ISOMORPHISMS OF SPACES OF CONTINUOUS VECTOR-VALUED FUNCTIONS

BY

MICHAEL CAMBERN

If X is a locally compact Hausdorff space and E is a Banach space, we denote by $C_0(X, E)$ the Banach space of continuous functions vanishing at infinity on X, taking values in E, and provided with the usual supremum norm. If X is actually compact, so that $C_0(X, E)$ consists of all continuous functions on X to E, we use the notation C(X, E) to represent this function space. And if K is the scalar field associated with E, we will denote $C_0(X, K)$ by $C_0(X)$, (or by C(X) if X is compact).

The well-known Banach-Stone theorem states that if X and Y are locally compact Hausdorff spaces, then the existence of an isometry T of $C_0(X)$ onto $C_0(Y)$ implies that X and Y are homeomorphic. In [2] and [3] this theorem was strengthened by showing that the conclusion holds if the requirement that T be an isometry is replaced by the requirement that T be an isomorphism with $||T|| ||T^{-1}|| < 2$. Essentially the same result was obtained quite independently in [1] by D. Amir, who assumed that the spaces X and Y were compact, and that the functions were real-valued. In [4] it was shown that 2 is indeed the greatest number for which the formulation of the Banach-Stone theorem given in [3] is valid, by exhibiting a pair of locally compact Hausdorff spaces X and Y, with X compact, Y noncompact, and an isomorphism T of C(X) onto $C_0(Y)$ with $||T|| ||T^{-1}|| = 2$. However, it seems to be still unknown what is the best number for such a generalization in the case in which X and Y are both required to be compact. Y. Gordon has shown that if X and Y are countable compact metric spaces, then the existence of an isomorphism T of C(X) onto C(Y)satisfying $||T|| ||T^{-1}|| < 3$ implies that X and Y are homeomorphic [6].

Here we investigate the problem of whether a generalization of this type, involving isomorphisms rather than isometries, is possible when we consider spaces of vector-valued, rather than scalar-valued functions. We establish the following:

THEOREM. Let X and Y be locally compact Hausdorff spaces, and E a finitedimensional Hilbert space. If there exists an isomorphism T of $C_0(X, E)$ onto $C_0(Y, E)$ satisfying $||T|| ||T^{-1}|| < \sqrt{2}$, then X and Y are homeomorphic.

We do not know if $\sqrt{2}$ is the best number for the formulation of such a theorem. The example of [4] shows that $\sqrt{2}$ cannot be replaced by any number greater than 2. We note that if T is required to be an isometry instead of merely

Received June 19, 1974.

an isomorphism with small bound, then M. Jerison has shown that, if X and Y are compact, the conclusion of the theorem is valid for a much larger class of Banach spaces E[7].

The proof of the theorem is established by two propositions and a sequence of lemmas. Lemmas 1 through 6' do not depend upon the fact that E is a Hilbert space, nor upon the fact that we are using $\sqrt{2}$ as a bound. They require only that E be a finite-dimensional Banach space and that $||T|| ||T^{-1}|| < 2$. We therefore state and prove Lemmas 1 through 6' under these more liberal assumptions, since they in no way complicate the proofs, and since it is quite possible that a stronger theorem may eventually be established. Only following Lemma 6' do we use the fact that E is a Hilbert space and that $||T|| ||T^{-1}|| < \sqrt{2}$.

Throughout we will use the fact that the dual space $C_0(X, E)^*$ of $C_0(X, E)$ is (isometrically isomorphic to) the Banach space of all regular Borel vector measures **m** on X to E^* , with finite variation $|\mathbf{m}|$, and norm given by $||\mathbf{m}|| = |\mathbf{m}|(X)$. This characterization of $C_0(X, E)^*$ was first proved by I. Singer [8] for the case in which X is compact. The proof for compact X also follows from Corollary 2 of [5, p. 387]. The result for locally compact X then follows readily by considering $C_0(X, E)$ as a subspace of $C(\hat{X}, E)$, where \hat{X} denotes the one-point compactification of X, and using a standard theorem relating the dual space $C_0(X, E)^*$ to a quotient space of $C(\hat{X}, E)^*$ [9, p. 188]. All properties of vector measures which are used in this article may be found in [5].

Elements of E will be denoted by b, c, e, u, v, and those of E^* , for the most part, by ϕ and ψ . The value of ϕ at b is denoted by $\langle b, \phi \rangle$. We denote elements of $C_0(X, E)$ and those of $C_0(Y, E)$, respectively, by the letters F and G, often accompanied by subscripts. Elements of $C_0(X)$ and of $C_0(Y)$ will be denoted, respectively, by f and g. The norms in E and E^* will be denoted by $\|\cdot\|_{\infty}$. The norms in $C_0(X, E)$, $C_0(Y, E)$, $C_0(X)$ and $C_0(Y)$ are denoted by $\|\cdot\|_{\infty}$. The letter S will always represent the surface of the unit sphere in E,

$$S = \{e \in E \colon ||e|| = 1\}.$$

The following notational convention will be used throughout the article. We will say that a net $\{F_{x,e,i}: i \in I\} \subseteq C_0(X, E)$ is *regularly associated* with a pair $(x, e) \in X \times E$ if $F_{x,e,i} = f_{x,i} \cdot e$, where $\{f_{x,i}: i \in I\}$ is a net contained in $C_0(X)$ with $||f_{x,i}||_{\infty} = f_{x,i}(x) = 1$ for all *i*, and the support of $f_{x,i}$ is contained in N_i , where $\{N_i: i \in I\}$ is the family of neighborhoods of x and the set of indices I is directed in the usual manner by set inclusion, $(i_1 \leq i_2 \text{ if } N_{i_2} \subseteq N_{i_1})$. We write $\{F_{x,e,i}\} \leftrightarrow (x, e)$ to denote that $\{F_{x,e,i}\}$ is a net in $C_0(X, E)$ which is regularly associated with (x, e). The definition of nets $\{G_{y,e,i}\} \subseteq C_0(Y, E)$ regularly associated with pairs $(y, e) \in Y \times E$ is analogous, and we use the corresponding notation, $\{G_{y,e,i}\} \leftrightarrow (y, e)$.

PROPOSITION 1. If E is a Hilbert space and if e_1, e_2, \ldots, e_n are vectors in E with $||e_j|| \ge \delta > 0$ for $1 \le j \le n$, then there exist scalars λ_j , $1 \le j \le n$, with $|\lambda_j| = 1$ for all j, such that $||\sum_{i=1}^n \lambda_i e_j|| \ge \sqrt{n \cdot \delta}$.

Proof. The proof is made by induction on the number of elements *n*. It is clearly true for n = 1. Thus assume the result holds for some $k \ge 1$ and that we are given elements $e_j \in E$, $1 \le j \le k + 1$, with $||e_j|| \ge \delta > 0$ for all *j*. By the inductive hypothesis there exist scalars λ_j , $1 \le j \le k$, with $|\lambda_j| = 1$ for all *j* such that $||\sum_{j=1}^k \lambda_j e_j||^2 \ge k \cdot \delta^2$. Let $u = \sum_{j=1}^k \lambda_j e_j$. Then

$$\left\|\sum_{j=1}^{k+1} \lambda_j e_j\right\|^2 = \|u + \lambda_{k+1} e_{k+1}\|^2$$

= $\|u\|^2 + 2 \operatorname{Re} \lambda_{k+1} \langle e_{k+1}, u \rangle + |\lambda_{k+1}|^2 \|e_{k+1}\|^2$
 $\geq (k+1) \cdot \delta^2$

if λ_{k+1} is chosen so that $|\lambda_{k+1}| = 1$ and Re $\lambda_{k+1} \langle e_{k+1}, u \rangle \ge 0$.

PROPOSITION 2. If E is a finite-dimensional Banach space there exists a positive constant K_E such that if e_1, e_2, \ldots, e_n are elements of E with $||e_j|| \ge \delta > 0$ for $1 \le j \le n$, then there exist scalars λ_j , $1 \le j \le n$ with $|\lambda_j| = 1$ for all j, such that $||\sum_{j=1}^n \lambda_j e_j|| \ge K_E \cdot \sqrt{n \cdot \delta}$.

Proof. Suppose that the dimension of E is m, and let l_2^m denote m-dimensional Hilbert space over the scalar field associated with E. Let A be a linear operator taking E onto l_2^m . Now for each j, $A(e_j) \in l_m^2$ and

$$||A(e_i)|| \ge ||e_i||/||A^{-1}|| \ge \delta/||A^{-1}||.$$

By Proposition 1, there exist scalars λ_j , $1 \le j \le n$ with $|\lambda_j| = 1$ for all j, such that $\|\sum_{j=1}^n \lambda_j A(e_j)\| \ge \sqrt{n \cdot \delta} / \|A^{-1}\|$. Thus

$$\left\|\sum_{j=1}^{n} \lambda_{j} e_{j}\right\| = \left\|A^{-1}\left(\sum_{j=1}^{n} \lambda_{j} A(e_{j})\right)\right\| \ge \sqrt{n \cdot \delta} / \|A\| \cdot \|A^{-1}\|,$$

and we may take $K_E = 1/||A|| \cdot ||A^{-1}||$.

Throughout Lemmas 1 to 6', we shall assume that E is a finite-dimensional Banach space and that T is a fixed isomorphism of $C_0(X, E)$ onto $C_0(Y, E)$ satisfying $||T|| ||T^{-1}|| < 2$. There is no loss of generality in assuming that T is norm-increasing—i.e., $||F||_{\infty} \leq ||T(F)||_{\infty}$ for $F \in C_0(X, E)$ —and that $||T^{-1}|| = 1$, for otherwise we may simply replace T by the isomorphism T' = $||T^{-1}||T$ which has these properties. Thus these assumptions concerning T will be made throughout the remainder of this article. Then throughout Lemmas 1 to 6' M will denote a fixed real number satisfying $||T||/2 < M^2 < M < 1$.

For any point $x \in X$, we will denote by μ_x the scalar-valued measure which is the positive unit mass concentrated at x. Then any element $\mathbf{m} \in C_0(X, E)^*$ can be written uniquely as $\mathbf{m} = \phi \cdot \mu_x + \mathbf{n}$, where $\phi \in E^*$ and $\mathbf{n} \in C_0(X, E)^*$ with $\mathbf{n}(\{x\}) = 0$. (Let $\phi = \mathbf{m}(\{x\})$ and $\mathbf{n} = \mathbf{m} - \phi \cdot \mu_x$.) From this remark and the regularity of the measures involved, it follows that if $\{F_{x,e,i}\} \leftrightarrow$ $(x, e) \in X \times E$, then for all $\mathbf{m} \in C_0(Y, E)^*$,

$$\lim_{i} \int T(F_{x,e,i}) d\mathbf{m} = \lim_{i} \int F_{x,e,i} d(T^*\mathbf{m})$$

exists, and is equal to $\langle e, (T^*\mathbf{m})(\{x\}) \rangle$. We thus obtain the following:

LEMMA 1. If $\{F_{x,e,i}\} \leftrightarrow (x,e) \in X \times E$ then for each $y \in Y$, $\lim_{i} (T(F_{x,e,i}))(y)$ exists as an element of E (in the norm topology).

Proof. For fixed $y \in Y$ and $\phi \in E^*$, we know that $\lim_i \int T(F_{x,e,i}) d(\phi \cdot \mu_y)$ exists. Moreover, it is clear that this limit is equal to $\lim_i \langle (T(F_{x,e,i}))(y), \phi \rangle$. Now the map from E^* to the scalars given by $\phi \to \lim_i \langle (T(F_{x,e,i}))(y), \phi \rangle$ is clearly linear, and is bounded by 2||e||. Thus there exists an element $v \in E^{**} = E$ such that for $\phi \in E^*$,

$$\lim \langle (T(F_{x, e, i}))(y), \phi \rangle = \langle v, \phi \rangle$$

But this simply says that the net $\{(T(F_{x,e,i}))(y)\}$ converges to v in the weak topology on E, which, since E is finite dimensional, coincides with the norm topology.

LEMMA 2. Let $\{F_{x,e,i}\} \leftrightarrow (x, e) \in X \times S$. (Note that ||e|| = 1.) For each $i \in I$, denote by R_i the subset of Y defined by

$$R_i = \{ y \in Y \colon \| (T(F_{x,e,i}))(y) \| > M \}.$$

If Y_x denotes the subset of all $y \in Y$ such that there exists a net $\{y_i\}$ in Y, with $y_i \in R_i$ for each i, which has y as a cluster point, then Y_x is a finite subset of Y.

Proof. Let $y \in Y_x$ and let $\{y_i\}$ be such a net in Y having y as a cluster point. Since for each $i(T(F_{x,e,i}))(y_i)$ lies in the compact subset of E defined by

$$\{u \in E: M \le ||u|| \le ||T||\},\$$

it follows readily that there exists an element $u \in E$, with $||u|| \ge M$, and a subnet $\{y_{i(\alpha)}\} \subseteq \{y_i\}$ such that $y_{i(\alpha)} \to y$ and $(T(F_{x,e,i(\alpha)}))(y_{i(\alpha)}) \to u$.

Choose some $\phi \in E^*$ with $\|\phi\| = 1$ such that $\langle u, \phi \rangle = \|u\|$, and consider the neighborhood N_u of u defined by

$$N_{u} = \{ v \in E : |\langle u, \phi \rangle - \langle v, \phi \rangle| < M - M^{2} \}.$$

Choose a real-valued $g_y \in C_0(Y)$ with $g_y(y) = ||g_y||_{\infty} = 1/||u||$, and define $G_y \in C_0(Y, E)$ by $G_y = g_y \cdot u$. Let N_y be the neighborhood of y in Y given by

$$N_{y} = \{ y' \in Y \colon \langle G_{y}(y'), \phi \rangle > ||T||/2 \}$$

Then for all *i* such that $y_i \in N_y$ and $(T(F_{x,e,i}))(y_i) \in N_u$, we have

$$\begin{split} \|T(F_{x, e, i}) + G_{y}\|_{\infty} &\geq \|(T(F_{x, e, i}))(y_{i}) + G_{y}(y_{i})\| \\ &\geq |\langle (T(F_{x, e, i}))(y_{i}) + G_{y}(y_{i}), \phi \rangle| \\ &\geq |\langle G_{y}(y_{i}), \phi \rangle + \langle u, \phi \rangle| - |\langle u, \phi \rangle - \langle (T(F_{x, e, i}))(y_{i}), \phi \rangle| \\ &> \|T\|/2 + \|u\| - (M - M^{2}) \\ &\geq \|T\|/2 + M^{2}. \end{split}$$

Thus $||F_{x,e,i} + T^{-1}(G_y)||_{\infty} > \frac{1}{2} + M^2/||T|| > 1.$

Now $||T^{-1}(G_y)||_{\infty} \leq 1$, so that the maximum set of the function

$$||F_{x,e,i} + T^{-1}(G_y)||$$

is contained in the neighborhood W_i of x defined by

$$W_i = \{ x' \in X : F_{x, e, i}(x') \neq 0 \}.$$

Moreover, at any point x' of this maximum set, $||(T^{-1}(G_y))(x')||$ is bounded away from zero by the positive number $\delta = M^2/||T|| - \frac{1}{2}$. Thus for each *i* such that $y_i \in N_y$ and $(T(F_{x,e,i}))(y_i) \in N_u$, there exists a point x_i in the corresponding set W_i in X with $||(T^{-1}(G_y))(x_i)|| \ge \delta$. Since the W_i thus obtained constitute a neighborhood basis at x, we conclude that $||(T^{-1}(G_y))(x)|| \ge \delta$.

But this clearly implies that Y_x is finite. For given any *n* points y_1, \ldots, y_n of Y_x , we can choose the corresponding functions G_{y_j} , $1 \le j \le n$, with disjoint supports, so that for any choice of scalars λ_j , $1 \le j \le n$, with $|\lambda_j| = 1$ for each *j*, we have $\|\sum_{j=1}^n \lambda_j G_{y_j}\|_{\infty} = 1$. But for each *j*, $\|(T^{-1}(G_{y_j}))(x)\| \ge \delta$, so that by Proposition 2, we can choose the λ_j such that

$$\left\|T^{-1}\left(\sum_{j=1}^n \lambda_j G_{y_j}\right)\right\|_{\infty} \geq \left\|\sum_{j=1}^n \lambda_j (T^{-1}(G_{y_j}))(x)\right\| \geq K_E \cdot \sqrt{n \cdot \delta}.$$

LEMMA 3. If $\{F_{x,e,i}\} \leftrightarrow (x, e) \in X \times S$, then there exists at least one point $y \in Y$ such that $\|\lim_i (T(F_{x,e,i}))(y)\| > M$.

Proof. By Lemma 2, Y_x is finite, say $Y_x = \{y_1, \ldots, y_n\}$, and we write

$$T^{*-1}(e \cdot \mu_x) = \sum_{j=1}^n \phi_j \cdot \mu_{y_j} + \mathbf{m},$$

where the $\phi_j \in E^*$, and $\mathbf{m} \in C_0(Y, E)^*$ with $\mathbf{m}(\{y_j\}) = 0$ for $1 \le j \le n$. (It will follow, from the proof of the lemma, that Y_x is nonvoid, since any y satisfying the condition of the lemma must necessarily belong to Y_x . However, for the moment, we simply set $T^{*-1}(e \cdot \mu_x) = \mathbf{m}$, if Y_x is void.)

Now suppose that for all $y_j \in Y_x$, we had $\|\lim_i (T(F_{x,e_i}))(y_j)\| \le M$. Then we could find an i_1 such that for all $i \ge i_1$ and all $y_j \in Y_x$, we would have

$$\|(T(F_{x,e,i}))(y_i)\| < M + (1 - M)/2.$$

Next, by the regularity of $|\mathbf{m}|$, we could find a compact set $K \subseteq Y - Y_x$ such that $|\mathbf{m}|(Y - K) < (1 - M)/4$. Since K is compact and disjoint from Y_x , there is an i_2 such that $i \ge i_2$ implies $||(T(F_{x,e,i}))(y)|| \le M$ for all $y \in K$. Hence, if i_0 is such that $i_0 \ge i_1$ and $i_0 \ge i_2$, then for all $i \ge i_0$, noting that $\sum ||\phi_j|| \le 1$ and $||\mathbf{m}|| \le 1 - \sum ||\phi_j||$, we would obtain

$$1 = \int F_{x, e, i} d(e \cdot \mu_{x})$$

$$= \int T(F_{x, e, i}) d(T^{*-1}(e \cdot \mu_{x}))$$

$$= \sum_{j=1}^{n} T(F_{x, e, i}) d(\phi_{j} \cdot \mu_{y_{j}}) + \int_{K} T(F_{x, e, i}) d\mathbf{m} + \int_{Y-K} T(F_{x, e, i}) d\mathbf{m}$$

$$< (\sum \|\phi_{j}\|) [M + (1 - M)/2] + M(1 - \sum \|\phi_{j}\|) + 2(1 - M)/4$$

$$= M + (1 + \sum \|\phi_{j}\|)(1 - M)/2$$

$$\leq 1.$$

This contradiction thus completes the proof of the lemma.

LEMMA 3'. If $(y, e) \in Y \times S$ and $\{G_{y, e, i}\} \leftrightarrow (y, e)$, then there exists at least one point $x \in X$ such that $\|\lim_i (T^{-1}(G_{y, e, i}))(x)\| > M/\|T\|$.

Proof. Consider the isomorphism \hat{T} of $C_0(Y, E)$ onto $C_0(X, E)$ defined by $\hat{T} = ||T||T^{-1}$. We have $||\hat{T}|| = ||T||$, and $||\hat{T}^{-1}|| = 1$. Thus we may apply Lemma 3 to the mapping \hat{T} , providing the desired conclusion.

Before stating Lemma 4, we make the following observations. As we have previously noted, if $\{F_{x,e,i}\} \leftrightarrow (x,e) \in X \times S$, then any point y such that $\|\lim_i (T(F_{x,e,i}))(y)\| > M$ necessarily belongs to the finite set Y_x . It thus follows that

$$\sup_{y' \in Y} \lim_{i} (T(F_{x, e, i}))(y')$$

is attained at some point $y \in Y$. Similarly, consideration of the isomorphism $\hat{T} = ||T||T^{-1}$ of $C_0(Y, E)$ onto $C_0(X, E)$ and Lemma 2 imply that if

$$\{G_{y, e, i}\} \leftrightarrow (y, e) \in Y \times S,$$

then $\sup_{x' \in X} \|\lim_i (T^{-1}(G_{y,e,i}))(x')\|$ is attained at some point $x \in X$.

LEMMA 4. If $\{F_{x,e,i}\} \leftrightarrow (x,e) \in X \times S$, let y be a point of Y at which

$$\lim_{i} (T(F_{x,e,i}))(y')$$

attains its maximum. Let

$$u = \lim_{i} (T(F_{x, e, i}))(y) \Big/ \left\| \lim_{i} (T(F_{x, e, i}))(y) \right\|.$$

Then if $\{G_{y,u,i}\} \leftrightarrow (y,u) \in Y \times S$, it follows that for $x' \in X$, $x' \neq x$, we have

$$\left\|\lim_{j} (T^{-1}(G_{y, u, j}))(x')\right\| \leq \frac{1}{2}.$$

Proof. Suppose, to the contrary, that there exists some $x' \in X$, $x' \neq x$, such that

$$\left\|\lim_{j} (T^{-1}(G_{y, u, j}))(x')\right\| > \frac{1}{2}.$$

Let $c = \lim_{j \to \infty} (T^{-1}(G_{y, u, j}))(x')$ and choose $\psi \in E^*$ with $\|\psi\| = 1$ such that $\langle c, \psi \rangle = \|c\|$. Then write $T^{*-1}(\psi \cdot \mu_{x'}) = \phi \cdot \mu_y + \mathbf{m}$, where $\phi \in E^*$ and $\mathbf{m} \in C_0(Y, E)^*$ is such that $\mathbf{m}(\{y\}) = 0$. Then

$$\|c\| = \langle c, \psi \rangle = \lim_{j} \int T^{-1}(G_{y, u, j}) d(\psi \cdot \mu_{x'})$$
$$= \lim_{j} \int G_{y, u, j} d(T^{*-1}(\psi \cdot \mu_{x'}))$$
$$= \langle u, \phi \rangle.$$

Since ||u|| = 1, we have $||\phi|| \ge ||c|| > \frac{1}{2}$, and hence, since $||T^{*-1}(\psi \cdot \mu_{x'})|| \le 1$, $||\mathbf{m}|| = ||T^{*-1}(\psi \cdot \mu_{x'})|| - ||\phi|| \le ||T^{*-1}(\psi \cdot \mu_{x'})|| - ||c|| \le 1 - ||c|| < \frac{1}{2}$.

Now let $v = \lim_{i} (T(F_{x,e,i}))(y)$ (so that u = v/||v||). We have

$$\lim_{i} \langle (T(F_{x,e,i}))(y), \phi \rangle = \langle v, \phi \rangle = \langle ||v|||u, \phi \rangle = ||v|| ||c||.$$

Since ||c|| > 1 - ||c||, we can choose a positive number ε such that

$$(||v|| - \varepsilon)||c|| > (||v|| + \varepsilon)(1 - ||c||).$$

Next, write $\mathbf{m} = \sum_{k=1}^{r} \phi_k \mu_{y_k} + \mathbf{n}$, where $\{y, y_1, \ldots, y_r\}$ is the set Y_x , the $\phi_k \in E^*, 1 \le k \le r$ and **n** is an element of $C_0(Y, E)^*$ with $\mathbf{n}(\{y\}) = \mathbf{n}(\{y_k\}) = 0, 1 \le k \le r$. By our choice of y, we can find an i_1 such that for all $i \ge i_1$, we have

$$|\langle (T(F_{x,e,i}))(y), \phi \rangle| > (||v|| - \varepsilon) ||c||$$

and

$$|\langle (T(F_{x,e,i}))(y_k), \phi_k \rangle| < (||v|| + \varepsilon) ||\phi_k|| \quad \text{for } 1 \le k \le r.$$

Now since $|\mathbf{n}|(Y_x) = 0$, we can find a compact set $K \subseteq Y - Y_x$ such that

$$|\mathbf{n}|(Y - K) \leq [||v|| + \varepsilon - M]||\mathbf{n}||/2$$

Because K is compact and disjoint from Y_x , there exists an i_2 such that if $i \ge i_2$, $||(T(F_{x,e,i}))(y')|| \le M$ for all $y' \in K$. We choose an i_0 such that $i_0 \ge i_1$ and $i_0 \ge i_2$, and such that for $i \ge i_0$ the support of $F_{x,e,i}$ does not contain the point x'. Then for $i \ge i_0$ we have

$$0 = \int F_{x, e, i} d(\psi \cdot \mu_{x'}) = \int T(F_{x, e, i}) d(T^{*-1}(\psi \cdot \mu_{x'}))$$

= $\int T(F_{x, e, i}) d(\phi \cdot \mu_{y}) + \sum_{k=1}^{r} T(F_{x, e, i}) d(\phi_{k} \cdot \mu_{y_{k}})$
+ $\int_{Y-K} T(F_{x, e, i}) d\mathbf{n} + \int_{K} T(F_{x, e, i}) d\mathbf{n}$
= $\langle (T(F_{x, e, i}))(y), \phi \rangle + \sum_{k=1}^{r} \langle (T(F_{x, e, i}))(y_{k}), \phi_{k} \rangle$
+ $\int_{Y-K} T(F_{x, e, i}) d\mathbf{n} + \int_{K} T(F_{x, e, i}) d\mathbf{n}.$

But for all $i \ge i_0$, the modulus of the first term on the right is greater than $(||v|| - \varepsilon)||c||$, while the modulus of the sum of the remaining terms is less than $(||v|| + \varepsilon) \left(\sum_{k=1}^{r} ||\phi_k||\right) + [||v|| + \varepsilon - M] ||\mathbf{n}|| + M ||\mathbf{n}||$ $= (||v|| + \varepsilon) ||\mathbf{m}|| \le (||v|| + \varepsilon)(1 - ||c||).$

Since this contradicts our choice of ε , the proof of the lemma is complete.

If we again consider the isomorphism $\hat{T} = ||T||T^{-1}$, and note that $\hat{T}^{-1} = T/||T||$ we obtain the companion result:

LEMMA 4'. If $\{G_{y,e,i}\} \leftrightarrow (y,e) \in Y \times S$ let x be a point of X at which

$$\lim_{i} (T^{-1}(G_{y, e, i}))(x')$$

attains its maximum. Let

$$b = \lim_{i} \left(T^{-1}(G_{y, e, i}) \right)(x) \Big/ \left\| \lim_{i} \left(T^{-1}(G_{y, e, i}) \right)(x) \right\|.$$

...

Then if $\{F_{x,b,j}\} \leftrightarrow (x, b) \in X \times S$, it follows that for all $y' \in Y, y' \neq y$, we have $\|\lim_{j} (T(F_{x,b,j}))(y')\| \leq \|T\|/2$.

LEMMA 5. Let x, y, u, and $\{G_{y,u,j}\}$ be as in the statement of Lemma 4. Then

$$\left\|\lim_{j} (T^{-1}(G_{y, u, j}))(x)\right\| > M/||T||.$$

Proof. By Lemma 3', there is some point $x_0 \in X$ such that

$$\left\|\lim_{j} (T^{-1}(G_{y, u, j}))(x_0)\right\| > M/||T||,$$

and, by Lemma 4, the only candidate for x_0 is x.

Similarly, by using Lemmas 3 and 4' we obtain:

LEMMA 5'. Let y, x, b, and $\{F_{x,b,i}\}$ be as in the statement of Lemma 4'. Then

$$\left\|\lim_{j} \left(T(F_{x, b, j}))(y)\right\| > M.$$

LEMMA 6. Let x, y, u, and $\{G_{y,u,j}\}$ be as in the statement of Lemma 4. If

$$b = \lim_{j} \left(T^{-1}(G_{y, u, j}) \right)(x) / \left\| \lim_{j} \left(T^{-1}(G_{y, u, j}) \right)(x) \right\|$$

and if $\{F_{x,b,i}\} \leftrightarrow (x, b)$, then we have $\|\lim_i (T(F_{x,b,i}))(y)\| > M$, and for all $y' \in Y, y' \neq y$,

$$\left\|\lim_{i} (T(F_{x, b, i}))(y')\right\| \leq ||T||/2.$$

Proof. By Lemmas 4 and 5, we know that x is the unique point of X at which

$$\lim_{j} (T^{-1}(G_{y, u, j}))(x')$$

attains its maximum. Thus by Lemma 4' (with u replacing e) and Lemma 5', the desired conclusion follows.

Similarly by using Lemmas 4' and 5', followed by Lemma 4 (with b replacing e) and Lemma 5, we obtain:

LEMMA 6'. Let y, x, b, and $\{F_{x,b,j}\}$ be as in the statement of Lemma 4'. If

$$u = \lim_{j} (T(F_{x, b, j}))(y) / \left\| \lim_{j} (T(F_{x, b, j}))(y) \right\|$$

and if $\{G_{y,u,i}\} \leftrightarrow (y, u)$, then we have $\|\lim_i (T^{-1}(G_{y,u,i}))(x)\| > M/\|T\|$, and for all $x' \in X$, $x' \neq x$,

$$\left\|\lim_{i} (T^{-1}(G_{y, u, i}))(x')\right\| \leq \frac{1}{2}.$$

Lemmas 4, 5, and 6 show that starting with any point $x \in X$, there is a point $y \in Y$ and elements b, $u \in S$, such that if $\{F_{x, b, i}\} \leftrightarrow (x, b)$ then

(1)
$$\left\|\lim_{i} \left(T(F_{x,b,i})\right)(y)\right\| > M,$$

while

(2)
$$\left\|\lim_{i} (T(F_{x, b, i}))(y')\right\| \leq ||T||/2, \quad y' \in Y - \{y\},$$

and if $\{G_{y, u, j}\} \leftrightarrow (y, u)$ then

(3)
$$\lim_{j} (T^{-1}(G_{y, u, j}))(x) > M/||T||$$

while

(4)
$$\left\|\lim_{j} (T^{-1}(G_{y, u, j}))(x')\right\| \leq \frac{1}{2}, \quad x' \in X - \{x\}.$$

Lemmas 4', 5', and 6' show conversely that starting with any point $y \in Y$, there is an $x \in X$ and elements b, $u \in S$ such that (1), (2), (3), and (4) are satisfied.

We now place further restrictions on the space E and on the bound of T which will insure that the relations (1) through (4) define a correspondence between points of X and Y which is, in fact, a homeomorphism. From now on, we shall assume that E is a finite-dimensional Hilbert space. Recall that the conclusions of Lemmas 1 through 6' hold under the assumptions that T is any isomorphism of $C_0(X, E)$ onto $C_0(Y, E)$ with ||T|| < 2 and $||T^{-1}|| = 1$, and that M is any real number with $||T||/2 < M^2 < M < 1$. We shall henceforth assume, in addition, that $||T|| < \sqrt{2}$ and that $||T||/\sqrt{2} < M$.

For $y \in Y$, define $x = \rho(y)$ if there exists a $b \in S$ such that x is related to y by (1) and (2). Then ρ is a well-defined function from Y to X. For if not, for some $y \in Y$ there would exist points $x_1, x_2 \in X, x_1 \neq x_2$ and elements $b_1, b_2 \in$ S, such that if $\{F_{x_1, b_1, i}\} \leftrightarrow (x_1, b_1)$ and $\{F_{x_2, b_2, j}\} \leftrightarrow (x_2, b_2)$ then

$$||(T(F_{x_1, b_1, i}))(y)|| > M$$
 for all $i \ge \text{some } i_0$,

and

$$||(T(F_{x_2, b_2, j}))(y)|| > M$$
 for all $j \ge \text{some } j_0$.

If we choose $i \ge i_0$ and $j \ge j_0$ such that the supports of $F_{x_1, b_1, i}$ and $F_{x_2, b_2, j}$ are disjoint, then for all choices of scalars λ_1, λ_2 with $|\lambda_1| = |\lambda_2| = 1$, we have

$$\|\lambda_1 F_{x_1, b_1, i} + \lambda_2 F_{x_2, b_2, j}\|_{\infty} = 1.$$

But by Proposition 1, we could choose such scalars λ_1 , λ_2 so that

$$\|T(\lambda_1 F_{x_1, b_1, i} + \lambda_2 F_{x_2, b_2, j})\|_{\infty} \ge \|\lambda_1(T(F_{x_1, b_1, i}))(y) + \lambda_2(T(F_{x_2, b_2, j}))(y)\|$$

> $\sqrt{2} M$
> $\|T\|,$

and this contradiction shows that ρ is indeed a well defined function.

Similarly, if for $x \in X$, we define $y = \tau(x)$ if there exists a $u \in S$ such that y is related to x by (3) and (4), then τ is a well-defined function from X to Y. The remarks of the paragraph following Lemma 6' show that $y = \tau(x)$ if, and only if, $x = \rho(y)$, so that τ is a one-one function mapping X onto all of Y and $\rho = \tau^{-1}$.

LEMMA 7. τ is a homeomorphism of X onto Y.

Proof. We show that τ is continuous. The proof that $\rho = \tau^{-1}$ is continuous is analogous.

Suppose, to the contrary, that there exists a net $\{x_{\alpha} : \alpha \in A\}$ in X such that $x_{\alpha} \to x_0$, but that $y_{\alpha} = \tau(x_{\alpha}) \leftrightarrow \tau(x_0) = y_0$. Then there exists some compact neighborhood N of y_0 such that for every $\alpha_0 \in A$, there is an $\alpha \ge \alpha_0$ such that y_{α} lies outside N. By the definition of τ , there exists a $u \in S$ such that if $\{G_{y_0, u, i}\} \leftrightarrow (y_0, u)$, then for some i_0 , $\|(T^{-1}(G_{y_0, u, i_0}))(x_0)\| > M/\|T\|$ and the support of G_{y_0, u, i_0} is contained in N.

Since $x_{\alpha} \to x_0$ and $T^{-1}(G_{y_0, u, i_0})$ is continuous, there exists an $\alpha_0 \in A$ such that if $\alpha \ge \alpha_0$ then $||(T^{-1}(G_{y_0, u, i_0}))(x_{\alpha})|| > M/||T||$. Thus fix an $\alpha \ge \alpha_0$ such that $y_{\alpha} = \tau(x_{\alpha})$ lies outside N. Again by the definition of τ , there exists a $v \in S$ such that if $\{G_{y_{\alpha}, v, j}\} \leftrightarrow (y_{\alpha}, v)$, then for some j_0 ,

$$||(T^{-1}(G_{y_{\alpha},v,j_{0}}))(x_{\alpha})|| > M/||T||$$

and the supports of G_{y_0, u, i_0} and G_{y_{α}, v, j_0} are disjoint. Thus for all scalars λ_k , k = 1, 2, with $|\lambda_k| = 1$, we have $\|\lambda_1 G_{y_0, u, i_0} + \lambda_2 G_{y_{\alpha}, v, j_0}\|_{\infty} = 1$. But again using Proposition 1, for a proper choice of such scalars λ_k , we have

$$\|T^{-1}(\lambda_1 G_{y_0, u, i_0} + \lambda_2 G_{y_{\alpha}, v, j_0})\|_{\infty} \ge \|\lambda_1 (T^{-1}(G_{y_0, u, i_0}))(x_{\alpha}) + \lambda_2 (T^{-1}(G_{y_{\alpha}, v, j_0}))(x_{\alpha})\| > \sqrt{2} M/\|T\| > 1,$$

which contradicts the fact that $||T^{-1}|| = 1$.

Remark. If, for any fixed finite-dimensional Banach space E, one could show that (1) and (2) hold for all $b \in S$, instead of simply for some $b \in S$, one could then establish that the conclusion of the theorem remains valid for all isomorphisms T satisfying $||T|| ||T^{-1}|| < 2$.

REFERENCES

- 1. D. AMIR, On isomorphisms of continuous function spaces, Israel J. Math., vol. 3 (1965), pp. 205–210.
- M. CAMBERN, A generalized Banach-Stone theorem, Proc. Amer. Math. Soc., vol. 17 (1966), pp. 396–400.
- 3. ——, On isomorphisms with small bound, Proc. Amer. Math. Soc., vol. 18 (1967), pp. 1062–1066.
- 4. , Isomorphisms of $C_0(Y)$ onto C(X), Pacific J. Math., vol. 35 (1970), pp. 307-312.
- 5. N. DINCULEANU, Vector measures, Pergamon Press, New York, 1967.
- 6. Y. GORDON, On the distance coefficient between isomorphic function spaces, Israel J. Math., vol. 8 (1970), pp. 391-397.
- 7. M. JERISON, The space of bounded maps into a Banach space, Ann. of Math. (2), vol. 52 (1950), pp. 309-327.
- I. SINGER, Linear functionals on the space of continuous mappings of a compact space into a Banach space (Russian), Revue Roumaine Math. Pures Appl., vol. 2 (1957), pp. 301-315.
- 9. A. E. TAYLOR, Introduction to functional analysis, Wiley, New York, 1958.

UNIVERSITY OF CALIFORNIA SANTA BARBARA, CALIFORNIA