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1. Introduction

The aim of this paper is to give general lower bounds for the order of a
subgroup T(ZG) of the locally free class group C1 (ZG). T(ZG) is generated by
certain locally free modules (see Section 2) which have been considered [10],
[15], [1,7] for their applications in algebraic topology. The lower bounds are
expressed in terms of an important invariant of G, namely the Artin exponent
A(G). By definition A(G) is the characteristic of the Grothendieck ring Go(QG)
modulo the ideal generated by the image of the induction map Go(QC)
Go(QG), where C ranges over cyclic subgroups of G (see [16] for details). One
knows [8], [9] that A(G) divides the order of G and equals one iff G is cyclic.
Our results assert:

THEOREM. An oddprimep divides the order ofthe subgroup T(ZG) ofCI (ZG)
iffp divides the Artin exponent A(G). Also 2 divides order of T(ZG) if 4 divides
A(G) (assuming a Sylow 2-group of G is not dihedral).

The formal properties of T(ZG) imply it maps onto T(ZGo), Go obtained from
G by quotient and subgroups. It follows that the proof reduces to certain groups
that are among those considered in Section 3; for these we have a complete
determination of T(ZG). In the final analysis all the computations depend on
special properties of units in group rings and orders. Our approach allows us to
strengthen and extend several known results for noncyclic G and to show a
common thread running through the arguments.

2. Definitions and formal properties

Let R be the ring of algebraic integers in an algebraic number field K, A an
R-order in a finite-dimensional semisimple K-algebra A. Given an R-lattice X
and prime p of K, Xv denotes completion at p (ifp is infinite, set Rp Kp and
Xv KvX). The class group C1 A is the Grothendieck group of the category of
locally free left A-modules modulo the subgroup generated by free A-modules;
(X) denotes the class in C1 A of a locally free module X. To get a sufficiently
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explicit description of class groups we use Fr6hlich’s approach via the idele
class group [4].

Let J(A) be the idele group2 of A, u(S) unit group of a ring S, U(A) lIu(Ap)
product over all primes p of K, J(A)’ the closure of the commutator subgroup
of J(A) (where J(A) is topologized by the condition that U(A) be an open
subgroup and U(A) itself has the product topology). If a (ap) J(A), then
Aa denotes the locally free left A-module

Aa (Aa A).

Fr6hlich proved a --* (Aa) induces an isomorphism

(2.1) J(A)/J(A)’u(A)U(A) Cl i.

Let D(A) be the kernel of the extension of scalars map Cl A - Cl A’, A’ a
maximal order of A containing A. Since all maximal R-orders in A are locally
conjugate, it follows from (2.1) that D(A) is independent of the choice of
maximal order. Let Ao be any R-order in A containing A. If Aa Ap,
t U(Ao), it follows at once from (2.1) that

(2.2) (Aa) Ker (Cl A - Cl Ao).

Now let A group ring RG; G group of order n; Z Z, the sum of the
elements of G. Form the fiber product of R-orders

A v__, R

A/(Z) ,-- R/nR,

where W1 is the augmentation map, 4)2( mod (Z)) ql() mod nR, and
4)1 are the quotient maps. Via (2.3) we shall often identify A with a subring of
F R x A/(Z). The A-ideals Jr, Z] rA + ZA, where r e R is prime to n,
will be used to produce nontrivial elements of the class group. The notation
a[ b means that a divides b, and a y b is the negation.

(2.4) PROPOSITION. (i) Jr, X] is a locally free RG-module equal to Aa, idele
a J(K x KG/(Z)), where

ifp X r

(1, r) R, x A,/(X) ifpit.
(ii) l-r,Z] Ap, /eU(R x A/(Z)), where I if p r, l (r, l) if

P X r. Hence (Jr, Z-I) e D(RG).

Proof (i) We must show I-r, Z] Aa for all primes p of K. If p r,
then r u(Rp) and so l’r, Z-I A. Assume p r; then after the identification

2 J(A) {(p)e I-I u(A,) o, . u(A) for all but finitely many p}.
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from (2.3), Ap Fp. Moreover, r and n-xX I-r, X;] correspond to (r, r) and
(1, 0) respectively in F. It follows at once that l-r, Z] is A-free on the generator
(1, r).

(iX) Definefl U(A) byflp ifplr, fl rifpyr. Then(1, r-X)fl=
# where we are viewing (1, r -x) in K x KG/(E), hence A A/. Use (2.2) to
conclude (Jr, El) e D(RG). Q.E.D.
From (2.3) we have an exact Mayer-Vietoris sequence [13, (1.10)] if KG

satisfies the Eichler condition

(2.5) u(R) x u(A/(E)) u(R/nR) D(A)---. D(F) 0.

In all cases the sequence isexact [13, (1.12)] if the left hand term is replaced by
GL2(R) x GL2(A/(E)).
As an application of i-4, XII] we explicate (2.5) in terms of idele groups:

First identify U(R]nR) with u(R/nR). There are maps bx: U(R) U(R/nR),
b2: U(A/(E)) - U(R/nR) defined via the completions of the old tki at each p.
Then

(2.6) b" U(R) x U(A/(E)) u(R/nR),
U(A)

where b((fll, f12)mod U(A))= IJ)l(fll)t#2(fl2) -1 is a bijection between the
cosets of the left hand side of (2.6) and the elements of u(R/nR). Thus for the #
defined in (2.4) (iX),

t(bt) t]x(r)t])2(1) -x r mod nR.

After passing to quotients we obtain (also proved in [17]):

(2.7) PROPOSITION. With the boundary map 0 of (2.5)

(r mod nR) ([r, El).

Remark. Since r and Z belong to c(A)o the center of A, we may consider the
ideal l-r, E-Io generated by r and X; in c(A). Obviously l-r, Z] is obtained from
i-r, Z]o by extension of scalars. Propositions (2.4), (2.7) and fiber product (2.3)
still hold when all orders are replaced by their centers. Note that (Jr, Z]o) 0
in CI (c(A)) is a sufficient condition for (It, El) 0 in C1 A. However, it is
not necessary since if A ZG, G dihedral group of order 2p, then D(c(A)) has
order (p- 1)/2 by [13] or [4a-I. Further one can prove the elements of
D(c(A)) have the form (l-r, Z]o). On the other hand D(A) 0 (see e.g., [13]).

Let T(RG) be the subgroup of D(RG) consisting of classes (l-r, X;]), i.e.,
T(RG) im d. T has two important formal properties, analogous to the
divisibility ofthe Artin exponent ofG by the Artin exponent ofany of its quotient
or subgroups.

(2.8) Quotient. If is a quotient of G, then the natural map C1 RG C1 R6
sends (Jr, X]) to (Jr, Ee,]), hence T(RG) onto T(RJ).
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(2.9) Restriction. If H is a subgroup of G, then res" C1 RG C1 RH sends
(I-r, E]) to (l-r, En]), hence T(RG) onto T(RH).

Proof of (2.8). The projection KG KG induces a map

" K x KG/(Ea)- K x K/(Ee).

For the idele of (2.4)0) we have R6 (R)R RG - R6(), where is now
viewed as a map of idele groups. But rt()v zv() equals (1, r) R x
Rv6/(Ee) ifplr and equals otherwise. Thus R6r() I-r, Eel.
Proof of (2.9). As an RH-module, Jr, E1 is locally free of RH-rank m

(G" H) > 2. Let sx,..., s be a system of right coset representatives of H in
G, so RvG RvHs + + RvHs,, for all p. A left RH-basis of Ir, E] -RvGIv then is given by slkt,..., s/. If p r, then # 1. Assume p y r;
then # re + (1 e) by (2.4) where

e n-xE n- xZn(s + + sin).
It follows that

si#v si + 2(sx +’"+ s), 2 n-X(r- 1)EnKvH.

Let S() denote the direct sum of rn copies of a ring S and M(S) denote the
ring of all m x rn matrices with entries in S. Then RvGlav (RH)(")flv;
fly e M,,(KH) has 1 + 2 on the diagonal and 2 elsewhere. We set fl for
p lr and notice that fl (fl) J(M,n(KH)). In other words, as RH-modules,
[r, E] (RH)(m)fl.
We shall transform / and use the one-one correspondence between iso-

morphism classes of locally free rank rn RH-modules (m _> 2) with elements
J(B)/J(B)’u(B)U(M.,(RH)), by results D. and F. of [4]; here B M,,,(KH).
It is easy to see there are 0, 0’ U(M,,(RH)) such that

?v (0/0’)v ifplr,

1 +m2

2

ifpXr.

Further if p y r, then right multiplication of ? by the elementary matrix in
M(KH) with on the diagonal, -2 in the (m, 1) position, and zeros elsewhere
transforms y to the diagonal matrix (1 + m2, 1,..., 1). But any elementary
matrix is a commutator, providing that rn > 3. It follows that Jr, Eo] -RH 0 )(RH)(m-x), m > 3. Here 0 J(KH) is defined by 0v if p lr,
0v 1 + mAifpyr;thusRH0 - [r, En]. Ifrn 2, we replace Jr, Z6] by
Jr, Eo] RG and follow the lines of the above proof to conclude

Jr, E] RG - Jr, Zn] (RH)(2"-’).
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Therefore for all m the equation

res (Jr, EG]) (Jr,
holds on the class group level.

Remark. When R Z, one can give an alternative proof of (2.9) using
Lemmas 6.1 and 6.2 of Swan 1-15].

In the remainder of the paper take R Z in order to bring out the sharp
distinction between the cyclic and noncyclic cases.

(2.10) PROPOSITION. (i) T(ZC) 0 if C is cyclic.

(ii) T(ZG) is a quotient of u(Z/nZ)/{ +_ 1} where n is the order of G.
(iii) The exponent of T(ZG) divides A(G).

Proof. Assertion (i) is well known, see e.g., [15], and (ii) follows at once
from (2.5) and (2.7). To prove (iii) recall C1 (ZG) is a Frobenius module for the
Frobenius functor Go(QG), see [16, chap. 2]. By Frobenius reciprocity in
C1 (ZG)

(ind s) y ind (s res y)

where we want y T(ZG), s Go(QC), cyclic C c G, and ind and res are taken
between C and G. But res y 0 by (i) and thus (iii) follows.

(2.11) COROLLARY. By restriction, T(ZG) maps onto the cyclic group
I-IT(ZG,), product over all p-Sylow subgroups of G.

Proof. First of all, T(ZGp) is a p-group by (2.10) (iii) and cyclic by (ii). For
each p the restriction map T(ZG) --, T(ZGp) is onto and by the Chinese re-
mainder theorem for Z, the product of the restriction maps is onto.

Remark. Any automorphism of G extends to an automorphism of RG and
C1 (RG). Obviously the ideal l-r, El is invariant under all such automorphisms.
The example G cyclic of order 16 shows that T(ZG) can be a proper subgroup
of those elements of D(ZG) fixed by all automorphisms of G. In fact D(ZG) has
order 2 and T(ZG) 0 by (2.10) (i).

3. Some special groups

Let C, denote the cyclic group of order n and ISI denote the cardinality of a
set S.

(3.1) PROPOSITION. Let G be elementary abelian of order p+ 1, p odd prime.
T(ZG) is cyclic of order p with generator ([-1

Proof. We shall use certain automorphisms of QG. Now QG/(E) k
copies F(k) of the field F Q(11/), k (p+l 1)/(p 1). View ZG/(E) as
a subset of F(k) and thus u u(ZG/(E)) may be written u (u1,..., UR),
ui e u(Z[1
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For integers a prime to p, let a. be the automorphism of G given by
g e G. Every idempotent ofQG is fixed by tr,, and tr, restricted to each Fsends to,
p-th root of 1, to to". Thus N a + + ap_l restricted to F is the norm
from F to Q. It follows that Nu 1, u u(ZG/(E)). However, for the map b2
defined in (2.3), t2(traX) 2(X), X ZG/(E). Thus t2(Nu) (2(U)p- 1.
Since T(ZG) is a p-group and u(Z/nZ)

_
Cp_ x C with + p generating

C,, we are done.

Remark. Let G+ be the elementary abelian p-group of order p+ with
G+ G, x C, C generated by y+ 1. Let E be the sum of the elements of
G. We describe explicitly a unit u+l of ZG+ 1/(E+ ) whose augmentation is
congruent to r p" mod p+l for given r prime to p (thus proving directly that
T(ZG+I) is a p-group). Take ul + Yl +"" + Y- and define u+
inductively by

us+l us + 1-(1 + gs +"" + grs-1)PS rPS-l]Ys/pS.
Of course we are using the same notation for an element of ZG and its image in
ZG/(X).
The idea in the next three propositions is to write ZG as a fiber product of two

orders A, A2 with say A A x A2 such that the image of (It, ]) in CI A is
zero, but (It, El) - 0 for suitable r.

(3.2) PROPOSITION. Let G be a noncyclic abelian yroup of order 2s+ and
exponent dividiny 4. Then T(ZG) is cyclic of order 2 with yenerator ([5, El).

Proof. Write G (y) x H, y order 2f, f or 2. Construct the ideals

11 (y" 1)ZG and 12 (yr + 1)ZG, and form the fiber product

ZG ZG/11
(3.3) v

ZG/I2 ---- ZG/I + 12.

We have ZG/I1 -ZGo where Go (y2) H, ZG/I2 " RH where R
Z[og], to primitive 2f-root of 1, and ZG/I1 + 12 - ,Go, Z Z/2Z.

Recall that Jr, E] At, # U(Z x ZG/(E)), where if p A’ r, #, (r, l)
re + (1 e), e n-lE. Now Fl(e) 2n-1 Eo and tiE(e) 0. Take
r + n/2 for the rest of this proof. We identify re + (l e) with

(3.4) (Fl(re + e), W2(re + e)) (1 / Eo, l)e ZGo x RH A

Since + Eo e u(ZGo) for p A" r and #, ifp r, it follows that/t e U(A).
Therefore in the exact sequence from (3.3),

u(A) u(ZGo) D(ZG) D(A) 0,

(It, EG]) kerf= im 6. In fact i(1 + EGo)= (It, I:G]) by (3.4) and an
argument similar to the proof of (2.7).
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But u(A) is torsion and [7] therefore consists of roots of times elements of
Go and H. Thus + Eoim4) if IGol > 2. Since 5 has order 2s-1 in
u(Z/2/ 1Z) and 52s-2 =- r mod 2/ 1, we have proved ([5, E]) has order 2
in Cl (ZG).

(3.5) PROPOSITION. Let H2n be the quaternion Hroup of order 2 defined by

H2n (x, y lx2-2 y4 -1y2, 1, yxy- x

If n >_ 3, then T(ZH)= D(ZH) has order 2 with generator (Jr, E-I), r--
_+3 mod 8.

Proof. The case n 3 was proved by Martinet Ill]. For all n >_ 3, we
know that ID(ZH)I 2 by [5], so we take restriction from HE. to Ha (compare
[10]).

(3.6) PROPOSITION. Let l be an odd prime, q any divisor of I 1, and Y a
primitive qth root of mod I. Let (l, q) be the metacyclic group defined by

(l, q) (x, y lx yq 1, yxy-Then T(Z)= Do(Z) is cyclic of order q/(q, 2) where Do, a subgroup of
D(Zfl), is defined in the proof below.

Proof Let 11 (x- 1)Zfl, 12 (x- +’"+ x + 1)Zfl be ideals of
Zfl A. Then A/I - ZC where C is cyclic of order q, A/I2 - RoC a
twisted group ring where R Z[ll/], and A/I + 12 - ZC, Z Z/lZ.
Let A ZC x R C. The Mayer-Vietoris sequence arising from A as a fiber
product reduces to [6]

u(R C) u(gC) D(A) D(A) 0

and Do(A) kcrf by definition. Note T(A) Do(A) by (2.8), (2.10), and the
fact [6] that D(R C) 0. Taker modq;using[r,Z] A/, we have
/ e U(A) since

4- q-(r- 1)Zcu(ZC) ifpr.

As in the proof of (3.2), 6(1 + q- l(r 1)Zc) (It, ]2a]). From [-6],
im 6 u(ZC)/im u(R C) - u(Z)/u(Z), q2 q/(q, 2),

the isomorphism given by the determinant map. In particular, + q (r 1)Yc
maps to r mod 1. Therefore T(Z) im 6.
We can now give short alternate proofs of some of the theorems of [2], [12],

[14] and obtain the new result (3.8)(i).

(3.7) LEMMA. Let G Sn (resp. An) be the symmetric (resp. alternatinH)
Hroup on n symbols. If an odd prime I divides the order of D(ZG), then 1 < n/2
(providinH G An, n prime p such that (p + 1)/2 is prime, when the estimate
becomes I < (n + 1)/2).
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Proof For G S, see [18]; now take G A, with n > 6, since D(ZA,)
0 for n < 5 (see [14]). Frobenius (see [-19]) proves the complex characters of
A, take their values in Q or a quadratic extension of Q; thus if F is the center of
a simple component of QA,, F Q or a quadratic extension. Let S be the ring
of algebraic integers of F and D the difference of S over Z. By [18, Proposition
2.7-1, it suffices to prove that if I -# 2 divides the order of u(S/n!(2D)-l), then
< n/2 (or 1 < (n + 1)/2 in the exceptional case).
Let P be a prime ideal of S above a rational prime p dividing n!; define

integers e, a, b by
pe p, pa n !/2, pb D

(so b e- ifp odd). Thus PClln!(2D)-X, ca-b. The order of
u(S/Pc) is (NP- 1)(NP)c-x, NP absolute norm of P. Assume > n/2.
Case 1: I divides (NP) for some P. It follows that l p is odd and a 1,
which contradicts e- > 0. Case 2:1 divides NP- 1. IfNP =p, then
lip which implies l <_ n/2. If NP p2, then lip or lip + 1. The
latter possibility implies n p and 1 (p + 1)/2.
The next proposition shows the necessary condition of (3.7) is sufficient

(excluding the possibly exceptional case).

(3.8) PROPOSITION. (i) Let G S, or A,. An odd prime 1 divides [T(ZG)[
iff <_ n/2.

(ii) (Reiner [12]). If l is an oddprime such that n/2 < < n, then (1 1)/2
divides T(ZS,)[.

Proof (i) If I divides A(G), then < n/2 by [8]. Conversely, if an odd prime
l <_ n/2, then the two cycles

(1,2,...,/), (l+ 1,1+ 2,...,2/)

are in A,, hence C x C c A, c S, and we apply (3.1).
(ii) Observe that S, f(l, 1 1), I as in the hypotheses of (ii) and apply

(3.6).

Remark. The smallest n such that 2 divides the order of D(ZS,) (resp.
D(ZA,)) is n 5 (resp. 7); see [12], [14].

I wish to thank Shizuo Endo for communicating to me the following result.

(3.9) PROPOSITION. Let SD be the semidihedral group defined by

SD (tr, z: 0
"2n+’

"i7
2 1, ztrz O’-1+2"), n > 2.

Then D(SD) T(SD) has order 2.

Proof By the methods of [5] one shows the order of D(SD) is at most 2.
On the other hand H8 is a subgroup of SD; we conclude the proof by applying
(3.5) and restriction from SD to Ha.



NONTRIVIAL LOWER BOUNDS FOR CLASS GROUPS 369

Open Problem. The Artin exponents of the groups of (3.1), (3.2), (3.5), (3.6),
(3.9) are pS, 2s, 2, q, 4 respectively. 3 In these cases the exponent of T(ZG) is
b.A(G) where b or 1/2. Does this always hold? In particular, if IGI
p,/ 1, p odd prime, does ([1 + p, -I) always have order p for G noncyclic?
The results of (3.1), (3.2) show that the upper bound given in [18] for the
exponent of D(ZG), G a p-group, is attained for every s with suitable G.

4. Subgroups and Artin exponents

Let t(G) T(ZG)I. A group obtained from G by successive quotient and
subgroups we call a subquotient of G. Denote by C, Q, D, or SD a 2-group
which is respectively cyclic, quaternion, dihedral, or semidihedral. In fact I-83
these are the only p-groups for which A(G) IGIp-1; A(C) and A(D)
A(Q) 2, and A(SD) 4. In (4.1) we record Lam’s l-l, pp. 586-7] description
of A(G) by hyperelementary subgroups. Gp denotes a Sylow p-subgroup of G
and Ap(G) the p-part of A(G).

(4.1) THEOREM. Ap(G) sup(A(H)) as H ranges over all p-hyperele-
mentary subgroups of G, i.e., H is a semidirect product

H N x s-a H, N cyclic normal in H.

Further, Ap(H) sup (A(Hp), la(H, N)I) provided that ifp 2, then H Q,
D, or SD. a(H, N) denotes the image of Hp in Aut N.

The following two lemmas show that divisibility properties of A(G) force G
to contain subgroups from the list of Section 3.

(4.2) LEMMA. Assume Gp G is cyclic and Ap(G)= p, s >_ 1. The
metacyclic group D(I, pS) is a subquotient of Gfor some prime 1.

Proof. Since A(Gp) 1, G H= N x_aH as in (4.1) with A(G)
Ap(H) la(n, N)I. Cyclic subgroups (of N) are invariant under all auto-
morphisms and a(H, N) is cyclic, thus there exists a prime 1 - p such that H
has a subquotient Ho Nt x s-a Cps, Cp, acting faithfully on N. Finally Ho
maps onto f(l, pS).

(4.3) LEMMA. Suppose G is a 2-group with 41 A(G), and G SD. Then the
maximal abelian quotient Gab C2 x C2, hence Gab maps onto a noncyclic
group of order 8.

Proof. Since G is not cyclic, neither is Gab. Therefore Gab # C2 x C2 will
yield the desired conclusion.

Let sol (G) be the number of solutions in G to equation x2 1. Now
[3, p. 223
(4.4) sol(G)= b()O + 2 b()O + b()O)(1)

X(1) X(1)=2 X(1) >2

Lam’s assertion [8] that A(SD) 2 is incorrect.
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where 7 ranges over all the complex irreducible characters of G and b(z) is 0 if Z
is not real, if Z is character of a real representation of G, and otherwise.
From [8], 4 A(G) implies 41sol (G) or G SD. By hypothesis, G va SD.
Assume G"b- Cz x Cz for a contradiction; there are four degree

characters, hence by (4.4) 2b(27), summed over the d characters Z with Z(1) 2,
is even. From representation theory, GI 4 + 4d mod 16 which implies
IGI/4 1 + d mod 4, so d is odd. However, if Z is not real then the conjugate
) - X is another irreducible character. The statements d odd and x()= 2b(Z)
even are inconsistent.

(4.5) THEOREM. (i) Ifan oddprime p A(G), then p[ t(G).
(ii) lf4 A(G) and Gz is not dihedral then 21 t(G).

Remarks. It may well be unnecessary to assume Gz is not dihedral. However,
A(G) even does not imply t(G) even, e.g., if G is dihedral of order 2p or
dihedral of order 2n, then (see [13], [5]) D(ZG) 0 and A(G) 2.

Proof p odd. If Gp is not cyclic, then a standard result of group theory
asserts G, C, x C, and by (3.1), t(Cp x Cp) p. If G, is cyclic we apply
(4.2), t(f(l, p)) p, and use (2.8), (2.9) as usual.
p 2. If G2 is cyclic, apply (4.2) with hypothesis that 4 A(G), and finally

note t(f(l, 4)) 2. If G2 is quaternion (resp. semidihedral) we are done by
(3.5) (resp. (3.9)). It remains to consider G2 - C, Q, D, or SD (thus 41 A(G2)).
Then we conclude the proof by (4.3) applied to G2, and the fact that (noncyclic
abelian group of order 8) 2 by (3.2).

(4.6) COROLLARY.
order.

(G) > for all G containing a noncyclic subgroup ofodd
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