HOMOTOPY TREES: ESSENTIAL HEIGHT AND ROOTS

BY

Micheal N. Dyer

In this note we study some general properties of homotopy trees $H T(\pi, m)$. We show that for π a finite group, the trees are a single stalk from some point on (Theorem 2) and if $m \geq 3$, that roots can occur only at the lowest two levels of the tree (Corollary 1).

A (π, m)-complex X is a finite, connected m-dimensional CW-complex such that $\pi_{1}(X) \cong \pi$ and $\pi_{i}(X)=0$ for $i=2, \ldots, m-1$. The homotopy tree $H T(\pi, m)$ is the directed tree whose vertices are homotopy classes of (π, m) complexes. If X and Y are (π, m)-complexes, then the vertex $[X]$ is connected by an edge to the vertex [Y] iff Y has the homotopy type of the one-point union $X \vee S^{m}$ of X with the m-sphere $S^{m} . H T(\pi, m)$ is connected by Theorem 14 of [23, page 49] and has no circuits. The tree $H T(\pi, m)$ is measured by the directed Euler characteristic $\vec{\chi}=(-1)^{m} \chi:$ vertices $(H T) \rightarrow Z$. Let

$$
\vec{\chi}_{\min }=\min \{\chi[X] \mid X \text { is a }(\pi, m) \text {-complex }\} .
$$

Thus χ divides the tree into levels $\vec{\chi}^{-1}(j)\left(j \geq \vec{\chi}_{\text {min }}\right)$. We call $\vec{\chi}^{-1}\left(i+\vec{\chi}_{\text {min }}\right)$ the i th level of the tree. For each $j \geq \chi_{\text {min }}$, the successor function $s_{j}: \vec{\chi}^{-1}(j) \rightarrow$ $\vec{\chi}^{-1}(j+1)$ is given by $s_{j}([X])=\left[X \vee S^{m}\right]$. A vertex $x \in H T$ is a root if x has no predecessor; a minimal root if $x \in \vec{\chi}^{-1}\left(\vec{\chi}_{\text {min }}\right)$. The stalk $\langle x\rangle$ generated by the vertex x is the subtree whose vertices consist of

$$
\left\{x, s(x), s^{2}(x), \ldots, s^{n}(x), \ldots\right\}
$$

For the purpose of classifying the homotopy type of (π, m)-complexes, we will identify the fundamental group of each (π, m)-complex with π. This can be done by simply choosing (and fixing) an isomorphism $\alpha_{X}: \pi \rightarrow \pi_{1}(X)$ for each X and using α_{X} to convert each $\pi_{1}(X)$-module into a π-module. Then any argument we make over π can be easily translated to $\pi_{1}(X)$. If $m \geq 3$, we may use a lemma of C. T. C. Wall [22, Lemma 1.2, page 59] to find a (π, m)-complex $Y \in[X]$ such that the two-skeleton $Y^{(2)}$ is the one-point union of a given ($\pi, 2$)-complex and a finite bouquet of 2 -spheres. In this case, we may trivially identify the fundamental groups.

The homotopy type of a (π, m)-complex X is completely determined by (the isomorphism class of) its algebraic m-type $\mathbf{T}(X)$. This consists of the triple $\mathbf{T}(X)=\left(\pi, \pi_{m}(X), k(X)\right)$ where $\pi_{m}(X)$ is a π-module and $k(X) \in H^{m+1}\left(\pi ; \pi_{m}(X)\right)$ is the first k-invariant of X (see [17, page 41], [7, Section 2]).

Let us briefly define the k-invariant. Let

$$
\begin{align*}
0 & \longrightarrow \pi_{m}(X) \longrightarrow C_{m}(\tilde{X}) \xrightarrow{\partial_{m}} C_{m-1}(\tilde{X}) \xrightarrow{\partial_{m-1}} \cdots \\
& \xrightarrow{\partial_{1}} C_{0}(\tilde{X}) \xrightarrow{\varepsilon} Z \longrightarrow 0 \tag{0.1}
\end{align*}
$$

be the cellular chain complex of the universal cover \tilde{X} of X. We will denote this by $0 \rightarrow \pi_{m}(X) \rightarrow C_{*}(\tilde{X}) \rightarrow Z \rightarrow 0$. This is an exact sequence of π-modules forming a portion of length m of a free, finitely generated resolution (each $C_{i}(\tilde{X})$ is a free, finitely generated π-module, $i=0,1, \ldots, m$) of the trivial π-module Z. Let

$$
\mathscr{P}: 0 \rightarrow \pi_{m}(X) \rightarrow P_{*} \rightarrow Z \rightarrow 0
$$

denote an exact sequence of length m of π-modules, where each $P_{i}(i=0,1, \ldots$, m) is finitely generated. Each such exact sequence determines an element k of $H^{m+1}\left(\pi ; \pi_{m}(X)\right)$ as follows. Cover the identity map $Z=Z$ by a chain map $\mathscr{F}: C_{*}(\tilde{X}) \rightarrow P_{*}$ as follows:

This induces a homomorphism $f: \pi_{m}(X) \rightarrow \pi_{m}(X)$, which, in turn, determines an element

$$
k=\{f\} \in H^{m+1}\left(\pi ; \pi_{m}(X)\right)=\operatorname{End}_{\pi}\left(\pi_{m}(X)\right) / B^{m}
$$

where $B^{m}=\left\{\alpha \in \operatorname{End}_{\pi}\left(\pi_{m}(X)\right) \mid \alpha\right.$ extends to $\left.\alpha^{\prime}: C_{m}(\tilde{X}) \rightarrow \pi_{m}(X)\right\}$ (see [16, Theorem 3.6, page 74, and Section 6, page 84] as a general reference).
(0.3) Note. $k(X)$ is the class of $1: \pi_{m}(X) \rightarrow \pi_{m}(X)$.

Definition. $\quad k \in H^{m+1}\left(\pi ; \pi_{m}(X)\right)$ is said to be projective if one (and hence, all [8, Corollary 6.4]) realizing partial resolution(s) for k may be chosen with each P_{i} projective $(i=0,1, \ldots, m)$.

Let $[X]$ be a vertex of $H T(\pi, m)$ and consider the π-module $\pi_{m}=\pi_{m}(X)$. Such a π-module is called realizable. Let $\tilde{K}_{0} Z \pi$ denote the reduced projective class group of the integral group ring $Z \pi$ of π. The following theorem is proved in [8, Theorem 1].

Theorem 1. Let π be a group such that $H^{m+1}(\pi, Z \pi)=0$. For each finitely generated topologically realizable π-module π_{m}, the group $H^{m+1}\left(\pi, \pi_{m}\right)$ supports the structure of a ring with identity such that the units U of $H^{m+1}\left(\pi, \pi_{m}\right)$ are the projective k-invariants. Furthermore, there exists a homomorphism $\mathscr{K}: U \rightarrow$ $\widetilde{K}_{0} Z \pi$ such that ker $\mathscr{K}=S F(\pi, m)$ is the set of k-invariants arising from (π, m) complexes, provided $m \geq 3$.

Note that the hypothesis $H^{m+1}(\pi ; Z \pi)=0$ implies that $H^{m+1}\left(\pi ; \pi_{m}(X)\right) \cong$ $H^{m+1}\left(\pi ; \pi_{m}(Y)\right)$ for any two (π, m)-complexes X, Y. This follows because the
theorem of J. H. C. Whitehead mentioned in paragraph two implies that there are integers s, t such that

$$
\begin{equation*}
X \vee s S^{m} \simeq Y \vee t S^{m} \tag{1.1}
\end{equation*}
$$

where $i S^{m}=S^{m} \vee \cdots \vee S^{m}$ (i times). Hence, there is a π-module isomorphism

$$
\begin{equation*}
\pi_{m}(X) \oplus(Z \pi)^{s} \cong \pi_{m}(Y) \oplus(Z \pi)^{t} \tag{1.2}
\end{equation*}
$$

for any two (π, m)-complexes X, Y [4, Appendix, Theorem, page 198].
For example, if π is a finite group of order n, then $H^{i}(\pi ; Z \pi)=0$ for all $i>0$ [3, Proposition 8.2a, page 198]. It follows that $H^{m+1}\left(\pi ; \pi_{m}\right) \cong Z_{n}$, the integers modulo n, (as a ring) for any realizable $\pi_{m}\left[7\right.$, Section 2] and $\mathscr{K}: Z_{n}^{*} \rightarrow$ $\widetilde{K}_{0} Z \pi$ is given by sending $p+n Z$ (p prime to n) to $-[(p, N)]$, the negative of the class represented by the projective ideal (p, N) generated by the integer p and $N=\sum_{x \in \pi} x$ [19, Section 6, page 278, and 7, Theorem 2.2]. This homomorphism has been extensively studied in [14] for π periodic and in [21] for more general finite π.

As another example, let π be a one-relator group with presentation

$$
\left\{x_{1}, \ldots, x_{n} ; Q^{q}\right\}
$$

where Q is not a proper power and $q \geq 1$. It is known that for $i \geq 3$, $H^{i}(\pi ; Z \pi)=0$ [15, Corollary 11.3, page 663]. Recently, S. Jajodia [13] has shown that the ring $H^{i+1}\left(\pi ; \pi_{i}\right) \cong Z_{q}$ for all $i \geq 2$ and realizable π_{i}.

For a third example, let A be a finitely generated abelian group of rank $r>0$. It follows from [2, Proposition 3.1, page 112] that $H^{i}(A ; Z A)=0$ for all $i \neq r$. Among the k-invariant rings $H^{i+1}\left(A ; A_{i}\right)$ there are noncyclic examples, for any realizable A_{i} and $i \geq r$.

The ring $H^{m+1}\left(\pi, \pi_{m}\right)=R(\pi, m)$ is called the classifying ring of the tree $H T(\pi, m)$ and the homomorphism $\mathscr{K}: U(\pi, m) \rightarrow \widetilde{K}_{0} Z \pi$, the classifying homomorphism.

Briefly, let us define isomorphisms between algebraic m-types [17, page 41]. Let π be a group, π_{m} a π-module, and $k \in H^{m+1}\left(\pi, \pi_{m}\right)$. An algebraic m-type is a triple $\mathbf{T}=\left(\pi, \pi_{m}, k\right)$. We say that \mathbf{T} is isomorphic to $\mathbf{T}^{\prime}=\left(\pi, \pi_{m}^{\prime}, k^{\prime}\right)$ iff there exists an automorphism $\theta: \pi \rightarrow \pi$, a θ-automorphism

$$
\beta: \pi_{m} \rightarrow \pi_{m}^{\prime} \quad\left(\beta(x \cdot y)=\theta(x) \beta(y), x \in \pi, y \in \pi_{m}\right)
$$

such that $k=\beta_{*}^{-1} \cdot \theta^{*}\left(k^{\prime}\right)$ in the diagram

$$
H^{m+1}\left(\pi ; \pi_{m}\right) \xrightarrow{\beta^{*}} H^{m+1}\left(\pi ;\left(\pi_{m}\right)_{\theta}\right) \xrightarrow{\theta^{*}} H^{m+1}\left(\pi ; \pi_{m}^{\prime}\right) .
$$

Here $\left(\pi_{m}\right)_{\theta}$ is the π-module with action $\alpha * y=\theta(\alpha) \cdot y\left(\alpha \in \pi, y \in \pi_{m}\right)$. It is shown in [17, Theorem 1, page 42] that $X \simeq Y$ iff $\mathbf{T}(X) \cong \mathbf{T}(Y)$.

Definition. Let $H T(\pi, m)^{N}=\vec{\chi}^{-1}\left(\left[N+\vec{\chi}_{\text {min }}, \infty\right)\right)$ denote the subtree whose vertices are at level greater than or equal to N. We say that $H T^{N}$ is an evergreen iff the successor function

$$
s_{i}: \vec{\chi}^{-1}(i) \rightarrow \vec{\chi}^{-1}(i+1)
$$

is surjective for all $i \geq N+\vec{\chi}_{\text {min }}$. $H T$ has essential height $\leq l$ if $H T^{l}$ is a single stalk.

Theorem 2. Let π be a finite group of order n and m be an integer ≥ 2. The tree $H T(\pi, m)$ always has finite essential height. For $m \geq 3$, the subtree $H T(\pi, m)^{1}$ is an evergreen; for m even and ≥ 4, the whole tree $H T(\pi, m)$ is evergreen.

Proof. If π_{m} is a realizable π-module and $\alpha: \pi_{m} \rightarrow \pi_{m}$ is an automorphism, then we say that $\alpha_{*}: H^{m+1}\left(\pi, \pi_{m}\right) \rightarrow H^{m+1}\left(\pi, \pi_{m}\right) \cong Z_{n}$ has degree k if $\alpha_{*}(1)=$ k. Let X be a minimal root and let v be the number of m cells in X. Then, for each $p \in S F=S F(\pi, m) \subset Z_{n}^{*}$, there exists an automorphism

$$
\begin{equation*}
\alpha_{p}: \pi_{m}(X) \oplus(Z \pi)^{S} \rightarrow \pi_{m}(X) \oplus(Z \pi)^{S} \tag{2.1}
\end{equation*}
$$

of degree p, where $S=\max (v, 2)$. To see this we argue as follows.
Consider the boundary homomorphism $\partial_{m}: C_{m}(\tilde{X}) \rightarrow C_{m-1}(\tilde{X})$ in the cellular chain complex of the universal cover \tilde{X} of X. Let π_{m-1} denote the image of ∂_{m}. For $m \geq 3, \pi_{m-1}=\pi_{m-1}\left(X^{(m-1)}\right)$; if $m=2, \pi_{1}$ is a so-called relation module of π. The sequence

$$
0 \longrightarrow \pi_{m}(X) \xrightarrow{i} C_{m}(\tilde{X}) \longrightarrow \pi_{m-1} \longrightarrow 0
$$

is an exact sequence of π-modules. Represent $p \in S F$ by a homomorphism $p^{\prime}: \pi_{m}(X) \rightarrow \pi_{m}(X)$ (multiplication by any integer $p^{\prime} \in p$ will do) and consider the diagram:

where $p^{\prime} C_{m}(\tilde{X})$ is the push out of i and $p^{\prime} . p \in S F$ implies that $p^{\prime} C_{m}(\tilde{X})$ is stably free [8, Corollary 6.4]. If $v\left(=\operatorname{rank}_{\pi} C_{m}(\tilde{X})\right) \geq 2$, then, by a theorem of H . Bass [1, Corollary 10.3, page 29], $p^{\prime} C_{m}(\tilde{X}) \cong C_{m}(\tilde{X}) \cong(Z \pi)^{v}$; if $v<2$, then $p^{\prime} C_{m}(\tilde{X}) \oplus Z \pi$ is free. The isomorphism α_{p} then follows from Schanuel's lemma [19, Corollary 1.1, page 270].

We will show that $H T(\pi, m)$ has essential height $\leq S$. Let Y be a (π, m) complex at level higher than $S-1$; i.e.,

$$
\vec{\chi}(Y)=|\chi(Y)| \geq S+\vec{\chi}_{\text {min }}
$$

By (1.2), $\pi_{m}(X) \oplus(Z \pi)^{u} \cong \pi_{m}(Y) \oplus(Z \pi)^{t}$ for certain nonnegative integers u and t. A simple Euler characteristic argument shows that

$$
u-t=\vec{\chi}(Y)-\vec{\chi}_{\min } \geq S
$$

Because S is greater than one, the cancellation theorem of H . Bass mentioned in the last paragraph implies that $\pi_{m}(Y) \cong \pi_{m}(X) \oplus(Z \pi)^{k}(k \geq S)$. Thus
$\mathbf{T}(Y) \cong\left(\pi, \pi_{m}(X) \oplus(Z \pi)^{k}, p\right)$ for some $p \in S F$. We may assume (0.3) that $\mathbf{T}\left(X \vee k S^{m}\right)=\left(\pi, \pi_{m}(X) \oplus(Z \pi)^{k}, 1\right)$. Then the isomorphism

$$
\left(\operatorname{id}, \alpha_{p}\right):\left(\pi, \pi_{m}(X) \oplus(Z \pi)^{k}, 1\right)=\mathbf{T}\left(X \vee k S^{m}\right) \rightarrow\left(\pi, \pi_{m}(X) \oplus(Z \pi)^{k}, p\right)
$$

given by (2.1) shows that $Y \simeq X \vee k S^{m}$.
We say that a π-module M has the cancellation property if any isomorphism $M^{\prime} \oplus(Z \pi)^{i} \cong M \oplus(Z \pi)^{j}(j \geq i)$ implies that $M^{\prime} \cong M \oplus(Z \pi)^{j-i}$. The evergreen property for $H T(\pi, m)^{1}$ follows because, as in the preceding paragraph, $\pi_{m}(X) \oplus(Z \pi)^{2}$ has the cancellation property; the evergreen property for $H T(\pi, m)$ (m even) follows because $\pi_{m}(X) \oplus Z \pi$ has the cancellation property [7, Proposition 5.1].

For example, let us prove the final statement. Let $m>3$ be even and Y be a (π, m)-complex such that $\vec{\chi}(Y)>\vec{\chi}_{\text {min }}$. Then $\pi_{m}(Y) \cong \pi_{m}(X) \oplus(Z \pi)^{i}$ and $\mathbf{T}(Y) \cong\left(\pi, \pi_{m}(X) \oplus(Z \pi)^{i}, p\right)$ for some $p \in S F(\pi, m) \subset Z_{n}^{*}$. Let $\mathbf{T}_{p}=$ $\left(\pi, \pi_{m}(X), p\right)$. Because $m \geq 3, \mathbf{T}_{p} \cong \mathbf{T}(W)$ for some (π, m)-complex W [19, Theorem 3.1, page 272]. Thus $W \vee i S^{m} \simeq Y$, which implies that $H T(\pi, m)$ is an evergreen and that the only roots of the tree are minimal ones.

In fact, the proof shows even more. Among the minimal roots for $H T(\pi, m)$, let X be the one with the smallest number of m-cells. Denote that number by $v(\pi, m)$. Then

$$
\text { essential height of } H T(\pi, m) \leq \begin{cases}v(\pi, m) & \text { if } m \text { is even } \\ \max \{v(\pi, m), 2\} & \text { if } m \text { is odd }\end{cases}
$$

For example, if π is the finite abelian group $Z_{\tau_{1}} \times \cdots \times Z_{\tau_{s}}$, where $\tau_{i} \mid \tau_{i+1}$ $(i=1, \ldots, S-1)$, then the essential height of $H T(\pi, 2)$ is $\leq S+C(S, 2)$. See Theorem 3 for a better estimate.

As another example, let π be a finite group of minimal free period k (see [7, Section 7] for a definition) and let g be the minimal number of generators of π. Then the essential height of $H T(\pi, k i+1)(i \geq 1)$ is $\leq g$.

Corollary 1. If π is finite and $m>2$, then roots of $H T(\pi, m)$ may only occur at level 0 for m even and level 0 or 1 for m odd.

It is shown in [9, Corollary 3.7] that $H T(G Q(32), 3)$ has nonminimal roots, where $G Q(32)$ is the generalized quaternion group of order 32 . Also, M. J. Dunwoody has shown that roots exist at level 1 in $\operatorname{HT}(T, 2)$, where T is the group of the trefoil knot [5].

Finally, we will improve theorem A of [11, page 115].
Theorem 3. Let $\pi=Z_{\tau_{1}} \times Z_{\tau_{2}} \times \cdots \times Z_{\tau_{s}}$ be a finite abelian group with torsion coefficients $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{s}\right\}$, where τ_{i} divides τ_{i+1} for $i=1, \ldots, s-1$. Then $H T(\pi, 2)$ has essential height $\leq C(S, 2)$.

Corollary 2. The essential height of $H T\left(Z_{\tau_{1}} \times Z_{\tau_{2}}, 2\right)$ is less than or equal to one.

Proof. In order to simplify the notation, we will prove only the corollary. Let $\mathscr{P}:\left\{x, y: x^{\tau_{1}}, y^{\tau_{2}},[x, y]\right\}$ be the standard presentation of $\pi=Z_{\tau_{1}} \times Z_{\tau_{2}}, P$
be the realization of \mathscr{P} as a ($\pi, 2$)-complex, and $\pi_{2}=\pi_{2}(P)$. Let \bar{x}, \bar{y} denote the images of x, y in the group π. Consider the 2-types

$$
\mathbf{T}_{p}^{i}=\left(\pi, \pi_{2} \oplus(Z \pi)^{i}, p\right) \quad \text { for } p \in Z_{\tau_{1} \tau_{2}}^{*} \text { and } i \geq 0
$$

As a point of reference, we may assume (0.3) that $\mathbf{T}\left(P \vee k S^{2}\right)=\mathbf{T}_{1}^{k}(k \geq 0)$. We will show that for $p \in S F(\pi, 2)$, each $\mathbf{T}_{p}^{1} \cong \mathbf{T}_{1}^{1}$. Assuming this, let Y be any $(\pi, 2)$ complex such that $\vec{\chi}(Y)>\vec{\chi}_{\text {min }}=2$. By (1.2) and because $\pi_{2} \oplus Z \pi$ has the cancellation property [7, Proposition 5.1], $\pi_{2}(Y) \cong \pi_{2} \oplus(Z(\pi))^{k}(k \geq 1)$. Hence $\mathbf{T}(Y) \cong \mathbf{T}_{p}^{k}$ for some $p \in Z_{\tau_{1} \tau_{2}}^{*}$. But Theorem 1 shows that because $\mathbf{T}_{p}^{k} \cong \mathbf{T}(Y)$ is 2-realizable, $p \in S F(\pi, 2)$. Thus

$$
\mathbf{T}(Y) \cong \mathbf{T}_{p}^{k} \cong \mathbf{T}_{1}^{k} \cong \mathbf{T}\left(P \vee k S^{2}\right)
$$

Tc show that $\mathbf{T}_{p}^{1} \cong \mathbf{T}_{1}^{1}$ for each $p \in S F(\pi, 2)$, we use a theorem of S. MacLane and J. H. C. Whitehead [17, Theorem 2, page 42] to realize T_{p}^{0} as the 2-type of a finite, connected 3-dimensional CW complex X. Consider the following alteration of the cellular chain complex $C_{*}(\tilde{X})$:

$$
\mathscr{C}: 0 \longrightarrow \pi_{2} \longrightarrow\left(C_{2} / B_{2}\right) \xrightarrow{\lambda_{2}} C_{1} \xrightarrow{\partial_{1}} Z \pi \xrightarrow{\varepsilon} Z \longrightarrow 0
$$

where $C_{i}=C_{i}(\tilde{X}), B_{2}=\operatorname{im}\left\{\partial: C_{3} \rightarrow C_{2}\right\}$. As in the proof of Theorem 4.1 of [6, page 236], we may assume that $C_{1}=(Z \pi)^{2}$ and $\partial_{1}=(\bar{x}-1, \bar{y}-1)$ with respect to a natural basis for $C_{1}(\tilde{X})$ defined by the lifts of the (two) 1-cells of $X . \mathscr{C}$ realizes $\mathbf{T}_{p}^{0} . p \in S F(\pi, 2)$ implies that C_{2} / B_{2} is a stably free projective module [7, Theorem 2.5]. π is finite abelian implies that stably free projectives are free [20, page 178]; hence C_{2} / B_{2} is a free π-module.

Now the argument of theorem A of [11, pages 119-123] applied to \mathscr{C} yields the result that $\mathbf{T}_{p}^{1} \cong \mathbf{T}_{1}^{1}$. Briefly, here is a sketch of the argument: choose $c \in C_{2} / B_{2}$ such that $\partial_{2} c=\alpha=(1-\bar{y}, \bar{x}-1) \in(Z \pi)^{2}$. Here α is the total Fox derivative of the commutator $[x, y][11$, Section 2]. Define a new chain complex

obtained by adding a copy of $Z \pi$ to C_{2} / B_{2} and defining the boundary operator to be multiplication by α on that factor. \mathscr{C}^{\prime} realizes \mathbf{T}_{p}^{1} as a free complex. We prove this by comparing $\mathscr{C} \oplus(Z \pi, 2)$ to \mathscr{C}^{\prime} as in (0.2):
$\mathscr{C} \oplus(Z \pi, 2):$

The induced map f_{2} shows that both \mathscr{C}^{\prime} and $\mathscr{C} \oplus(Z \pi, 2)$ have the same k invariant. The argument of [11, page 120 , last paragraph, to page 123 , first paragraph] shows that under these conditions we may choose a basis for $C_{2} / B_{2} \oplus Z \pi$ so that \mathscr{C}^{\prime} then realizes T_{1}^{1} and, in fact, $\mathscr{C}^{\prime}=C_{*}\left(P \vee S^{2}\right)$, with that basis (see also [10, pages 38-39]). Thus $\mathbf{T}_{p}^{1} \cong \mathbf{T}_{1}^{1}$ with an isomorphism inducing the identity on π [10, Proposition 4, page 36].

The following corollary is an easy consequence of the last sentence of the proof of Corollary 2.

Corollary 3. With $\pi_{2}=\pi_{2}(P)$ as in the proof of corollary 2, there is an automorphism $\alpha_{p}: \pi_{2} \oplus Z \pi \rightarrow \pi_{2} \oplus Z \pi$ of degree p for each $p \in \operatorname{SF}(\pi, 2)$ (see [7, Section 3] for a related discussion).

Note. E. Vogt has brought to my attention recent work of Wolfgang Metzler. He has shown that for certain finite abelian groups

$$
\pi\left(\tau_{1}, \ldots, \tau_{S}\right)=Z_{\tau_{1}} \times Z_{\tau_{2}} \times \cdots \times Z_{\tau_{s}} \quad \text { with } S \geq 3
$$

there exist distinct minimal roots K_{1}, K_{2} of $H T(\pi, 2)$ for which $K_{1} \vee S^{2} \simeq$ $K_{2} \vee S^{2}$ [18, Satz 2]. Thus, for certain finite abelian groups π, the homotopy tree $H T(\pi, 2)$ is not a single stalk.

Let $\pi\left(\tau_{1}, \ldots, \tau_{S}\right)$ have presentation

$$
\mathscr{P}=\left\{x_{1}, \ldots, x_{S}: x_{1}^{\tau_{1}}, \ldots, x_{S}^{\tau_{S}},\left\{\left[x_{i}, x_{j}\right] \mid 1 \leq i<j \leq S\right\}\right\}
$$

and let P denote the cellular model of \mathscr{P}. It can be shown that the Z-rank of $\pi_{2}(P)^{\pi}$ is precisely the number $C(S, 2)$. We ask two questions:
(1) Is the essential height of $\operatorname{HT}\left(\pi\left(\tau_{1}, \ldots, \tau_{S}\right), 2\right)$ equal to $C(S, 2)$?
(2) If π is an arbitrary finite group, and X a minimal root of $H T(\pi, m)$, is the essential height of $H T(\pi, m) \leq Z$-rank of $\pi_{2}(X)^{\pi}$?

One method of proof for (2) might go as follows. Let X be a minimal root and $\pi_{m}=\pi_{m}(X)$. By Schanuel's lemma and [7, Theorem 2.2] it follows that there exists an automorphism

$$
\alpha_{p}: \pi_{m} \oplus(Z \pi)^{M} \rightarrow \pi_{m} \oplus(Z \pi)^{M}
$$

of degree p for each $p \in S F(\pi, m)$. Here $M \leq v(\pi, m)$. The problem is then to cancel (in the style of Bass-Jacobinski [20, Chapter 9], [1], [12]) while preserving the degree.

Bibliography

1. H. Bass, K-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math., vol. 22 (1964), pp. 5-60.
2. R. Bieri and B. Eckmann, Groups with homological duality generalizing Poincare duality, Inventiones Math., vol. 20 (1973), pp. 104-124.
3. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, New Jersey, 1952.
4. W. H. Cockcroft and R. G. Swan, On the homotopy types of certain two-dimensional complexes, Proc. London Math. Soc. (3), vol. 11 (1961), pp. 194-202.
5. M. J. Dunwoody, The homotopy type of a two-dimensional complex, preprint.
6. M. N. Dyer, On the 2-realizability of 2-types, Trans. Amer. Math. Soc., vol. 204 (1975), pp. 229-243.
7.
8. —, Projective k-invariants, preprint.
9. - Non-minimal roots in homotopy trees, preprint.
10. M. N. Dyer and A. J. Sieradski, Trees of homotopy types of two-dimensional CWcomplexes I, Comm. Math. Helv., vol. 48 (1973), 31-44.
11. ——, Trees of homotopy types of two-dimensional CW complexes II, Trans. Amer. Math. Soc., vol. 205 (1975), pp. 115-125.
12. H. Jacobinski, Genera and decompositions of lattices over orders, Acta Math., vol. 121 (1968), pp. 1-29.
13. S. JAJODIA, private communication.
14. R. Lee and C. Thomas, Free, finite group actions on S^{3}, Bull. Amer. Math. Soc., vol. 79 (1973), pp. 211-215.
15. R. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math., vol. 52 (1950), pp. 650-665.
16. S. Maclane, Homology, Springer-Verlag, Berlin, 1963.
17. S. MacLane and J. H. C. Whitehead, On the 3-type of a complex, Proc. Nat. Acad. Sci. U.S.A., vol. 36 (1950), pp. 41-48.
18. W. Metzler, Uber den Homotopietyp zweidimensionaler CW-Komplexe und Elementartransformationen bei Darstellungen von Gruppen durch Erzeugende und definierende Relationen, preprint.
19. R. G. Swan, Periodic resolutions for finite groups, Ann. of Math., vol. 72 (1960), pp. 267291.
20. R. G. Swan and E. G. Evans, K-theory of finite groups and orders, Lecture notes in mathematics, vol. 149, Springer-Verlag, Berlin, 1970.
21. S. Ullom, Non-trivial lower bounds for class groups of integral group rings, preprint.
22. C. T. C. Wall, Finiteness conditions for CW-complexes I, Ann. of Math., vol. 81 (1965), pp. 354-363.
23. J. H. C. Whitehead, Simple homotopy types, Amer. J. Math., vol. 72 (1950), pp. 1-57.

University of Oregon
 Eugene, Oregon

