
HOMOTOPY TREES" ESSENTIAL HEIGHT AND ROOTS

BY

MICHEAL N. DYER

In this note we study some general properties of homotopy trees HT(n, m).
We show that for a finite group, the trees are a single stalk from some point
on (Theorem 2) and if m _> 3, that roots can occur only at the lowest two levels
of the tree (Corollary 1).
A (, m)-complex X is a finite, connected m-dimensional CW-complex such

that I(X) - and z(X) 0 for 2,..., m 1. The homotopy tree
HT(, m) is the directed tree whose vertices are homotopy classes of (r, re)-
complexes. If X and Y are (r, m)-complexes, then the vertex IX] is connected
by an edge to the vertex [Y] iff Y has the homotopy type of the one-point union
X V S of X with the m-sphere Sm. HT(, m) is connected by Theorem 14 of
[23, page 49] and has no circuits. The tree HT(, m) is measured by the
directed Euler characteristic (- 1)mz" vertices (HT) - Z. Let

Z-mi. min {z[X] X is a (r, m)-complex}.

Thus Z divides the tree into levels --(j) (j > Zin). We call ’-(i + g-min) the
ith level of the tree. For each j _> Zmin, the successor function sj" ’-x(j)._}
--l(j + 1) is given by sj([X]) IX V sm]. A vertex x HT is a root if x
has no predecessor; a minimal root if x e "- (Zmn)" The stalk (x> generated by
the vertex x is the subtree whose vertices consist of

{x, s(x), s(x), s"(x), }.

For the purpose of classifying the homotopy type of (r, m)-complexes, we
will identify the fundamental group of each (, m)-complex with . This can
be done by simply choosing (and fixing) an isomorphism x: - hi(X) for
each X and using x to convert each l(X)-module into a z-module. Then any
argument we make over z can be easily translated to (X). If m >_ 3, we may
use a lemma of C. T. C. Wall [22, Lemma 1.2, page 59] to find a (, m)-complex
Y e i-X] such that the two-skeleton y(2) is the one-point union of a given
(, 2)-complex and a finite bouquet of 2-spheres. In this case, we may trivially
identify the fundamental groups.
The homotopy type of a (, m)-complex X is completely determined by (the

isomorphism class of) its algebraic m-type T(X). This consists of the triple
T(X) (n, rm(X), k(X)) where nm(X) is a zc-module and k(X) Hm/(;m (X))
is the first k-invariant of X (see [17, page 41], [7, Section 2]).
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Let us briefly define the k-invariant. Let

o---, :m(X)-----’ Cm(2) "- Cm_,(2)t.._:
(o.) ’ Co(2) z o
be the cellular chain complex of the universal cover X of X. We will denote this
by 0 -+ rrm(X) C,() Z O. This is an exact sequence of -modules
forming a portion of length m of a free, finitely generated resolution (each Ci()
is a free, finitely generated -module, O, 1,..., m) of the trivial -module Z.
Let

’0 (X) P, ZO

denote an exact sequence of length m of -modules, where each Pi (i O, 1,...,
m) is finitely generated. Each such exact sequence determines an element k of
H+(n; (X)) as follows. Cover the identity map Z Z by a chain map

" C,() P, as follows"

0 m(X) C,(2) Z 0

Om(X) P. Z O.

This induces a homomorphismf: u(X) Urn(X), which, in turn, determines
an element

k {f} Hm+(; m(X)) Endn(um(X))/B

where B {a e End (u(X)) a extends to a’" C() u(X)} (see [16,
Theorem 3.6, page 74, and Section 6, page 84] as a general reference).

(0.3) Note. k.(X) is the class of 1" u(X) urn(X).

DEfINiTION. k e H+(; u(X)) is said to be projective if one (and hence,
all [8, Corollary 6.4]) realizing partial resolution(s) for k may be chosen with
each P projective (i 0, 1,..., m).

Let IX] be a vertex of HT(u, m) and consider the u-module urn(X).
Such a u-module is called realizable. Let goZu denote the reduced projective
class group of the integral group ring Zu of . The following theorem is proved
in [8, Theorem 1].

THEOREM 1. Let be a group such that Hm+ (, Zu) 0. For each finitely
generated topologically realizable u-module Urn, the group H+(, ) supports
the structure of a ring with identity such that the units U ofH+(, urn) are the
projective k-invariants. Furthermore, there exists a homomorphism ’U
goZu such that ker SF(u, m) is the set ofk-invariants arisingfrom (, m)-
complexes, provided m 3.

Note that the hypothesis H+(; Zu) 0 implies that H+(; u(X))
H+(; u(Y)) for any two (, m)-complexes X, Y. This follows because the
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theorem of J. H. C. Whitehead mentioned in paragraph two implies that there
are integers s, such that

(1.1) X V sS
_

Y V tS

where iS S V V S (i times). Hence, there is a r-module isomorphism

(1.2) r,,,(X) (Zz) zm(Y)

for any two (t, m)-complexes X, Y [4, Appendix, Theorem, page 198].
For example, if n is a finite group of order n, then Hi(rt; Zrt) 0 for all
> 0 [3, Proposition 8.2a, page 198]. It follows that Hm+l(rt; rtm) = Z,, the

integers modulo n, (as a ring) for any realizable rCm I-7, Section 2] and oU" Z,*
/oZrt is given by sending p + nZ (p prime to n) to -[(p, N)-], the negative of
the class represented by the projective ideal (p, N) generated by the integer p
and N x x [19, Section 6, page 278, and 7, Theorem 2.2]. This homo-
morphism has been extensively studied in [14] for periodic and in [21] for
more general finite z.
As another example, let be a one-relator group with presentation

{Xl,..., Xn; Qq}

where Q is not a proper power and q > 1. It is known that for i> 3,
Hi(rt; Zt) 0 [15, Corollary 11.3, page 663]. Recently, S. Jajodia [13] has
shown that the ring H i+ l(rt; ti) Zq for all > 2 and realizable gi.

For a third example, let A be a finitely generated abelian group of rank
r > 0. It follows from [2, Proposition 3.1, page 112] that Hi(A; ZA) 0 for
all - r. Among the k-invariant rings Hi+I(A; Ai) there are noncyclic ex-
amples, for any realizable A and > r.
The ring Hm+(rr, rm)= R(rr, m) is called the classifying ring of the tree

HT(rt, m) and the homomorphism g(" U(rt, m) KoZrc, the classifying
komomorphism.

Briefly, let us define isomorphisms between algebraic m-types [17, page 41].
Let rt be a group, rm a t-module, and k e Hm+ l(r, 7rm). An algebraic m-type is
a triple T (r, tm, k). We say that T is isomorphic to T’ (t, r, k’) iff
there exists an automorphism 0" t rt, a 0-automorphism

fl" rCm rc, (fl(x" y) O(x)fl(y), x rc, y rCm)

such that k -,’O*(k’) in the diagram
19"Hm+ l(7r; m) tO* Hm+ 1(/1:; (m)O) Hm+ 1(7C;

Here (7m)0 is the z-module with action , y O().y ( c , y rm). It is
shown in [17, Theorem 1, page 42-1 that X __. Y iff T(X)

_
T(Y).

DEFYmON. Let HTOr, m)= ’-I([N + mi,, )) denote the subtree
whose vertices are at level greater than or equal to N. We say that HT is an
evergreen iff the successor function

Si.X, I(i) "-I(i + 1)
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is surjective for all > N +
stalk.

’-min" HT has essential height < if HT is a single

THEOREM 2. Let n be afinite #roup of order n and rn be an inteyer >_ 2. The
tree HT(n, m) always has finite essential height. For m > 3, the subtree
HT(n, m) is an evergreen; for rn even and >_ 4, the whole tree HT(n, m) is

everyreen.

Proof. If 7 is a realizable n-module and a" 7 --* 7 is an automorphism,
then we say that a," Hm+ l(n, n,,) H"+ l(n, nm) " Z, has degree k if ,(1)
k. Let X be a minimal root and let v be the number of m cells in X. Then, for
each p SF SF(n, m) Z*,, there exists an automorphism

(2.1) %," nm(X ( (ZTOS 7r,m(X ( Zn)S

of degree p, where S max (v, 2). To see this we argue as follows.
Consider the boundary homomorphism din" C,,(X) - Cm- (X) in the cellular

chain complex of the universal cover X of X. Let rim- denote the image of
For m > 3, rim- rim-(Xm-); if m 2, n is a so-called relation module
of n. The sequence

0-----, nm(X Cm(2 ) n,,_, 0

is an exact sequence of n-modules. Represent p SF by a homomorphism
p" n,,(X) - n,,(X) (multiplication by any integer p’ p will do) and consider
the diagram"

0 nm(X Cm( ) 7r, 0

o (x) p’C() _, o

where p’C,() is the push out of and p’. p SF implies that p’Cm() is stably
flee [8, Corollary 6.4]. If v (= rank Cm()) 2, then, by a theorem of H.
Bass [l, Corollary 10.3, page 29], P’Cm() Cm() (Zn); if v < 2, then
p’Cm() Zn is free. The isomorphism a then follows from Schanuel’s
lemma [19, Corollary I. l, page 270].
We will show that HT(, m) has essential height S. Let Y be a (n, re)-

complex at level higher than S l; i.e.,

By (1.2), m(X) (Zn)" nm(Y) (Zn)’ for certain nonnegative integers
u and t. A simple Euler characteristic argument shows that

u t= Y) J(min S.

Because S is greater than one, the cancellation theorem of H. Bass mentioned
in the last paragraph implies that rim(Y)" n,,(X) @ (Zn) (k > S). Thus
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T(Y) (n, 7r,m(X) ( (ZT)k, p) for some p SF. We may assume (0.3) that
T(X V kSm) (n, Am(X) @ (Zn)k, 1). Then the isomorphism

(id, v)" (n, 7m(X) O) (Zn)k, 1) T(X V kSm) (n, 7m(X) (Zn)k, p)

given by (2.1) shows that Y - X V kSm.
We say that a n-module M has the cancellation property if any isomorphism

M’@ (Zn)i- M@(Zn)j (j>_ i) implies that M’ - M(Zn)-. The
evergreen property for HT(n, m) follows because, as in the preceding para-
graph, Am(X) (Zn)2 has the cancellation property; the evergreen property
for HT(n, m) (m even) follows because Am(X) O) Zn has the cancellation pro-
perty [7, Proposition 5.1].
For example, let us prove the final statement. Let m > 3 be even and Y be a

(n, m)-complex such that -(Y)> Xmin. Then Am(Y) m(X)O)(Zn) and
T(Y) (n, nm(X)(Zn),p) for some psSF(n,m) c Z*. Let Tp-
(n, Am(X), p). Because m >_ 3, Tp T(W) for some (n, m)-complex W [-19,
Theorem 3.1, page 272]. Thus W V iS

_
Y, which implies that HT(n, m) is

an evergreen and that the only roots of the tree are minimal ones. [-]
In fact, the proof shows even more. Among the minimal roots for HT (n, m),

let X be the one with the smallest number of m-cells. Denote that number by
v(n, m). Then

Iv(n, m) if m is even
essential height of HT(n, m) _< max {v(n, m), 2} if m is odd.

For example, if n is the finite abelian group Z, x x Z, where zi[z.+l
(i 1,..., S- 1), then the essential height of HT(n, 2)is < S + C(S, 2).
See Theorem 3 for a better estimate.
As another example, let n be a finite group of minimal free period k (see [7,

Section 7] for a definition) and let g be the minimal number of generators of n.
Then the essential height of HT(n, ki + 1) (i >_ 1) is < g.

COROLLARY 1. If n is finite and m > 2, then roots of HT(n, m) may only
occur at level 0 for m even and level 0 or for m odd.

It is shown in !-9, Corollary 3.7] that HT(GQ(32), 3) has nonminimal roots,
where GQ(32) is the generalized quaternion group of order 32. Also, M. J.
Dunwoody has shown that roots exist at level in HT(T, 2), where T is the
group of the trefoil knot [5].

Finally, we will improve theorem A of [11, page 115].
THEOREM 3. Let zc Z x Z2 x x Z., be a finite abelian group with

torsion coefficients {zl, zE,..., Zs}, where z divides zi+ for 1,..., s 1.
Then HT(n, 2) has essential height <__ C(S, 2).

COROLLARY 2. The essential height ofliT(Z x Z,, 2) is less than or equal
to one.

Proof. In order to simplify the notation, we will prove only the corollary.
Let " (x, y" x, y’, Ix, y]} be the standard presentation of n Z x Z,,_, P
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be the realization of as a (rr, 2)-complex, and 2 r2(P). Let , y denote the
images of x, y in the group zr. Consider the 2-types

T/p (n, nE ) (Zn)i, p) for p Z*I and > 0.

As a point of reference, we may assume (0.3) that T(P V kS2) TR (k > 0).
We will show thatfor p SF(rc, 2), each T, TI. Assuming this, let Y be any
(n, 2) complex such that Y) > ;tmin 2. By (1.2) and because n2 Zn has
the cancellation property [7, Proposition 5.1-1, hE(Y) n2 (Z(n))k (k > 1).
Hence T(Y) T, for some p e Z*,2. But Theorem shows that because

Tk T(Y) is 2-realizable, p SF(n, 2). Thus

T(Y) Tp - T - T(P V kS2).
To show that Tp T11 for each p SF(n, 2), we use a theorem of S. MacLane

and J. H. C. Whitehead [-17, Theorem 2, page 42] to realize Tp as the 2-type of
a finite, connected 3-dimensional CW complex X. Consider the following
alteration of the cellular chain complex C.())"

( 0 72 (C2/B2) t_._2 C i.._, ZT Z 0

where Ci Ci(), BE im {" Ca - C2}. As in the proof of Theorem 4.1
of [-6, page 236], we may assume that CI (Zrr)2 and t31 ( l, .P l)
with respect to a natural basis for C(.) defined by the lifts of the (two) 1-cells
of X. cg realizes Tp. p e SF(r, 2) implies that C2/B2 is a stably free projective
module I-7, Theorem 2.5]. rc is finite abelian implies that stably free projectives
are free [20, page 178]; hence C2/B2 is a free r-module.
Now the argument of theorem A of [l l, pages 119-123] applied to yields

the result that Tp T. Briefly, here is a sketch of the argument" choose
e C2/B2 such that (2 t (1 y, ff- 1) (Zrt)2. Here , is the total

Fox derivative of the commutator Ix, y] [l l, Section 2]. Define a new chain
complex

(o t" 0 ’72 @ ZTr C2/B2 Zc (t’2,)
(Z)2

,Z, 0

(r, O) @ Zr(c, 1)

obtained by adding a copy of Zr to C2/B2 and defining the boundary operator
to be multiplication by on that factor. ’ realizes Tt as a free complex. We
prove this by comparing 03 (Zrr, 2) to ’ as in (0.2)"

e @ (zrt, 2)-
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The induced map fz shows that both cg, and cg (Zn, 2) have the same k-
invariant. The argument of [11, page 120, last paragraph, to page 123, first
paragraph] shows that under these conditions we may choose a basis for
Cz/Bz Zn so that cg, then realizes T and, in fact, ’ C.(P V $2), with_

T with an isomorphismthat basis (see also [10, pages 38-39]). Thus Tv
inducing the identity on n [10, Proposition 4, page 36]. [--]
The following corollary is an easy consequence of the last sentence of the

proof of Corollary 2.

COROLLARY 3. With nz nz(P) as in the proof of corollary 2, there is an
automorphism %" nz Zn n2 Zn of degree p for each p SF(n, 2) (see
[7, Section 3] for a related discussion).

Note. E. Vogt has brought to my attention recent work ofWolfgang Metzler.
He has shown that for certain finite abelian groups

zr(,...,Zs)- Z x Z x’" x Z withS_> 3,

there exist distinct minimal roots K, Kz of HT(zr, 2) for which K V S2

K2 V S2 [18, Satz 2]. Thus, for certain finite abelian groups r, the homotopy
tree HT (zr, 2) is not a single stalk.

Let zr(z,..., Zs) have presentation

{x,..., Xs" x],..., Xss, {[xi, x] 1 <_ < j <_ S}}

and let P denote the cellular model of . It can be shown that the Z-rank of
r(P) is precisely the number C(S, 2). We ask two questions"

(1) Is the essential height of HT(rc(,t,..., Vs), 2) equal to C(S, 2)?
(2) If rc is an arbitrary finite group, and X a minimal root of HT(rc, m), is

the essential height of HT(rc, m) <_ Z-rank of

One method of proof for (2) might go as follows. Let X be a minimal root
and ZCm rc(X). By Schanuel’s lemma and [7, Theorem 2.2] it follows that
there exists an automorphism

Op" 7 (Z70M 7 (ZT)M

of degree p for each p SFOr, m). Here M < v0z, m). The problem is then to
cancel (in the style of Bass-Jacobinski [20, Chapter 9], [1], [12]) while preserving
the degree.
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