i_{2}\right.$ if $\left.N_{i_{2}} \subseteq N_{i_{1}}\right)$. We write $\left\{F_{x, e, i}\right\} \leftrightarrow(x, e)$ to denote that $\left\{F_{x, e, i}\right\}$ is a net in $C_{0}(X, E)$ which is regularly associated with (x, e). The definition of nets $\left\{G_{y, e, i}\right\} \subseteq C_{0}(Y, E)$ regularly associated with pairs $(y, e) \in Y \times E$ is analogous, and we use the corresponding notation, $\left\{G_{y, e, i}\right\} \leftrightarrow(y, e)$.

Proposition 1. If E is a Hilbert space and if $e_{1}, e_{2}, \ldots, e_{n}$ are vectors in E with $\left\|e_{j}\right\| \geq \delta>0$ for $1 \leq j \leq n$, then there exist scalars $\lambda_{j}, 1 \leq j \leq n$, with $\left|\lambda_{j}\right|=1$ for all j, such that $\left\|\sum_{j=1}^{n} \lambda_{j} e_{j}\right\| \geq \sqrt{ } n \cdot \delta$.

Proof. The proof is made by induction on the number of elements n. It is clearly true for $n=1$. Thus assume the result holds for some $k \geq 1$ and that we are given elements $e_{j} \in E, 1 \leq j \leq k+1$, with $\left\|e_{j}\right\| \geq \delta>0$ for all j. By the inductive hypothesis there exist scalars $\lambda_{j}, 1 \leq j \leq k$, with $\left|\lambda_{j}\right|=1$ for all j such that $\left\|\sum_{j=1}^{k} \lambda_{j} e_{j}\right\|^{2} \geq k \cdot \delta^{2}$. Let $u=\sum_{j=1}^{k} \lambda_{j} e_{j}$. Then

$$
\begin{aligned}
\left\|\sum_{j=1}^{k+1} \lambda_{j} e_{j}\right\|^{2} & =\left\|u+\lambda_{k+1} e_{k+1}\right\|^{2} \\
& =\|u\|^{2}+2 \operatorname{Re} \lambda_{k+1}\left\langle e_{k+1}, u\right\rangle+\left|\hat{\lambda}_{k+1}\right|^{2}\left\|e_{k+1}\right\|^{2} \\
& \geq(k+1) \cdot \delta^{2}
\end{aligned}
$$

if λ_{k+1} is chosen so that $\left|\lambda_{k+1}\right|=1$ and $\operatorname{Re} \lambda_{k+1}\left\langle e_{k+1}, u\right\rangle \geq 0$.
Proposition 2. If E is a finite-dimensional Banach space there exists a positive constant K_{E} such that if $e_{1}, e_{2}, \ldots, e_{n}$ are elements of E with $\left\|e_{j}\right\| \geq \delta>0$ for $1 \leq j \leq n$, then there exist scalars $\lambda_{j}, 1 \leq j \leq n$ with $\left|\lambda_{j}\right|=1$ for all j, such that $\left\|\sum_{j=1}^{n} \lambda_{j} e_{j}\right\| \geq K_{E} \cdot \sqrt{ } n \cdot \delta$.

Proof. Suppose that the dimension of E is m, and let l_{2}^{m} denote m-dimensional Hilbert space over the scalar field associated with E. Let A be a linear operator taking E onto l_{2}^{m}. Now for each $j, A\left(e_{j}\right) \in l_{m}^{2}$ and

$$
\left\|A\left(e_{j}\right)\right\| \geq\left\|e_{j}\right\| /\left\|A^{-1}\right\| \geq \delta /\left\|A^{-1}\right\|
$$

By Proposition 1, there exist scalars $\lambda_{j}, 1 \leq j \leq n$ with $\left|\lambda_{j}\right|=1$ for all j, such that $\left\|\sum_{j=1}^{n} \lambda_{j} A\left(e_{j}\right)\right\| \geq \sqrt{ } n \cdot \delta /\left\|A^{-1}\right\|$. Thus

$$
\left\|\sum_{j=1}^{n} \lambda_{j} e_{j}\right\|=\left\|A^{-1}\left(\sum_{j=1}^{n} \lambda_{j} A\left(e_{j}\right)\right)\right\| \geq \sqrt{ } n \cdot \delta /\|A\| \cdot\left\|A^{-1}\right\|
$$

and we may take $K_{E}=1 /\|A\| \cdot\left\|A^{-1}\right\|$.
Throughout Lemmas 1 to 6^{\prime}, we shall assume that E is a finite-dimensional Banach space and that T is a fixed isomorphism of $C_{0}(X, E)$ onto $C_{0}(Y, E)$ satisfying $\|T\|\left\|T^{-1}\right\|<2$. There is no loss of generality in assuming that T is norm-increasing-i.e., $\|F\|_{\infty} \leq\|T(F)\|_{\infty}$ for $F \in C_{0}(X, E)$-and that $\left\|T^{-1}\right\|=1$, for otherwise we may simply replace T by the isomorphism $T^{\prime}=$ $\left\|T^{-1}\right\| T$ which has these properties. Thus these assumptions concerning T will be made throughout the remainder of this article. Then throughout Lemmas 1 to $6^{\prime} M$ will denote a fixed real number satisfying $\|T\| / 2<M^{2}<M<1$.

For any point $x \in X$, we will denote by μ_{x} the scalar-valued measure which is the positive unit mass concentrated at x. Then any element $\mathbf{m} \in C_{0}(X, E)^{*}$ can be written uniquely as $\mathbf{m}=\phi \cdot \mu_{x}+\mathbf{n}$, where $\phi \in E^{*}$ and $\mathbf{n} \in C_{0}(X, E)^{*}$ with $\mathbf{n}(\{x\})=0$. (Let $\phi=\mathbf{m}(\{x\})$ and $\mathbf{n}=\mathbf{m}-\phi \cdot \mu_{x}$.) From this remark and the regularity of the measures involved, it follows that if $\left\{F_{x, e, i}\right\} \leftrightarrow$ $(x, e) \in X \times E$, then for all $\mathrm{m} \in C_{0}(Y, E)^{*}$,

$$
\lim _{i} \int T\left(F_{x, e, i}\right) d \mathbf{m}=\lim _{i} \int F_{x, e, i} d\left(T^{*} \mathbf{m}\right)
$$

exists, and is equal to $\left\langle e,\left(T^{*} \mathbf{m}\right)(\{x\})\right\rangle$. We thus obtain the following:

Lemma 1. If $\left\{F_{x, e, i}\right\} \leftrightarrow(x, e) \in X \times E$ then for each $y \in Y, \lim _{i}\left(T\left(F_{x, e}, i\right)\right)(y)$ exists as an element of E (in the norm topology).

Proof. For fixed $y \in Y$ and $\phi \in E^{*}$, we know that $\lim _{i} \int T\left(F_{x, e, i}\right) d\left(\phi \cdot \mu_{y}\right)$ exists. Moreover, it is clear that this limit is equal to $\lim _{i}\left\langle\left(T\left(F_{x, e, i}\right)\right)(y), \phi\right\rangle$. Now the map from E^{*} to the scalars given by $\phi \rightarrow \lim _{i}\left\langle\left(T\left(F_{x, e, i}\right)\right)(y), \phi\right\rangle$ is clearly linear, and is bounded by $2\|e\|$. Thus there exists an element $v \in E^{* *}=$ E such that for $\phi \in E^{*}$,

$$
\lim _{i}\left\langle\left(T\left(F_{x, e, i}\right)\right)(y), \phi\right\rangle=\langle v, \phi\rangle .
$$

But this simply says that the net $\left\{\left(T\left(F_{x, e, i}\right)\right)(y)\right\}$ converges to v in the weak topology on E, which, since E is finite dimensional, coincides with the norm topology.

Lemma 2. Let $\left\{F_{x, e, i}\right\} \leftrightarrow(x, e) \in X \times S$. (Note that $\|e\|=1$.) For each $i \in I$, denote by R_{i} the subset of Y defined by

$$
R_{i}=\left\{y \in Y:\left\|\left(T\left(F_{x, e, i}\right)\right)(y)\right\|>M\right\} .
$$

If Y_{x} denotes the subset of all $y \in Y$ such that there exists a net $\left\{y_{i}\right\}$ in Y, with $y_{i} \in R_{i}$ for each i, which has y as a cluster point, then Y_{x} is a finite subset of Y.

Proof. Let $y \in Y_{x}$ and let $\left\{y_{i}\right\}$ be such a net in Y having y as a cluster point. Since for each $i\left(T\left(F_{x, e, i}\right)\right)\left(y_{i}\right)$ lies in the compact subset of E defined by

$$
\{u \in E: M \leq\|u\| \leq\|T\|\}
$$

it follows readily that there exists an element $u \in E$, with $\|u\| \geq M$, and a subnet $\left\{y_{i(\alpha)}\right\} \subseteq\left\{y_{i}\right\}$ such that $y_{i(\alpha)} \rightarrow y$ and $\left(T\left(F_{x, e, i(\alpha)}\right)\right)\left(y_{i(\alpha)}\right) \rightarrow u$.

Choose some $\phi \in E^{*}$ with $\|\phi\|=1$ such that $\langle u, \phi\rangle=\|u\|$, and consider the neighborhood N_{u} of u defined by

$$
N_{u}=\left\{v \in E:|\langle u, \phi\rangle-\langle v, \phi\rangle|<M-M^{2}\right\} .
$$

Choose a real-valued $g_{y} \in C_{0}(Y)$ with $g_{y}(y)=\left\|g_{y}\right\|_{\infty}=1 /\|u\|$, and define $G_{y} \in C_{0}(Y, E)$ by $G_{y}=g_{y} \cdot u$. Let N_{y} be the neighborhood of y in Y given by

$$
N_{y}=\left\{y^{\prime} \in Y:\left\langle G_{y}\left(y^{\prime}\right), \phi\right\rangle>\|T\| / 2\right\} .
$$

Then for all i such that $y_{i} \in N_{y}$ and $\left(T\left(F_{x, e, i}\right)\right)\left(y_{i}\right) \in N_{u}$, we have

$$
\begin{aligned}
\left\|T\left(F_{x, e, i}\right)+G_{y}\right\|_{\infty} & \geq\left\|\left(T\left(F_{x, e, i}\right)\right)\left(y_{i}\right)+G_{y}\left(y_{i}\right)\right\| \\
& \geq\left|\left\langle\left(T\left(F_{x, e, i}\right)\right)\left(y_{i}\right)+G_{y}\left(y_{i}\right), \phi\right\rangle\right| \\
& \geq\left|\left\langle G_{y}\left(y_{i}\right), \phi\right\rangle+\langle u, \phi\rangle\right|-\left|\langle u, \phi\rangle-\left\langle\left(T\left(F_{x, e, i}\right)\right)\left(y_{i}\right), \phi\right\rangle\right| \\
& >\|T\| / 2+\|u\|-\left(M-M^{2}\right) \\
& \geq\|T\| / 2+M^{2} .
\end{aligned}
$$

Thus $\left\|F_{x, e, i}+T^{-1}\left(G_{y}\right)\right\|_{\infty}>\frac{1}{2}+M^{2} /\|T\|>1$.
Now $\left\|T^{-1}\left(G_{y}\right)\right\|_{\infty} \leq 1$, so that the maximum set of the function

$$
\left\|F_{x, e, i}+T^{-1}\left(G_{y}\right)\right\|
$$

is contained in the neighborhood W_{i} of x defined by

$$
W_{i}=\left\{x^{\prime} \in X: F_{x, e, l}\left(x^{\prime}\right) \neq 0\right\} .
$$

Moreover, at any point x^{\prime} of this maximum set, $\left\|\left(T^{-1}\left(G_{y}\right)\right)\left(x^{\prime}\right)\right\|$ is bounded away from zero by the positive number $\delta=M^{2} /\|T\|-\frac{1}{2}$. Thus for each i such that $y_{i} \in N_{y}$ and $\left(T\left(F_{x, e, i}\right)\right)\left(y_{i}\right) \in N_{u}$, there exists a point x_{i} in the corresponding set W_{i} in X with $\left\|\left(T^{-1}\left(G_{y}\right)\right)\left(x_{i}\right)\right\| \geq \delta$. Since the W_{i} thus obtained constitute a neighborhood basis at x, we conclude that $\left\|\left(T^{-1}\left(G_{y}\right)\right)(x)\right\| \geq \delta$.

But this clearly implies that Y_{x} is finite. For given any n points y_{1}, \ldots, y_{n} of Y_{x}, we can choose the corresponding functions $G_{y_{j}}, 1 \leq j \leq n$, with disjoint supports, so that for any choice of scalars $\lambda_{j}, 1 \leq j \leq n$, with $\left|\lambda_{j}\right|=1$ for each j, we have $\left\|\sum_{j=1}^{n} \lambda_{j} G_{y_{j}}\right\|_{\infty}=1$. But for each $j,\left\|\left(T^{-1}\left(G_{y_{j}}\right)\right)(x)\right\| \geq \delta$, so that by Proposition 2, we can choose the λ_{j} such that

$$
\left\|T^{-1}\left(\sum_{j=1}^{n} \lambda_{j} G_{y_{j}}\right)\right\|_{\infty} \geq\left\|\sum_{j=1}^{n} \lambda_{j}\left(T^{-1}\left(G_{y_{j}}\right)\right)(x)\right\| \geq K_{E} \cdot \sqrt{ } n \cdot \delta .
$$

Lemma 3. If $\left\{F_{x, e, i}\right\} \leftrightarrow(x, e) \in X \times S$, then there exists at least one point $y \in Y$ such that $\left\|\lim _{i}\left(T\left(F_{x, e, i}\right)\right)(y)\right\|>M$.

Proof. By Lemma 2, Y_{x} is finite, say $Y_{x}=\left\{y_{1}, \ldots, y_{n}\right\}$, and we write

$$
T^{*-1}\left(e \cdot \mu_{x}\right)=\sum_{j=1}^{n} \phi_{j} \cdot \mu_{y_{j}}+\mathbf{m}
$$

where the $\phi_{j} \in E^{*}$, and $\mathbf{m} \in C_{0}(Y, E)^{*}$ with $\mathbf{m}\left(\left\{y_{j}\right\}\right)=0$ for $1 \leq j \leq n$. (It will follow, from the proof of the lemma, that Y_{x} is nonvoid, since any y satisfying the condition of the lemma must necessarily belong to Y_{x}. However, for the moment, we simply set $T^{*-1}\left(e \cdot \mu_{x}\right)=\mathbf{m}$, if Y_{x} is void.)

Now suppose that for all $y_{j} \in Y_{x}$, we had $\left\|\lim _{i}\left(T\left(F_{x, e, i}\right)\right)\left(y_{j}\right)\right\| \leq M$. Then we could find an i_{1} such that for all $i \geq i_{1}$ and all $y_{j} \in Y_{x}$, we would have

$$
\left\|\left(T\left(F_{x, e, i}\right)\right)\left(y_{j}\right)\right\|<M+(1-M) / 2
$$

Next, by the regularity of $|\mathbf{m}|$, we could find a compact set $K \subseteq Y-Y_{x}$ such that $|\mathbf{m}|(Y-K)<(1-M) / 4$. Since K is compact and disjoint from Y_{x}, there is an i_{2} such that $i \geq i_{2}$ implies $\left\|\left(T\left(F_{x, e, i}\right)\right)(y)\right\| \leq M$ for all $y \in K$. Hence, if i_{0} is such that $i_{0} \geq i_{1}$ and $i_{0} \geq i_{2}$, then for all $i \geq i_{0}$, noting that $\sum\left\|\phi_{j}\right\| \leq 1$ and $\|\mathbf{m}\| \leq 1-\sum\left\|\phi_{j}\right\|$, we would obtain

$$
\begin{aligned}
1 & =\int F_{x, e, i} d\left(e \cdot \mu_{x}\right) \\
& =\int T\left(F_{x, e, i}\right) d\left(T^{*-1}\left(e \cdot \mu_{x}\right)\right) \\
& =\sum_{j=1}^{n} T\left(F_{x, e, i}\right) d\left(\phi_{j} \cdot \mu_{y_{j}}\right)+\int_{K} T\left(F_{x, e, i}\right) d \mathbf{m}+\int_{Y-K} T\left(F_{x, e, i}\right) d \mathbf{m} \\
& <\left(\sum\left\|\phi_{j}\right\|\right)[M+(1-M) / 2]+M\left(1-\sum\left\|\phi_{j}\right\|\right)+2(1-M) / 4 \\
& =M+\left(1+\sum\left\|\phi_{j}\right\|\right)(1-M) / 2 \\
& \leq 1
\end{aligned}
$$

This contradiction thus completes the proof of the lemma.

Lemma 3'. If $(y, e) \in Y \times S$ and $\left\{G_{y, e, i}\right\} \leftrightarrow(y, e)$, then there exists at least one point $x \in X$ such that $\left\|\lim _{i}\left(T^{-1}\left(G_{y, e, i}\right)\right)(x)\right\|>M /\|T\|$.

Proof. Consider the isomorphism \hat{T} of $C_{0}(Y, E)$ onto $C_{0}(X, E)$ defined by $\hat{T}=\|T\| T^{-1}$. We have $\|\hat{T}\|=\|T\|$, and $\left\|\hat{T}^{-1}\right\|=1$. Thus we may apply Lemma 3 to the mapping \hat{T}, providing the desired conclusion.

Before stating Lemma 4, we make the following observations. As we have previously noted, if $\left\{F_{x, e, i}\right\} \leftrightarrow(x, e) \in X \times S$, then any point y such that $\left\|\lim _{i}\left(T\left(F_{x, e, i}\right)\right)(y)\right\|>M$ necessarily belongs to the finite set Y_{x}. It thus follows that

$$
\sup _{y^{\prime} \in Y}\left\|\lim _{i}\left(T\left(F_{x, e, i}\right)\right)\left(y^{\prime}\right)\right\|
$$

is attained at some point $y \in Y$. Similarly, consideration of the isomorphism $\widehat{T}=\|T\| T^{-1}$ of $C_{0}(Y, E)$ onto $C_{0}(X, E)$ and Lemma 2 imply that if

$$
\left\{G_{y, e, i}\right\} \leftrightarrow(y, e) \in Y \times S,
$$

then $\sup _{x^{\prime} \in X}\left\|\lim _{i}\left(T^{-1}\left(G_{y, e, i}\right)\right)\left(x^{\prime}\right)\right\|$ is attained at some point $x \in X$.
Lemma 4. If $\left\{F_{x, e, i}\right\} \leftrightarrow(x, e) \in X \times S$, let y be a point of Y at which

$$
\left\|\lim _{i}\left(T\left(F_{x, e, i}\right)\right)\left(y^{\prime}\right)\right\|
$$

attains its maximum. Let

$$
u=\lim _{i}\left(T\left(F_{x, e, i}\right)\right)(y) /\left\|\lim _{i}\left(T\left(F_{x, e, i}\right)\right)(y)\right\| .
$$

Then if $\left\{G_{y, u, j}\right\} \leftrightarrow(y, u) \in Y \times S$, it follows that for $x^{\prime} \in X, x^{\prime} \neq x$, we have

$$
\left\|\lim _{j}\left(T^{-1}\left(G_{y, u, j}\right)\right)\left(x^{\prime}\right)\right\| \leq \frac{1}{2}
$$

Proof. Suppose, to the contrary, that there exists some $x^{\prime} \in X, x^{\prime} \neq x$, such that

$$
\left\|\lim _{j}\left(T^{-1}\left(G_{y, u, j}\right)\right)\left(x^{\prime}\right)\right\|>\frac{1}{2} .
$$

Let $c=\lim _{j}\left(T^{-1}\left(G_{y}, u, j\right)\right)\left(x^{\prime}\right)$ and choose $\psi \in E^{*}$ with $\|\psi\|=1$ such that $\langle c, \psi\rangle=\|c\|$. Then write $T^{*-1}\left(\psi \cdot \mu_{x^{\prime}}\right)=\phi \cdot \mu_{y}+\mathbf{m}$, where $\phi \in E^{*}$ and $\mathbf{m} \in C_{0}(Y, E)^{*}$ is such that $\mathbf{m}(\{y\})=0$. Then

$$
\begin{aligned}
\|c\|=\langle c, \psi\rangle & =\lim _{j} \int T^{-1}\left(G_{y, u, j}\right) d\left(\psi \cdot \mu_{x^{\prime}}\right) \\
& =\lim _{j} \int G_{y, u, j} d\left(T^{*-1}\left(\psi \cdot \mu_{x^{\prime}}\right)\right. \\
& =\langle u, \phi\rangle
\end{aligned}
$$

Since $\|u\|=1$, we have $\|\phi\| \geq\|c\|>\frac{1}{2}$, and hence, since $\left\|T^{*-1}\left(\psi \cdot \mu_{x^{\prime}}\right)\right\| \leq 1$,

$$
\|\mathbf{m}\|=\left\|T^{*-1}\left(\psi \cdot \mu_{x^{\prime}}\right)\right\|-\|\phi\| \leq\left\|T^{*-1}\left(\psi \cdot \mu_{x^{\prime}}\right)\right\|-\|c\| \leq 1-\|c\|<\frac{1}{2}
$$

Now let $v=\lim _{i}\left(T\left(F_{x, e, i}\right)\right)(y)$ (so that $\left.u=v /\|v\|\right)$. We have

$$
\lim _{i}\left\langle\left(T\left(F_{x, e, i}\right)\right)(y), \phi\right\rangle=\langle v, \phi\rangle=\langle\|v\| u, \phi\rangle=\|v\|\|c\| .
$$

Since $\|c\|>1-\|c\|$, we can choose a positive number ε such that

$$
(\|v\|-\varepsilon)\|c\|>(\|v\|+\varepsilon)(1-\|c\|)
$$

Next, write $\mathbf{m}=\sum_{k=1}^{r} \phi_{k} \mu_{y_{k}}+\mathbf{n}$, where $\left\{y, y_{1}, \ldots, y_{r}\right\}$ is the set Y_{x}, the $\phi_{k} \in E^{*}, 1 \leq k \leq r$ and \mathbf{n} is an element of $C_{0}(Y, E)^{*}$ with $\mathbf{n}(\{y\})=\mathbf{n}\left(\left\{y_{k}\right\}\right)=$ $0,1 \leq k \leq r$. By our choice of y, we can find an i_{1} such that for all $i \geq i_{1}$, we have

$$
\left|\left\langle\left(T\left(F_{x, e, i}\right)\right)(y), \phi\right\rangle\right|>(\|v\|-\varepsilon)\|c\|
$$

and

$$
\left|\left\langle\left(T\left(F_{x, e, i}\right)\right)\left(y_{k}\right), \phi_{k}\right\rangle\right|<(\|v\|+\varepsilon)\left\|\phi_{k}\right\| \quad \text { for } 1 \leq k \leq r .
$$

Now since $|\mathbf{n}|\left(Y_{x}\right)=0$, we can find a compact set $K \subseteq Y-Y_{x}$ such that

$$
|\mathbf{n}|(Y-K) \leq[\|v\|+\varepsilon-M]\|\mathbf{n}\| / 2
$$

Because K is compact and disjoint from Y_{x}, there exists an i_{2} such that if $i \geq i_{2}$, $\left\|\left(T\left(F_{x, e, i}\right)\right)\left(y^{\prime}\right)\right\| \leq M$ for all $y^{\prime} \in K$. We choose an i_{0} such that $i_{0} \geq i_{1}$ and $i_{0} \geq i_{2}$, and such that for $i \geq i_{0}$ the support of $F_{x, e, i}$ does not contain the point x^{\prime}. Then for $i \geq i_{0}$ we have

$$
\begin{aligned}
0=\int F_{x, e, i} d\left(\psi \cdot \mu_{x^{\prime}}\right)= & \int T\left(F_{x, e, i}\right) d\left(T^{*-1}\left(\psi \cdot \mu_{x^{\prime}}\right)\right) \\
= & \int T\left(F_{x, e, i}\right) d\left(\phi \cdot \mu_{y}\right)+\sum_{k=1}^{r} T\left(F_{x, e, i}\right) d\left(\phi_{k} \cdot \mu_{y_{k}}\right) \\
& +\int_{Y-K} T\left(F_{x, e, i}\right) d \mathbf{n}+\int_{K} T\left(F_{x, e, i}\right) d \mathbf{n} \\
= & \left\langle\left(T\left(F_{x, e, i}\right)\right)(y), \phi\right\rangle+\sum_{k=1}^{r}\left\langle\left(T\left(F_{x, e, i}\right)\right)\left(y_{k}\right), \phi_{k}\right\rangle \\
& +\int_{Y-K} T\left(F_{x, e, i}\right) d \mathbf{n}+\int_{K} T\left(F_{x, e, i}\right) d \mathbf{n} .
\end{aligned}
$$

But for all $i \geq i_{0}$, the modulus of the first term on the right is greater than $(\|v\|-\varepsilon)\|c\|$, while the modulus of the sum of the remaining terms is less than

$$
\begin{aligned}
(\|v\|+\varepsilon)\left(\sum_{k=1}^{r}\left\|\phi_{k}\right\|\right)+[\|v\|+\varepsilon-M]\|\mathbf{n}\| & +M\|\mathbf{n}\| \\
& =(\|v\|+\varepsilon)\|\mathbf{m}\| \leq(\|v\|+\varepsilon)(1-\|c\|)
\end{aligned}
$$

Since this contradicts our choice of ε, the proof of the lemma is complete.

If we again consider the isomorphism $\widehat{T}=\|T\| T^{-1}$, and note that $\hat{T}^{-1}=$ $T /\|T\|$ we obtain the companion result:

Lemma 4'. If $\left\{G_{y, e, i}\right\} \leftrightarrow(y, e) \in Y \times S$ let x be a point of X at which

$$
\left\|\lim _{i}\left(T^{-1}\left(G_{y, e, i}\right)\right)\left(x^{\prime}\right)\right\|
$$

attains its maximum. Let

$$
b=\lim _{i}\left(T^{-1}\left(G_{y, e, i}\right)\right)(x) /\left\|\lim _{i}\left(T^{-1}\left(G_{y, e, i}\right)\right)(x)\right\|
$$

Then if $\left\{F_{x, b, j}\right\} \leftrightarrow(x, b) \in X \times S$, it follows that for all $y^{\prime} \in Y, y^{\prime} \neq y$, we have $\left\|\lim _{j}\left(T\left(F_{x, b, j}\right)\right)\left(y^{\prime}\right)\right\| \leq\|T\| / 2$.

Lemma 5. Let x, y, u, and $\left\{G_{y, u, j}\right\}$ be as in the statement of Lemma 4. Then

$$
\left\|\lim _{j}\left(T^{-1}\left(G_{y, u, j}\right)\right)(x)\right\|>M /\|T\| .
$$

Proof. By Lemma 3', there is some point $x_{0} \in X$ such that

$$
\left\|\lim _{j}\left(T^{-1}\left(G_{y, u, j}\right)\right)\left(x_{0}\right)\right\|>M /\|T\|,
$$

and, by Lemma 4, the only candidate for x_{0} is \boldsymbol{x}.
Similarly, by using Lemmas 3 and 4^{\prime} we obtain:
Lemma 5'. Let y, x, b, and $\left\{F_{x, b, j}\right\}$ be as in the statement of Lemma 4'. Then

$$
\left\|\lim _{j}\left(T\left(F_{x, b, j}\right)\right)(y)\right\|>M
$$

Lemma 6. Let x, y, u, and $\left\{G_{y, u, j}\right\}$ be as in the statement of Lemma 4. If

$$
b=\lim _{j}\left(T^{-1}\left(G_{y, u, j}\right)\right)(x) /\left\|\lim _{j}\left(T^{-1}\left(G_{y, u, j}\right)\right)(x)\right\|
$$

and if $\left\{F_{x, b, i}\right\} \leftrightarrow(x, b)$, then we have $\left\|\lim _{i}\left(T\left(F_{x, b, i}\right)\right)(y)\right\|>M$, and for all $y^{\prime} \in Y, y^{\prime} \neq y$,

$$
\left\|\lim _{i}\left(T\left(F_{x, b, i}\right)\right)\left(y^{\prime}\right)\right\| \leq\|T\| / 2
$$

Proof. By Lemmas 4 and 5, we know that x is the unique point of X at which

$$
\left\|\lim _{j}\left(T^{-1}\left(G_{y, u, j}\right)\right)\left(x^{\prime}\right)\right\|
$$

attains its maximum. Thus by Lemma 4^{\prime} (with u replacing e) and Lemma 5^{\prime}, the desired conclusion follows.

Similarly by using Lemmas 4^{\prime} and 5^{\prime}, followed by Lemma 4 (with b replacing $e)$ and Lemma 5, we obtain:

Lemma 6'. Let y, x, b, and $\left\{F_{x, b, j}\right\}$ be as in the statement of Lemma 4'. If

$$
u=\lim _{j}\left(T\left(F_{x, b, j}\right)\right)(y) /\left\|\lim _{j}\left(T\left(F_{x, b, j}\right)\right)(y)\right\|
$$

and if $\left\{G_{y, u, i}\right\} \leftrightarrow(y, u)$, then we have $\left\|\lim _{i}\left(T^{-1}\left(G_{y, u, i}\right)\right)(x)\right\|>M /\|T\|$, and for all $x^{\prime} \in X, x^{\prime} \neq x$,

$$
\left\|\lim _{i}\left(T^{-1}\left(G_{y, u, i}\right)\right)\left(x^{\prime}\right)\right\| \leq \frac{1}{2}
$$

Lemmas 4,5 , and 6 show that starting with any point $x \in X$, there is a point $y \in Y$ and elements $b, u \in S$, such that if $\left\{F_{x, b, i}\right\} \leftrightarrow(x, b)$ then

$$
\begin{equation*}
\left\|\lim _{i}\left(T\left(F_{x, b, i}\right)\right)(y)\right\|>M \tag{1}
\end{equation*}
$$

while

$$
\begin{equation*}
\left\|\lim _{i}\left(T\left(F_{x, b, i}\right)\right)\left(y^{\prime}\right)\right\| \leq\|T\| / 2, \quad y^{\prime} \in Y-\{y\} \tag{2}
\end{equation*}
$$

and if $\left\{G_{y, u, j}\right\} \leftrightarrow(y, u)$ then

$$
\begin{equation*}
\left\|\lim _{j}\left(T^{-1}\left(G_{y, u, j}\right)\right)(x)\right\|>M /\|T\| \tag{3}
\end{equation*}
$$

while

$$
\begin{equation*}
\left\|\lim _{j}\left(T^{-1}\left(G_{y, u, j}\right)\right)\left(x^{\prime}\right)\right\| \leq \frac{1}{2}, \quad x^{\prime} \in X-\{x\} . \tag{4}
\end{equation*}
$$

Lemmas $4^{\prime}, 5^{\prime}$, and 6^{\prime} show conversely that starting with any point $y \in Y$, there is an $x \in X$ and elements $b, u \in S$ such that (1), (2), (3), and (4) are satisfied.

We now place further restrictions on the space E and on the bound of T which will insure that the relations (1) through (4) define a correspondence between points of X and Y which is, in fact, a homeomorphism. From now on, we shall assume that E is a finite-dimensional Hilbert space. Recall that the conclusions of Lemmas 1 through 6^{\prime} hold under the assumptions that T is any isomorphism of $C_{0}(X, E)$ onto $C_{0}(Y, E)$ with $\|T\|<2$ and $\left\|T^{-1}\right\|=1$, and that M is any real number with $\|T\| / 2<M^{2}<M<1$. We shall henceforth assume, in addition, that $\|T\|<\sqrt{ } 2$ and that $\|T\| / \sqrt{ } 2<M$.

For $y \in Y$, define $x=\rho(y)$ if there exists a $b \in S$ such that x is related to y by (1) and (2). Then ρ is a well-defined function from Y to X. For if not, for some $y \in Y$ there would exist points $x_{1}, x_{2} \in X, x_{1} \neq x_{2}$ and elements $b_{1}, b_{2} \in$ S, such that if $\left\{F_{x_{1}, b_{1}, i}\right\} \leftrightarrow\left(x_{1}, b_{1}\right)$ and $\left\{F_{x_{2}, b_{2}, j}\right\} \leftrightarrow\left(x_{2}, b_{2}\right)$ then

$$
\left\|\left(T\left(F_{x_{1}, b_{1}, i}\right)\right)(y)\right\|>M \text { for all } i \geq \text { some } i_{0}
$$

and

$$
\left\|\left(T\left(F_{x_{2}, b_{2}, j}\right)\right)(y)\right\|>M \text { for all } j \geq \text { some } j_{0}
$$

If we choose $i \geq i_{0}$ and $j \geq j_{0}$ such that the supports of $F_{x_{1}, b_{1}, i}$ and $F_{x_{2}, b_{2}, j}$ are disjoint, then for all choices of scalars λ_{1}, λ_{2} with $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$, we have

$$
\left\|\lambda_{1} F_{x_{1}, b_{1}, i}+\lambda_{2} F_{x_{2}, b_{2}, j}\right\|_{\infty}=1
$$

But by Proposition 1, we could choose such scalars λ_{1}, λ_{2} so that

$$
\begin{aligned}
\left\|T\left(\lambda_{1} F_{x_{1}, b_{1}, i}+\lambda_{2} F_{x_{2}, b_{2}, j}\right)\right\|_{\infty} & \geq\left\|\lambda_{1}\left(T\left(F_{x_{1}, b_{1}, i}\right)\right)(y)+\lambda_{2}\left(T\left(F_{x_{2}, b_{2}, j}\right)\right)(y)\right\| \\
& >\sqrt{ } 2 M \\
& >\|T\|
\end{aligned}
$$

and this contradiction shows that ρ is indeed a well defined function.
Similarly, if for $x \in X$, we define $y=\tau(x)$ if there exists a $u \in S$ such that y is related to x by (3) and (4), then τ is a well-defined function from X to Y. The remarks of the paragraph following Lemma 6^{\prime} show that $y=\tau(x)$ if, and only if, $x=\rho(y)$, so that τ is a one-one function mapping X onto all of Y and $\rho=\tau^{-1}$.

Lemma 7. τ is a homeomorphism of X onto Y.

Proof. We show that τ is continuous. The proof that $\rho=\tau^{-1}$ is continuous is analogous.

Suppose, to the contrary, that there exists a net $\left\{x_{\alpha}: \alpha \in A\right\}$ in X such that $x_{\alpha} \rightarrow x_{0}$, but that $y_{\alpha}=\tau\left(x_{\alpha}\right) \leftrightarrow \tau\left(x_{0}\right)=y_{0}$. Then there exists some compact neighborhood N of y_{0} such that for every $\alpha_{0} \in A$, there is an $\alpha \geq \alpha_{0}$ such that y_{α} lies outside N. By the definition of τ, there exists a $u \in S$ such that if $\left\{G_{y_{0}, u, i}\right\} \leftrightarrow\left(y_{0}, u\right)$, then for some $i_{0},\left\|\left(T^{-1}\left(G_{y_{0}, u, i_{0}}\right)\right)\left(x_{0}\right)\right\|>M /\|T\|$ and the support of $G_{y_{0}, u, i_{0}}$ is contained in N.

Since $x_{\alpha} \rightarrow x_{0}$ and $T^{-1}\left(G_{y_{0}, u, i_{0}}\right)$ is continuous, there exists an $\alpha_{0} \in A$ such that if $\alpha \geq \alpha_{0}$ then $\left\|\left(T^{-1}\left(G_{y_{0}, u, i_{0}}\right)\right)\left(x_{\alpha}\right)\right\|>M /\|T\|$. Thus fix an $\alpha \geq \alpha_{0}$ such that $y_{\alpha}=\tau\left(x_{\alpha}\right)$ lies outside N. Again by the definition of τ, there exists a $v \in S$ such that if $\left\{G_{y_{\alpha}, v, j}\right\} \leftrightarrow\left(y_{\alpha}, v\right)$, then for some j_{0},

$$
\left\|\left(T^{-1}\left(G_{y_{\alpha}, v, j_{0}}\right)\right)\left(x_{\alpha}\right)\right\|>M /\|T\|
$$

and the supports of $G_{y_{0}, u, i_{0}}$ and $G_{y_{\alpha}, v, j_{0}}$ are disjoint. Thus for all scalars λ_{k}, $k=1$, 2 , with $\left|\lambda_{k}\right|=1$, we have $\left\|\lambda_{1} G_{y_{0}, u, i_{0}}+\lambda_{2} G_{y_{\alpha}, v, j_{0}}\right\|_{\infty}=1$. But again using Proposition 1, for a proper choice of such scalars λ_{k}, we have

$$
\begin{aligned}
\left\|T^{-1}\left(\lambda_{1} G_{y_{0}, u, i_{0}}+\lambda_{2} G_{y_{\alpha}, v, j_{0}}\right)\right\|_{\infty} \geq & \| \lambda_{1}\left(T^{-1}\left(G_{y_{0}, u, i_{0}}\right)\right)\left(x_{\alpha}\right) \\
& +\lambda_{2}\left(T^{-1}\left(G_{y_{\alpha}, v, j_{0}}\right)\right)\left(x_{\alpha}\right) \| \\
> & \sqrt{ } 2 M /\|T\| \\
> & 1,
\end{aligned}
$$

which contradicts the fact that $\left\|T^{-1}\right\|=1$.

Remark. If, for any fixed finite-dimensional Banach space E, one could show that (1) and (2) hold for all $b \in S$, instead of simply for some $b \in S$, one could then establish that the conclusion of the theorem remains valid for all isomorphisms T satisfying $\|T\|\left\|T^{-1}\right\|<2$.

References

1. D. Amir, On isomorphisms of continuous function spaces, Israel J. Math., vol. 3 (1965), pp. 205-210.
2. M. Cambern, A generalized Banach-Stone theorem, Proc. Amer. Math. Soc., vol. 17 (1966), pp. 396-400.
3. - On isomorphisms with small bound, Proc. Amer. Math. Soc., vol. 18 (1967), pp. 1062-1066.
4. -_, Isomorphisms of $C_{0}(Y)$ onto $C(X)$, Pacific J. Math., vol. 35 (1970), pp. 307-312.
5. N. Dinculeanu, Vector measures, Pergamon Press, New York, 1967.
6. Y. Gordon, On the distance coefficient between isomorphic function spaces, Israel J. Math., vol. 8 (1970), pp. 391-397.
7. M. Jerison, The space of bounded maps into a Banach space, Ann. of Math. (2), vol. 52 (1950), pp. 309-327.
8. I. SINGER, Linear functionals on the space of continuous mappings of a compact space into a Banach space (Russian), Revue Roumaine Math. Pures Appl., vol. 2 (1957), pp. 301-315.
9. A. E. TAYLOR, Introduction to functional analysis, Wiley, New York, 1958.

University of California
Santa Barbara, California

